Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-31T05:17:01.527Z Has data issue: false hasContentIssue false

An ion-sensitive microelectrode study on the effect of a high concentration of ivermectin on chloride balance in the somatic muscle bag cells of Ascaris suum

Published online by Cambridge University Press:  06 April 2009

H. R. Parri
Affiliation:
Department of Physiology and Pharmacology, University of Southampton, Bassett Crescent East, Southampton SO9 3TU, UK
M. B. A. Djamgoz
Affiliation:
Department of Applied Biology, Imperial College, London SW7 2BB, UK
L. Holden-Dye*
Affiliation:
Department of Physiology and Pharmacology, University of Southampton, Bassett Crescent East, Southampton SO9 3TU, UK
R. J. Walker
Affiliation:
Department of Physiology and Pharmacology, University of Southampton, Bassett Crescent East, Southampton SO9 3TU, UK
*
*Reprint requests to Dr L. Holden-Dye.

Summary

Ivermectin has been shown to increase chloride conductances of invertebrate cells. On the muscle cells of the parasitic nematode Ascaris, ivermectin acts as both a GABA receptor antagonist and a chloride channel opener. In this study, ion-sensitive microelectrodes were used to investigate the effect of ivermectin on intracellular C1 concentration of the somatic muscle bag cells of Ascaris suum. Incubation of muscle cells with ivermectin (10 μM in 1% dimethyl sulphoxide vehicle for 60 min) increased intracellular C1 by 2·9 mM or 15% compared to controls (P > 0·01, n = 6).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baumgarten, C. M. (1981). An improved liquid ion exchanger for chloride ion selective microelectrodes. American Journal of Physiology 241, 258C–63C.CrossRefGoogle ScholarPubMed
Bhandal, N. S. & Duce, I. R. (1991). 22, 23-Dihydroavermectin Bla induces cation selective channels in planar lipid bilayers. Neurotox ′91 Abstracts, 43–4.Google Scholar
Brading, A. F. & Caldwell, P. C. (1971). The resting membrane potential of somatic muscle cells of Ascaris suum. Journal of Physiology 217, 605–24.CrossRefGoogle Scholar
Djamgoz, M. B. A. & Dawson, J. (1986). Procedures for manufacturing double-barrelled ion-sensitive microelectrodes employing liquid sensors. Journal of Biochemical and Biophysical Methods 13, 921.CrossRefGoogle ScholarPubMed
Duce, I. R. & Scott, R. H. (1985). Actions of dihydroavermectin B 1a on insect muscle. British Journal of Pharmacology 85, 395401.CrossRefGoogle Scholar
Fritz, L. C., Wang, C. C. & Gorio, A. (1979). Avermectin B1a irreversibly blocks postsynaptic potentials at the lobster neuromuscular junction by reducing muscle membrane resistance. Proceedings of the National Academy of Sciences, USA 76, 2062–6.CrossRefGoogle ScholarPubMed
Holden-Dye, L., Hewitt, G. M., Wann, K. T., Krogsgaard-Larsen, P. & Walker, R. J. (1988). Studies involving avermectin and the 4-aminobutyric acid (GABA) receptor of Ascaris suum muscle. Pesticide Science 24, 231–45.CrossRefGoogle Scholar
Holden-Dye, L. & Walker, R. J. (1990). Avermectin and avermectin derivatives are antagonists at the 4-aminobutyric acid (GABA) receptor on the somatic muscle cells of Ascaris; is this the site of anthelmintic action? Parasitology 101, 265–71.CrossRefGoogle Scholar
Kass, I. S., Larsen, D. A., Wang, C. C. & Stretton, A. O. W. (1982). Ascaris suum: differential effects of avermectin B1a on the intact animal and neuromuscular strip preparations. Experimental Parasitology 54, 166–74.CrossRefGoogle ScholarPubMed
Kass, I. S., Wang, C. C., Walrond, J. P. & Stretton, A. O. W. (1980). Avermectin B1a, a paralyzing anthelmintic that affects interneurons and inhibitory motoneurons of Ascaris. Proceedings of the National Academy of Sciences, USA 77, 6211–15.CrossRefGoogle ScholarPubMed
Martin, R. J. & Pennington, A. J. (1989). A patch-clamp study of effects of dihydroavermectin on Ascaris muscle. British Journal of Pharmacology 98, 747–56.CrossRefGoogle ScholarPubMed
Parri, H. R., Djamgoz, M. B. A., Holden-Dye, L. & Walker, R. J. (1990). Ion-sensitive microelectrode study of chloride balance in the somatic muscle bag cells of Ascaris suum. Society of Neuroscience Abstracts 16, 280–6.Google Scholar
Parri, H. R., Holden-Dye, L. & Walker, R. J. (1991 a). Ivermectin increases the anion conductance of the resting membrane of Ascaris suum muscle bag cells. British Journal of Pharmacology 104, 439.Google Scholar
Parri, H. R., Holden-Dye, L. & Walker, R. J. (1991 b). Studies on the ionic selectivity of the GABA operated chloride channel on the somatic muscle bag cells of the parasitic nematode Ascaris suum. Experimental Physiology 76, 597606.CrossRefGoogle ScholarPubMed
Rew, R. S. (1978). Mode of action of common anthelmintics. Journal of Veterinary Pharmacology and Therapeutics 1, 183–98.CrossRefGoogle Scholar
Thorn, P. & Martin, R. J. (1987). A high conductance calcium-dependent chloride channel in Ascaris suum muscle. Quarterly Journal of Experimental Physiology 72, 3149.CrossRefGoogle ScholarPubMed
Vaughan-Jones, R. D. & Aickin, C. C. (1987). Ion-sensitive microelectrodes. In Microelectrode Techniques (ed. Standen, N. B., Gray, P. T. A. & Whittaker, M. J.), pp. 137168. Cambridge: The Company of Biologists Ltd.Google Scholar
Zufall, F., Franke, C. H. & Hatt, H. (1989). The insecticide Avermectin B1a activates a chloride channel in crayfish muscle membrane. Journal of Experimental Biology 142, 191205.CrossRefGoogle ScholarPubMed