Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-18T19:50:38.425Z Has data issue: false hasContentIssue false

MODELLING TECHNICAL SYSTEMS IN THE EARLY PHASE: PROPOSING A FORMAL DEFINITION FOR THE SYSTEM CONCEPT

Published online by Cambridge University Press:  19 June 2023

Albert Albers*
Affiliation:
Karlsruhe Institute of Technology (KIT)
Sebastian Hünemeyer
Affiliation:
Karlsruhe Institute of Technology (KIT)
Alexander Kubin
Affiliation:
Karlsruhe Institute of Technology (KIT)
Felix Pfaff
Affiliation:
Karlsruhe Institute of Technology (KIT)
Michael Schlegel
Affiliation:
Karlsruhe Institute of Technology (KIT)
Simon Rapp
Affiliation:
Karlsruhe Institute of Technology (KIT)
*
Albers, Albert, Karlsruhe Institute of Technology (KIT), Germany, albert.albers@kit.edu

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The task of developing “concepts” is common in all fields of engineering, especially in the early phases of product development. However, an in-depth literature analysis showed that authors - often depending on different contexts in design research, education, and industry - define the term “concept” in differing ways. The aspect of reference-based development is rarely addressed in existing definitions. This indicates that there is a need for an updated and concise concept definition. In this paper, the authors propose a new definition of the term “system concept” within the context of SGE - System Generation Engineering that incorporates the findings from the literature analysis. The definition was reflected on in two case-studies. The first one contained the system concept for automotive display and operating systems, the second one the system concept for a kinesthetic-haptic VR interface. The proposed definition contains the relevant characteristics identified from the literature review and supports both current activity-based process models and reference-based development, as practical application has shown.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2023. Published by Cambridge University Press

References

Albers, A., Bursac, N. and Wintergerst, E. (2015): “Product Generation Development – Importance and Challenges from a Design Research Perspective.” In: Albert, Albers, Nikola, Bursac und Eike, Wintergerst (Hg.): Product Generation Development – Importance and Challenges from a Design Research Perspective. New Developments in Mechanics and Mechanical Engineering. IPEK - Institut für Produktentwicklung am Karlsruher Institut für Technologie (KIT), S. 1621.Google Scholar
Albers, A., Düser, T. and Ott, S. (2008), “X-in-the-loop als integrierte Entwicklungsumgebung von komplexen Antriebsystemen”, 8. Tagung Hardware-in-the-loop-Simulation, 16./17. September 2008, Kassel, Germany.Google Scholar
Albers, A. and Moeser, G. (2016), “Modellbasierte Prinzip- und Gestaltvariation”, Gemeinsames Kolloquium Konstruktionstechnik 2016, Shaker Verlag, Rostock.Google Scholar
Albers, A. and Rapp, S. (2022): “Model of SGE: System Generation Engineering as Basis for Structured Planning and Management of Development”, In: Krause, D. and Heyden, E. (Eds.): Design Methodology for Future Products. Data Driven, Agile and Flexible, Springer International Publishing, pp. 2746, online version: https://link.springer.com/book/10.1007/978-3-030-78368-6.CrossRefGoogle Scholar
Albers, A., Rapp, S., Birk, C. and Bursac, N. (2017), “Die Frühe Phase der PGE - Produktgenerationsentwicklung”, in Binz, H., Bertsche, B., Bauer, W., Spath, D. and Roth, D. (Eds.), 4. Stuttgarter Symposium für Produktentwicklung SSP 2017 - Beiträge zum Stuttgarter Symposium für Produktentwicklung, Stuttgart, pp. 345354.Google Scholar
Albers, A., Rapp, S., Fahl, J., Hirschter, T., Revfi, S., Schulz, M. et al. (2020): “Proposing a Generalized Description of Variations in different types of systems by the Model of PGE - Product Generation Engineering”, In: Proc. Des. Soc.: Des. Conf. 1, S. 22352244. https://dx.doi.org/10.1017/dsd.2020.315.CrossRefGoogle Scholar
Albers, A., Rapp, S., Spadinger, M., Richter, T., Birk, C., Marthaler, F., Heimicke, J., Kurtz, V. and Wessels, H. (2019), “The Reference System in the Model of PGE: Proposing a Generalized Description of Reference Products and their Interrelations”, Proceedings of the Design Society: International Conference on Engineering Design, Vol. 1 No. 1, pp. 16931702.Google Scholar
Bender, B. and Gericke, K. (2021), Pahl/Beitz Konstruktionslehre, Springer Berlin Heidelberg, Berlin, Heidelberg.CrossRefGoogle Scholar
Brökel, K., Feldhusen, J., Grote, K.-H., Rieg, F., Stelzer, R., Müller, N. and Köhler, P. (Eds.) (2017), 15. Gemeinsames Kolloquium Konstruktionstechnik 2017 // Interdisziplinäre Produktentwicklung, Universität Duisburg-Essen, Universitätsbibliothek Essen.Google Scholar
Cooper, R.G. and Kleinschmidt, E.J. (1993), “Screening New Products for Potential Winners”, Long Range Planning, Vol. 26, pp. 7481.CrossRefGoogle Scholar
Cross, N. (2008), Engineering Design Methods, John Wiley & Sons, Ltd, Chichester.Google Scholar
Ehrlenspiel, K. and Meerkamm, H. (2017), Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz, Zusammenarbeit, 6th ed., Carl Hanser Verlag GmbH & Co. KG, München.CrossRefGoogle Scholar
Elverum, C.W. and Welo, T. (2014), “The Role of Early Prototypes in Concept Development: Insights from the Automotive Industry”, Procedia CIRP, Vol. 21, pp. 491496.CrossRefGoogle Scholar
Felkai, R. and Beiderwieden, A. (2013), Projektmanagement für technische Projekte, Springer Fachmedien Wiesbaden, Wiesbaden.CrossRefGoogle Scholar
Fennel, M., Zea, A. and Hanebeck, U. D. (2021), “Optimization-Driven Design of a Kinesthetic Haptic Interface with Human-Like Capabilities”, IEEE Transactions on Haptics.CrossRefGoogle Scholar
Hales, C. and Gooch, S. (2004), Managing Engineering Design, Springer London, London.CrossRefGoogle Scholar
Hatchuel, A. and Weil, B. (2003), “A new approach of innovative design: an introduction to CK theory”, in Folkeson, A. (Ed.), ICED 03, 14th International Conference on Engineering Design, 19 - 21 August, Stockholm, Sweden, Design Society, Glasgow.Google Scholar
ISAS (2022), Telepresence Lab „Holodeck“ at ISAS, available at: https://robdekon.de/forschung/labore/telepraesenzlabor-am-kit-isas (accessed 14 October 2022).Google Scholar
Kirchner, E. (2020), Werkzeuge und Methoden der Produktentwicklung, Springer Berlin Heidelberg, Berlin, Heidelberg.CrossRefGoogle Scholar
Leveson, N.G. (2018), “Safety Analysis in Early Concept Development and Requirements Generation - Massachusetts Institute of Technology”, 28th annual INCOSE International Symposium.CrossRefGoogle Scholar
Lindemann, U. (Ed.) (2016), Handbuch Produktentwicklung, Hanser, München.CrossRefGoogle Scholar
Massie, T. (1994), The phantom haptic interface: A device for probing virtual objects.Google Scholar
Naefe, P. (2019), Konstruktionsmethodik: Kurz und Bündig, Springer Fachmedien Wiesbaden, Wiesbaden.CrossRefGoogle Scholar
Pahl, G., Beitz, W., Blessing, L., Feldhusen, J., Grote, K.-H. and Wallace, K. (2007), Engineering Design: A Systematic Approach, Third Edition, Springer-Verlag London Limited, London.CrossRefGoogle Scholar
Ponn, J. and Lindemann, U. (2011), Konzeptentwicklung und Gestaltung technischer Produkte, Springer Berlin Heidelberg, Berlin, Heidelberg.CrossRefGoogle Scholar
Schlegel, M., Pfaff, F., Rapp, S. and Albers, A. (2022), “Implications of Creating Solution Concepts Based on the Use of References”, Proceedings of the Design Society, Vol. 2, pp. 781790.CrossRefGoogle Scholar
Sendler, U. (2009), Das PLM-Kompendium, Springer Berlin Heidelberg.CrossRefGoogle Scholar
Tecklenburg, G. (Ed.) (2016), Karosseriebautage Hamburg 2016, Proceedings, Springer Fachmedien Wiesbaden, Wiesbaden.CrossRefGoogle Scholar
VDI 2221 (1993), Methodik zum Entwickeln und Konstruieren technischer Systeme und Produkte, VDI-Richtlinie, Beuth Verlag GmbH, 10772 Berlin.Google Scholar
Verworn, B. (2005), Die frühen Phasen der Produktentwicklung eine empirische Analyse in der Mess-, Steuer- und Regelungstechnik, 1st ed., Deutscher Universitäts-Verlag (Gabler Edition Wissenschaft Forschungs-, Entwicklungs-, Inovations-Management), Wiesbaden.CrossRefGoogle Scholar
Will, P.M. (1991), “Simulation and modelling in early concept design: An industrial perspective”, Research in Engineering Design, Vol. 3 No. 1, pp. 113.CrossRefGoogle Scholar