Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-10-31T22:56:44.327Z Has data issue: false hasContentIssue false

APPROACH FOR THE DEVELOPMENT AND APPLICATION OF TARGET PROCESS MODULE SETS

Published online by Cambridge University Press:  27 July 2021

Albert Albers
Affiliation:
Karlsruhe Institute of Technology;
Miriam Wilmsen*
Affiliation:
Karlsruhe Institute of Technology;
Kilian Gericke
Affiliation:
University of Rostock
*
Wilmsen, Miriam, Karlsruhe Institute of Technology (KIT), IPEK Institute of Product Engineering, Germany, miriam.wilmsen@partner.kit.edu

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The implementation of agile frameworks, such as SAFe, in large companies causes conflicts between the overall product development process with a rigid linkage to the calendar cycles and the continuous agile project planning. To resolve these conflicts, adaptive processes can be used to support the creation of realistic target-processes, i.e. project plans, while stabilizing process quality and simplifying process management. This enables the usage of standardisation methods and module sets for design processes.

The objective of this contribution is to support project managers to create realistic target-processes through the usage of target-process module sets. These target-process module sets also aim to stabilize process quality and to simplify process management. This contribution provides an approach for the development and application of target-process module sets, in accordance to previously gathered requirements and evaluates the approach within a case study with project managers at AUDI AG (N=21) and an interview study with process authors (N=4) from three different companies.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2021. Published by Cambridge University Press

References

Albers, A., Reiß, N., Bursac, N. and Breitschuh, J. (2016a), “15 Years of SPALTEN Problem Solving Methodology in Product Development”, DS 85-1: Proceedings of NordDesign 2016, Volume 1, Trondheim, Norway, 10th - 12th August 2016, pp. 411420.Google Scholar
Albers, A., Reiss, N., Bursac, N. and Richter, T. (2016b), “iPeM – Integrated Product Engineering Model in Context of Product Generation Engineering”, Procedia CIRP, Vol. 50, pp. 100105. https://doi.org/10.1016/j.procir.2016.04.168CrossRefGoogle Scholar
Albers, A., Reiss, N., Bursac, N., Urbanec, J. and Ludcke, R. (2014), “Situation-Appropriate Method Selection in Product Development Process – Empirical Study of Method Application”, DS 81: Proceedings of NordDesign 2014, Espoo, Finland 27-29th August 2014, pp. 550559.Google Scholar
Bergqvist, J. and Gordani Shahri, N. (2018), “Large-scale agile transformation - A case study of Volvo Cars’ transformation process”, 2018.Google Scholar
Blessing, L.T.M. and Chakrabarti, A. (2009), DRM: A Design Research Methodology, Springer London, London. https://doi.org/10.1007/978-1-84882-587-1_2CrossRefGoogle Scholar
Browning, T.R., Fricke, E. and Negele, H. (2006), “Key concepts in modeling product development processes”, Systems Engineering, Vol. 9 No. 2, pp. 104128. https://doi.org/10.1002/sys.20047CrossRefGoogle Scholar
Bursac, N. (2016), Model Based Systems Engineering zur Unterstützung der Baukastenentwicklung im Kontext der Frühen Phase der Produktgenerationsentwicklung.Google Scholar
Cooper, R.G. (2016), “Agile–Stage-Gate Hybrids”, Research-Technology Management, Vol. 59 No. 1, pp. 2129. https://doi.org/10.1080/08956308.2016.1117317CrossRefGoogle Scholar
Denning, S. (2020), “Why And How Volvo Embraces Agile At Scale”, Forbes, 26 January, available at: https://www.forbes.com/sites/stevedenning/2020/01/26/how-volvo-embraces-agile-at-scale/?sh=4ce947014cf0 (accessed 21 November 2020.099Z).Google Scholar
Gericke, K., Meißner, M. and Paetzold, K. (2013), “Understanding the context of product development”, International Conference on Engineering Design, ICED13.Google Scholar
Götz, A. and Maier, T. (2007), “An adaptive product development process for engineers and industrial design engineers”, Proceedings the 16th International Conference on Engineering Design, pp. 185186.Google Scholar
Hallerbach, A., Bauer, T. and Reichert, M. (2008), Context-based Configuration of Process Variants, 3rd International Workshop on TCoB 2008. https://doi.org/10.5220/0001729600310040CrossRefGoogle Scholar
Hollauer, C., Becerril, L., Kattner, N., Weidmann, D., Chucholowski, N. and Lindemann, U. (2017), “Adaptable Mechatronic Engineering Design Processes: Process Reference Model and Methodology”, International Conference on Research into Design. https://doi.org/10.1007/978-981-10-3518-0_52CrossRefGoogle Scholar
Kumar, A. and Yao, W. (2012), “Design and management of flexible process variants using templates and rules”, Computers in Industry, Vol. 63 No. 2, pp. 112130. https://doi.org/10.1016/j.compind.2011.12.002CrossRefGoogle Scholar
MacCormack, A., Verganti, R. and Iansiti, M. (2001), “Developing Products on “Internet Time”: The Anatomy of a Flexible Development Process”, Management Science, pp. 133150. https://doi.org/10.1287/mnsc.47.1.133.10663CrossRefGoogle Scholar
Meißner, M. and Blessing, L. (2006), “Defining an adaptive product development methodology”, DS 36: Proceedings DESIGN 2006, the 9th International Design Conference, Dubrovnik, Croatia, pp. 6978.Google Scholar
Nunes, V.T., Werner, C.M.L. and Santoro, F.M. (2011), “Dynamic process adaptation: A context-aware approach”, in Shen, W. (Ed.), 15th International Conference on Computer Supported Cooperative Work in Design (CSCWD), 2011. https://doi.org/10.1109/cscwd.2011.5960061Google Scholar
Paasivaara, M., Behm, B., Lassenius, C. and Hallikainen, M. (2018), “Large-scale agile transformation at Ericsson: a case study”, Empirical Software Engineering, pp. 25502596. https://doi.org/10.1007/s10664-017-9555-8CrossRefGoogle Scholar
Ponn, J., Braun, T. and Lindemann, U. (2004), “Zielgerichtete Produktentwicklung durch modulare Prozessstrukturen”, 15. Symposium “Design for X”.Google Scholar
Ponn, J. and Lindemann, U. (2005), “Characterization of design situations and processes and a process module set for product development”, Proceedings 15th International Conference on Engineering Design.Google Scholar
Redding, G., Dumas, M., ter Hofstede, Arthur H. M. and Iordachescu, A. (2009), “Modelling Flexible Processes with Business Objects”, in Hofreiter, B. (Ed.), IEEE CEC 2009 ; Vienna, Austria. https://doi.org/10.1109/cec.2009.39Google Scholar
Riesener, M., Dolle, C., Ays, J. and Ays, J.L. (2018), “Hybridization of Development Projects Through Process-related Combination of Agile and Plan-driven Approaches”, in IEEE IEEM 2018: pp. 602606. https://doi.org/10.1109/ieem.2018.8607323CrossRefGoogle Scholar
Ropohl, G. (2009), Allgemeine Technologie: Eine Systemtheorie der Technik, KIT Scientific Publishing. https://doi.org/10.26530/oapen_422388CrossRefGoogle Scholar
Schwaber, K. and Sutherland, J. (2011), The scrum guide.Google Scholar
VDI 2221 (2019a), VDI 2221: Blatt 1 Entwicklung technischer Produkte und Systeme - Modell der Produktentwicklung, Verein Deutscher Ingenieure e.V.Google Scholar
VDI 2221 (2019b), VDI 2221: Blatt 2 Entwicklung technischer Produkte und Systeme - Gestaltung individueller Produktentwicklungsprozesse, Verein Deutscher Ingenieure e.V.Google Scholar
VDI 2223 (2004), VDI 2223: Methodisches Entwerfen technischer Produkte; Systematic embodiment design of technical products, Verein Deutscher Ingenieure e.V.Google Scholar
Westerbuhr, F. (2020), “Airbus: Octane leverages SAFe methodology adoption to enhance DevOps and agile software/system development and testing environment”, Micro Focus.Google Scholar
Wilmsen, M., Dühr, K. and Albers, A. (2019a), “A context-model for adapting design processes and methods”, Procedia CIRP, Vol. 84, pp. 428433. https://doi.org/10.1016/j.procir.2019.04.243CrossRefGoogle Scholar
Wilmsen, M., Gericke, K., Jäckle, M. and Albers, A. (2020), “Method for the identification of requirements for designing reference processes”, International Design Conference - Design 2020. https://doi.org/10.1017/dsd.2020.301CrossRefGoogle Scholar
Wilmsen, M., Groschopf, L. and Albers, A. (2019b), “Establishing innovation: Relevant process steps for the automotive predevelopment process”, R&D Management Conference.Google Scholar
Wilmsen, M., Keiber, J. and Albers, A. (2019c), “Entwicklung von Erklärungsmodellen für die flexible Prozess- und Projektplanung”, 15. Symposium für Vorausschau und Technologieplanung, pp. 513527.Google Scholar