Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-10-31T23:19:38.248Z Has data issue: false hasContentIssue false

Local existence and blow-up criterion of Hölder continuous solutions of the Boussinesq equations

Published online by Cambridge University Press:  22 January 2016

Dongho Chae
Affiliation:
Department of Mathematics, Seoul National University, Seoul 151-742, Korea, dhchae@math.snu.ac.kr
Sung-Ki Kim
Affiliation:
Department of Mathematics, Seoul National University, Seoul 151-742, Korea, skkim@math.snu.ac.kr
Hee-Seok Nam
Affiliation:
Department of Mathematics, Seoul National University, Seoul 151-742, Korea, heedol@math.snu.ac.kr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we prove the local existence and uniqueness of C1+γ solutions of the Boussinesq equations with initial data υ0, θ0C1+γ, ω0, ∇θ0Lq for 0 < γ < 1 and 1 < q < 2. We also obtain a blow-up criterion for this local solutions. More precisely we show that the gradient of the passive scalar θ controls the breakdown of C1+γ solutions of the Boussinesq equations.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1999

References

[1] Bahouri, H. et Dehman, B., Remarques sur l’apparition de singularités dans les écoulements Eulériens incompressibles à donnée initiale Höldérienne, J. Math. Pures Appl., 73 (1994), 335346.Google Scholar
[2] Beale, J. T., Kato, T. and Majda, A., Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Commun. Math. Phys., 94, 6166.Google Scholar
[3] Bergers, M.S., Nonlinearity and functional analysis, Academic Press, INC, 1977.Google Scholar
[4] Chae, Dongho and Nam, Hee-Seok, Local existence and blow-up criterion for the Boussinesq equations, Proc. Royal Soc. Edinburgh, A, 127 (1997), no. 5, 935946.Google Scholar
[5] Chemin, J.-Y., Régularité de la trajectoire des particules d’un fluide parfait incompressible remplissant l’espace, J. Math. Pures Appl., 71 (1992), 407417.Google Scholar
[6] Kato, T., Remarks on the Euler and Navier-Stokes equations in R2, Nonlinear functional analysis and its applications, 45 (Part 2), 17.Google Scholar
[7] Majda, A., Vorticity and the mathematical theory of incompressible fluid flow, Princeton University graduate course lecture note (19861987).Google Scholar