Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-10T14:10:48.203Z Has data issue: false hasContentIssue false

Diffuse gamma-ray emission from the Galactic center and implications of its past activities

Published online by Cambridge University Press:  09 February 2017

Yutaka Fujita
Affiliation:
Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan email: fujita@vega.ess.sci.osaka-u.ac.jp
Shigeo S. Kimura
Affiliation:
Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan and Astronomical Institute, Tohoku University, Sendai 980-8578, Japan
Kohta Murase
Affiliation:
Center for Particle and Gravitational Astrophysics; Department of Physics; Department of Astronomy & Astrophysics, The Pennsylvania State University, University Park, PA 16802, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It has been indicated that low-luminosity active galactic nuclei (LLAGNs) are accelerating high-energy cosmic-ray (CR) protons in their radiatively inefficient accretion flows (RIAFs). If this is the case, Sagittarius A* (Sgr A*) should also be generating CR protons, because Sgr A* is a LLAGN. Based on this scenario, we calculate a production rate of CR protons in Sgr A* and their diffusion in the central molecular zone (CMZ) around Sgr A*. The CR protons diffusing in the CMZ create gamma-rays through pp interaction. We show that the gamma-ray luminosity and spectrum are consistent with observations if Sgr A* was active in the past.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Aartsen, M. G. et al. 2013, Phys. Rev. Lett., 111, 021103 CrossRefGoogle Scholar
Aartsen, M. G. et al. 2014, Phys. Rev. Lett., 113, 101101 CrossRefGoogle Scholar
Aartsen, M. G. et al. 2015, Phys. Rev. D, 91, 022001 CrossRefGoogle Scholar
Kimura, S. S., Murase, K., & Toma, K. 2015, ApJ, 806, 159 CrossRefGoogle Scholar
Morris, M. & Serabyn, E. 1996, ARAA, 34, 645 CrossRefGoogle Scholar
Aharonian, F. et al. 2006, Nature, 439, 695 CrossRefGoogle Scholar
H. E. S. S. collaboration 2016, Nature, 531, 476 CrossRefGoogle Scholar
Fujita, Y., Kimura, S. S., & Murase, K. 2015, Phys. Rev. D, 92, 023001 CrossRefGoogle Scholar
Becker, P. A., Le, T., & Dermer, C. D. 2000, ApJ, 647, 539 CrossRefGoogle Scholar
Gabici, S., Aharonian, F. A., & Casanova, S. 2009, MNRAS, 396, 1629 CrossRefGoogle Scholar
Karlsson, N. & Kamae, T. 2008, ApJ, 674, 278 CrossRefGoogle Scholar
Kelner, S. R., Aharonian, F. A., & Bugayov, V. V. 2006, Phys. Rev. D, 74, 034018 CrossRefGoogle Scholar
Gillessen, S., Eisenhauer, F., Trippe, S., Alexander, T., Genzel, R., & Martins, F., Ott, T. 2008, ApJ, 692, 1075 CrossRefGoogle Scholar
Yuan, F., Quataert, E., & Narayan, R. 2003, ApJ, 598, 301 CrossRefGoogle Scholar
Yusef-Zadeh, F. et al. 2013, ApJ, 762, 33 CrossRefGoogle Scholar
Koyama, K., Maeda, Y., Sonobe, T., Takeshima, T., Tanaka, Y., & Yamauchi, S. 1996, PASJ, 48, 249 CrossRefGoogle Scholar
Ryu, S. G., Nobukawa, M., Nakashima, S., Tsuru, T. G., Koyama, K., & Uchiyama, H. 2013, PASJ, 65, 33 CrossRefGoogle Scholar