Hostname: page-component-7dd5485656-kp629 Total loading time: 0 Render date: 2025-11-01T14:53:36.712Z Has data issue: false hasContentIssue false

Dynamical modelling of galaxies with DYNAMITE

Published online by Cambridge University Press:  30 October 2025

A. Zocchi
Affiliation:
Department of Astrophysics, University of Vienna, Türkenschanzstraße 17, 1180 Vienna
P. Jethwa*
Affiliation:
Department of Astrophysics, University of Vienna, Türkenschanzstraße 17, 1180 Vienna
E. J. Lilley
Affiliation:
Department of Astrophysics, University of Vienna, Türkenschanzstraße 17, 1180 Vienna
S. Thater
Affiliation:
Department of Astrophysics, University of Vienna, Türkenschanzstraße 17, 1180 Vienna
G. van de Ven
Affiliation:
Department of Astrophysics, University of Vienna, Türkenschanzstraße 17, 1180 Vienna
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The combination of kinematic and chemical information from Galactic stars has revealed in great detail the structure, dynamics and history of our own Galaxy. In external galaxies, it is impossible to map the distribution of individual stars, but high signal-to-noise integral field unit (IFU) spectroscopy data at various wavelengths, together with sophisticated dynamical models, give us the opportunity to gather information on the structure, dynamics and formation history of these systems. The Schwarzschild method models galaxies through the superposition of stellar orbits, and is equipped to deal with very detailed kinematic measurements, allowing us to take full advantage of high-quality IFU datasets of nearby galaxies. Here we present an implementation of this method called DYNAMITE. We provide an overview of the modelling technique, introduce applications to observations and simulations, and anticipate our future plans for DYNAMITE.

Information

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

References

Bovy, J., Kawata, D., Hunt, J. A. S., 2018, MNRAS, 473, 2288 CrossRefGoogle Scholar
Cappellari, M., Emsellem, E., Bacon, R., et al., 2007, MNRAS, 379, 418 CrossRefGoogle Scholar
Cappellari, M., 2008, MNRAS, 390, 71 CrossRefGoogle Scholar
Cappellari, M., Scott, N., Alatalo, K., et al., 2013, MNRAS, 432, 1709 CrossRefGoogle Scholar
Coccato, L., Fabricius, M., Morelli, L., et al., 2015, A&A, 581, A65 Google Scholar
den Brok, M., Krajnovič, D., Emsellem, E., Brinchmann, J., Maseda, M., 2021, MNRAS, 508, 4786 CrossRefGoogle Scholar
Ding, Y., Zhu, L., van de Ven, G., et al., 2023, A&A, 672, A84 Google Scholar
Falcón-Barroso, J., Martig, M., 2021, A&A, 646, A31 Google Scholar
Feldmeier-Krause, A., Zhu, L., Neumayer, N., et al., 2017, MNRAS, 466, 4040 Google Scholar
Jethwa, P., Thater, S., Maindl, T., van de Ven, G., 2020, ascl.soft. ascl:2011.007Google Scholar
Jin, Y., Zhu, L., Long, R. J., Mao, S., Wang, L., van de Ven, G., 2020, MNRAS, 491, 1690 Google Scholar
Magorrian, J., Tremaine, S., Richstone, D., et al., 1998, AJ, 115, 2285 CrossRefGoogle Scholar
Merrell, K. A., Vasiliev, E., Bentz, M. C., et al., 2022, arXiv, arXiv:2212.02484 Google Scholar
Nagai, R., Miyamoto, M., 1976, PASJ, 28, 1 CrossRefGoogle Scholar
Navarro, J. F., Frenk, C. S., White, S. D. M., 1996, ApJ, 462, 563 CrossRefGoogle Scholar
Neureiter, B., Thomas, J., Saglia, R., et al., 2021, MNRAS, 500, 1437 Google Scholar
Pilawa, J. D., Liepold, C. M., Delgado Andrade, S. C., et al., 2022, ApJ, 928, 178 CrossRefGoogle Scholar
Pizzella, A., Morelli, L., Coccato, L., et al., 2018, A&A, 616, A22 Google Scholar
Poci, A., Cappellari, M., McDermid, R. M., 2017, MNRAS, 467, 1397 Google Scholar
Poci, A., McDermid, R. M., Lyubenova, M., et al., 2021, A&A, 647, A145 Google Scholar
Qian, E. E., de Zeeuw, P. T., van der Marel, R. P., Hunter, C., 1995, MNRAS, 274, 602 CrossRefGoogle Scholar
Rix, H.-W., Bovy, J., 2013, A&ARv, 21, 61 Google Scholar
Santucci, G., Brough, S., van de Sande, J., et al., 2022, ApJ, 930, 153 CrossRefGoogle Scholar
Schwarzschild, M., 1979, ApJ, 232, 236 CrossRefGoogle Scholar
Syer, D., Tremaine, S., 1996, MNRAS, 282, 223 CrossRefGoogle Scholar
Tahmasebzadeh, B., Zhu, L., Shen, J., Gerhard, O., van de Ven, G., 2022, ApJ, 941, 109 CrossRefGoogle Scholar
Thater, S., Krajnovič, D., Cappellari, M., et al., 2019, A&A, 625, A62 Google Scholar
Thater, S., Jethwa, P., Tahmasebzadeh, B., et al., 2022, A&A, 667, A51 Google Scholar
Thater, S., Krajnovič, D., Weilbacher, P. M., et al., 2022, MNRAS, 509, 5416 CrossRefGoogle Scholar
Thater, S., Lyubenova, M., Fahrion, K., et al., 2023, arXiv, arXiv:2304.13310 Google Scholar
Thomas, J., Saglia, R. P., Bender, R., et al., 2007, MNRAS, 382, 657 CrossRefGoogle Scholar
Valluri, M., Merritt, D., Emsellem, E., 2004, ApJ, 602, 66 CrossRefGoogle Scholar
van den Bosch, R. C. E., van de Ven, G., Verolme, E. K., et al., 2008, MNRAS, 385, 647 CrossRefGoogle Scholar
van der Marel, R. P., Cretton, N., de Zeeuw, P. T., Rix, H.-W., 1998, ApJ, 493, 613 CrossRefGoogle Scholar
Vasiliev, E., Valluri, M., 2020, ApJ, 889, 39 CrossRefGoogle Scholar
Zhu, L., van den Bosch, R., van de Ven, G., et al., 2018, MNRAS, 473, 3000 CrossRefGoogle Scholar
Zhu, L., van de Ven, G., Méndez-Abreu, J., Obreja, A., 2018, MNRAS, 479, 945 CrossRefGoogle Scholar
Zhu, L., van de Ven, G., Leaman, R., et al., 2020, MNRAS, 496, 1579 CrossRefGoogle Scholar
Zhu, L., van de Ven, G., Leaman, R., et al., 2022, A&A, 664, A115 Google Scholar