Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-10-31T22:50:04.421Z Has data issue: false hasContentIssue false

Emerging Magnetism Arising from Self Damage in α- and δ-Pu

Published online by Cambridge University Press:  26 February 2011

Scott McCall
Affiliation:
mccall10@llnl.gov, Lawrence Livermore National Laboratory, United States
Micheal J Fluss
Affiliation:
fluss1@llnl.gov, Lawrence Livermore National Laboratory, United States
Brandon W Chung
Affiliation:
chung7@llnl.gov, Lawrence Livermore National Laboratory, United States
George F Chapline
Affiliation:
chapline1@llnl.gov, Lawrence Livermore National Laboratory
Damon D Jackson
Affiliation:
jackson59@llnl.gov, Lawrence Livermore National Laboratory
Micheal W McElfresh
Affiliation:
mcelfresh1@llnl.gov, Lawrence Livermore National Laboratory
Get access

Abstract

As a consequence of the unusual nature of plutonium's electronic structure, point- and extended-defects are expected to, and do exhibit extraordinary properties. Low temperature magnetic susceptibility measurements on Pu and fcc-Pu(Ga) show that the magnetic susceptibility increases as a function of time, yet upon annealing the specimen returns to its initial magnetic susceptibility. This excess magnetic susceptibility (EMS) arises from the alpha-decay and U recoil damage cascades which produce vacancy and interstitials as point and extended defects. The temperature of the first annealing stage defines a temperature (<35K) below which we are able to characterize the time and temperature evolution of the accumulating damage cascades as being a saturation function. The temperature dependence of the EMS is well described by a time independent, Curie-Weiss curve arising from a volumetric region surrounding each U damage cascade. This saturation picture also leads directly to a determination of the microscopic volume of the specimen that is affected by the frozen-in damage cascade. For our measurements in δ-Pu we calculate a diameter of the magnetically affected volume of ∼250Å per damage cascade. This should be compared with an estimated volume that encloses the damage cascade itself (determined from molecular dynamics) of ∼100 Å. Hence, the ratio of these volumes is ∼8. The observed anomalous magnetic behavior is likely a consequence of the highly correlated nature of the electrons. Similarities with defects in hole-doped superconductors suggest a general phenomenon in strongly correlated electron systems, of which Pu may be a particularly unusual or special example.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Shorikov, A. O., Lukoyanov, A. V., Korotin, M. A., Anisimov, V. I., Phys. Rev. B 72 024458 (2005).Google Scholar
[2] Soderlind, P., Landa, A., Sadigh, B., Phys. Rev. B 66 205109 (2002).Google Scholar
[3] Soderlind, P., Sadigh, B., Phys. Rev. Lett. 92 185702 (2004).Google Scholar
[4] Savrasov, S. Y., Kotliar, G., Phys. Rev. Lett. 84 3670 (2000).Google Scholar
[5] Savrasov, S. Y., Kotliar, G., Abrahams, E., Nature 410 793 (2001).Google Scholar
[6] Bouchet, J., Siberchicot, B., Jollet, F., Pasturel, A., J. Phys.: Condens. Matter 12 1723 (2000).Google Scholar
[7] Shick, A. B., Drchal, V., Havela, L., Europhys. Lett. 69 588 (2005).Google Scholar
[8] Robert, G., Pasturel, A., Siberchicot, B., J. Phys.: Condens. Matter 8377 (2003).Google Scholar
[9] Lashley, J. C., Lawson, A., McQueeney, R. J., Lander, G. H., Phys. Rev. B 72 054416 (2005).Google Scholar
[10] Lashley, J. C., Migliori, A., Singleton, J., McQueeney, R., Blau, M. S., Pereyra, R. A., Smith, J. L., JOM-Journal of the Minerals Metals & Materials Society 55 34 (2003).Google Scholar
[11] Wolfer, W. G., Los Alamos Science 26 274 (2000).Google Scholar
[12] Wigley, D. A., Proc. R. Soc. London, A 284 344 (1965).Google Scholar
[13] Lee, J. A., Mendelssohn, K., Wigley, D. A., Phys. Lett. A 1 325 (1962).Google Scholar
[14] Mortimer, M. J., Marples, J. A. C., Lee, J. A., Int. Met. Rev. 20 109 (1975).Google Scholar
[15] Fluss, M. J., Wirth, B. D., Wall, M., Felter, T. E., Caturla, M. J., Kubota, A., de la Rubia, T. D., J. Alloys Compd. 368 62 (2004).Google Scholar
[16] Rullier-Albenque, F., Alloul, H., Tourbot, R., Phys. Rev. Lett. 91 047001 (2003).Google Scholar
[17] Fournier, J.-M., Troc, R., Bulk Properties of the Actinides, in: Freeman, A. J., Lander, G. H. (Eds.), Handbook on the Physics and Chemistry of the Actinides, vol 2, North-Holland, New York, 1985.Google Scholar
[18] Blaise, A., Fournier, J.-M., Solid State Commun. 10 141 (1972).Google Scholar
[19] Olsen, C. E., Comstock, A. L., Sandenaw, T. A., J. Nucl. Mater. 195 312 (1992).Google Scholar
[20] Clogston, A. M., Matthias, B. T., Peter, M., Williams, H. J., Corenzwit, E., Sherwood, R. C., Physical Review 125 541 (1962).Google Scholar
[21] Boulet, P., Colineau, E., Javorsky, P., Wastin, F., Rebizant, J., J. Alloys Compd. 394 93 (2005).Google Scholar
[22] Boulet, P., Colineau, E., Wastin, F., Javorsky, P., Griveau, J. C., Rebizant, J., Stewart, G. R., Bauer, E. D., Phys. Rev. B 72 64438 (2005).Google Scholar
[23] Meot-Reymond, S., Fournier, J. M., J. Alloys Compd. 232 119 (1996).Google Scholar
[24] McCall, S., Fluss, M. J., Chung, B. W., McElfresh, M. W., Chapline, G. F., Jackson, D. J., Materials Science Transactions 8 35 (2005).Google Scholar
[25] Lam, D. J., Chan, S. K., Physical Review B (Solid State) 6 307 (1972).Google Scholar
[26] Moore, K. T., Wall, M. A., Schwartz, A. J., Chung, B. W., Shuh, D. K., Schulze, R. K., Tobin, J. G., Phys. Rev. Lett. 90 196404/1 (2003).Google Scholar
[27] van der Laan, G., Moore, K. T., Tobin, J. G., Chung, B. W., Wall, M. A., Schwartz, A. J., Phys. Rev. Lett. 93 097401/1 (2004).Google Scholar
[28] Kubo, K., Hotta, T., Phys. Rev. B 72 144401 (2005).Google Scholar