Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-10-31T23:30:55.843Z Has data issue: false hasContentIssue false

Critical Current Density of the YBa2Cu3O7-δ Superconductor as Affected by Microstructuralxontrol

Published online by Cambridge University Press:  28 February 2011

S. Jin
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
R. C Sherwood
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
T. H. Tiefel
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
R. B. van Dover
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
G. W. Kammlott
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
M. E. Davis
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
R. A. Fastnacht
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
S. Nakahara
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
M. F. Yan
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
D. W. Johnson Jr
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

The recent discovery of the YBa2Cu3O7-δ type high Tc superconductors stimulated worldwide R&D interest in this field. However, the relatively low critical current density (Jc) in the polycrystalline, bulk superconductors (as well as its significant deterioration in weak magnetic fields) has been a major roadblock to the rapid technical advancement toward applications. In this paper, we investigated the effect of processing and microstructural control on Jc of the superconductor. Improved Jc values of -3100 A/cm2 at 77K with somewhat reduced field dependence have been obtained through appropriate microstructural modifications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Wu, M. K., Ashburn, J. R., Thorng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q., and Chu, C.W., Phys. Rev. Lett. 58, 908 (1987).Google Scholar
[2] Dinger, T. R., Worthington, T. K., Gallagher, W. J., and Sandstrom, R. L., Phys. Rev. Lett. 58, 2687 (1987).Google Scholar
[3] Jin, S., Sherwood, R. C., Tiefel, T. H., van Dover, R. B., and Johnson, D. W. Jr, Appl. Phys. Lett. 51, 203, (1987).Google Scholar
[4] Jin, S., Tiefel, T. H., Sherwood, R. C., Kammlott, G. W., and Zahurak, S. M., Appl. Phys. Lett. 51, 943 (1987).Google Scholar
[5] Johnson, D. W. Jr, Gyorgy, E. M., Rhodes, W. W., Cava, R. J., Feldman, L. C., and van Dover, R. B., Adv. Ceram. Mater. 2, 364 (1987).Google Scholar
[6] Poeppel, R. B., Flandermeyer, B. K., Dusek, J. T., and Bloom, I. D., Chemistry of High Temperature Superconductors, (American Chemical Society, Washington, DC; 1987), ACS Series 351, p. 261.Google Scholar
[7] Ekin, J. W., Panson, A. J., Braginski, A. I., Janocko, M. A., Hong, M., Kwo, J., Liou, S. H., Capone, D. W., and Flandermeyer, B., Proc., Symposium on High Temperature Superconductors (Materials Research Society, Pittsburgh, PA, 1987). Vol. EA–11, p. 223.Google Scholar
[8] Jin, S., Sherwood, R. C, Tiefel, T. H., van Dover, R. B., Johnson, D. W., and Grader, G. S., Appl. Phys. Lett., 51, 855 (1987).Google Scholar
[9] Schneemeyer, L. F., Gyorgy, E. M., and Waszczak, J. V. (unpublished).Google Scholar
[10] Farrel, D. E., Chandrasekhar, B. S., DeGuire, M. R., Fang, M. M., Kogan, V. G., Clem, J. R., and Finnemore, D. K., Phys. Rev. B, 36, 4025 (1987).Google Scholar
[11] O'Bryan, H. M. and Gallagher, P. K., Adv. Ceram. Mat. 2, 640 (1987).Google Scholar
[12] Jin, S., Tiefel, T. H., Sherwood, R. C., van Dover, R. B., Kammlott, G. W., Davis, M. E., and Fastnacht, R. A. (to be published).Google Scholar