No CrossRef data available.
Published online by Cambridge University Press: 03 November 2016
There are many methods of solving algebraic equations whose coefficients are real and have given numerical values. In practice it very often happens that the coefficients are not given numerically, but are expressed in terms of certain parameters, and that what is wanted is not the roots of the equation for special values of the parameters, but an indication of the way in which the roots behave as these parameters vary between certain limits. For example, if the equation is the period equation of a mechanical or electrical system, we may wish to know how its roots vary as certain components of the system are changed, not merely the values of the roots for definite values of the components. The method sketched below has been found very useful for studying cubics from this point of view and applies quite well to quartics. It also provides interesting elementary examples in the theory of equations.
* This restriction keeps the real parts of the roots negative, and this is the case of practical importance, but the method applies to other values of k and c. The equation is the period equation of a feedback servomechanism; c depends on the circuit components, and k on the amount of feedback.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.