Published online by Cambridge University Press: 10 February 2011
We report on the change in electrical resistance of tin doped indium oxide thin films on polymer substrates with increasing uniaxial strain. The resistance increases rapidly but continuously above a threshold strain. The threshold strain at which the resistance increases is correlated to the onset of cracking in the oxide film. The strain for cracking and increase in resistance depend upon film thickness. We have measured the distance between neighboring ITO cracks as a function of strain in situ using an optical microscope. At high uniaxial strains the ITO layer fails in the orthogonal direction due to lateral contraction of the polymer substrate. The gradual increase in resistance is modeled assuming there is a conducting layer at the polymer/ITO interface.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.