No CrossRef data available.
 $\mathcal {Z}$-ABSORBING C*-ALGEBRAS
$\mathcal {Z}$-ABSORBING C*-ALGEBRASPublished online by Cambridge University Press: 04 June 2025
We define a notion of tracial  $\mathcal {Z}$-absorption for simple not necessarily unital C*-algebras, study it systematically and prove its permanence properties. This extends the notion defined by Hirshberg and Orovitz for unital C*-algebras. The Razak-Jacelon algebra, simple nonelementary C*-algebras with tracial rank zero, and simple purely infinite C*-algebras are tracially
$\mathcal {Z}$-absorption for simple not necessarily unital C*-algebras, study it systematically and prove its permanence properties. This extends the notion defined by Hirshberg and Orovitz for unital C*-algebras. The Razak-Jacelon algebra, simple nonelementary C*-algebras with tracial rank zero, and simple purely infinite C*-algebras are tracially  $\mathcal {Z}$-absorbing. We obtain the first purely infinite examples of tracially
$\mathcal {Z}$-absorbing. We obtain the first purely infinite examples of tracially  $\mathcal {Z}$-absorbing C*-algebras which are not
$\mathcal {Z}$-absorbing C*-algebras which are not  $\mathcal {Z}$-absorbing. We use techniques from reduced free products of von Neumann algebras to construct these examples. A stably finite example was given by Z. Niu and Q. Wang in 2021. We study the Cuntz semigroup of a simple tracially
$\mathcal {Z}$-absorbing. We use techniques from reduced free products of von Neumann algebras to construct these examples. A stably finite example was given by Z. Niu and Q. Wang in 2021. We study the Cuntz semigroup of a simple tracially  $\mathcal {Z}$-absorbing C*-algebra and prove that it is almost unperforated and the algebra is weakly almost divisible.
$\mathcal {Z}$-absorbing C*-algebra and prove that it is almost unperforated and the algebra is weakly almost divisible.
 $\mathcal {Z}$
-absorbing C*-algebras. J. Operator Th. 92, 505–547.CrossRefGoogle Scholar
$\mathcal {Z}$
-absorbing C*-algebras. J. Operator Th. 92, 505–547.CrossRefGoogle Scholar $\mathcal {Z}$
-absorption. Int. Math. Res. Not. 292, 1–21.Google Scholar
$\mathcal {Z}$
-absorption. Int. Math. Res. Not. 292, 1–21.Google Scholar $\mathrm{III}$
. Proc. Amer. Math. Soc. 123, 543–553.Google Scholar
$\mathrm{III}$
. Proc. Amer. Math. Soc. 123, 543–553.Google Scholar $\Gamma$
. 
To appear in Int
. Math. Res. Not. https://doi.org/10.1093/imrn/rnaa282.Google Scholar
$\Gamma$
. 
To appear in Int
. Math. Res. Not. https://doi.org/10.1093/imrn/rnaa282.Google Scholar $\mathcal {Z}$
-stable C*-algebras. arXiv preprint 1811.00447v3 [math.OA].Google Scholar
$\mathcal {Z}$
-stable C*-algebras. arXiv preprint 1811.00447v3 [math.OA].Google Scholar $\mathcal {Z}$
-absorbing C*-algebras. J. Funct. Anal. 265, 765–785.CrossRefGoogle Scholar
$\mathcal {Z}$
-absorbing C*-algebras. J. Funct. Anal. 265, 765–785.CrossRefGoogle Scholar $\mathcal {Z}$
-Absorbing C*-Algebras. PhD thesis (Persian), Tarbiat Modares University.Google Scholar
$\mathcal {Z}$
-Absorbing C*-Algebras. PhD thesis (Persian), Tarbiat Modares University.Google Scholar ${\mathcal{O}}_{\infty }$
. Adv. Math. 167, 195–264.CrossRefGoogle Scholar
${\mathcal{O}}_{\infty }$
. Adv. Math. 167, 195–264.CrossRefGoogle Scholar $\mathrm{Z}$
-stable. Münster J. of Math. 14, 41–57.Google Scholar
$\mathrm{Z}$
-stable. Münster J. of Math. 14, 41–57.Google Scholar $\mathcal {Z}$
-absorbing C*-algebras. Internat. J. Math. 15, 1065–1084.CrossRefGoogle Scholar
$\mathcal {Z}$
-absorbing C*-algebras. Internat. J. Math. 15, 1065–1084.CrossRefGoogle Scholar $Z$
-stability, and algebraic simplicity for stably projectionless C*-algebras. Math. Ann. 358, 729–778.CrossRefGoogle Scholar
$Z$
-stability, and algebraic simplicity for stably projectionless C*-algebras. Math. Ann. 358, 729–778.CrossRefGoogle Scholar $\mathcal {Z}$
-stability of pure C*-algebras. Invent. Math. 187, 259–342.CrossRefGoogle Scholar
$\mathcal {Z}$
-stability of pure C*-algebras. Invent. Math. 187, 259–342.CrossRefGoogle Scholar