Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-12T22:51:14.536Z Has data issue: false hasContentIssue false

The PMA Catalogue as a realization of the extragalactic reference system in optical and near infrared wavelengths

Published online by Cambridge University Press:  07 March 2018

Volodymyr S. Akhmetov
Affiliation:
Institute of Astronomy V.N.Karazin Kharkiv National University, 61022, 35 Sumska Str, Kharkiv, Ukraine email: akhmetovvs@gmail.com
Peter N. Fedorov
Affiliation:
Institute of Astronomy V.N.Karazin Kharkiv National University, 61022, 35 Sumska Str, Kharkiv, Ukraine email: akhmetovvs@gmail.com
Anna B. Velichko
Affiliation:
Institute of Astronomy V.N.Karazin Kharkiv National University, 61022, 35 Sumska Str, Kharkiv, Ukraine email: akhmetovvs@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We combined the data from the Gaia DR1 and Two-Micron All Sky Survey (2MASS) catalogues in order to derive the absolute proper motions more than 420 million stars distributed all over the sky in the stellar magnitude range 8 mag < G < 21 mag (Gaia magnitude). To eliminate the systematic zonal errors in position of 2MASS catalogue objects, the 2-dimensional median filter was used. The PMA system of proper motion has been obtained by direct link to 1.6 millions extragalactic sources. The short analysis of the absolute proper motion of the PMA stars Catalogue is presented in this work. From a comparison of this data with same stars from the TGAS, UCAC4 and PPMXL catalogues, the equatorial components of the mutual rotation vector of these coordinate systems are determined.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Arias, E. F., Charlot, P., Feissel, M., & Lestrade, J. F., 1995, A&A, 303, L604 Google Scholar
Akhmetov, V. S., Fedorov, P. N., Velichko, A. B., & Shulga, V. M., 2017, MNRAS, 469, 763 CrossRefGoogle Scholar
Brown, A. G. A., Vallenari, A., & Prusti, T. 2016, A&A, 595, id.A2, 23 pp.Google Scholar
Fedorov, P. N., Akhmetov, V. S., & Shulga, V. M., 2014, MNRAS, 440, 624 CrossRefGoogle Scholar
Girard, T. M. et al. AJ 142, 15383881 Google Scholar
Høg, E. et al., 2000, A&A, 355, L27 Google Scholar
Hambly, N. C. et al., 2001a, MNRAS, 326, 1279 CrossRefGoogle Scholar
Kovalevsky, J. et al., 1997, A&A, 323, L620 Google Scholar
van Leeuwen, F. 2007, A&A, 494, L799 Google Scholar
Lindegren, L. & Kovalevsky, J. 1995, A&A, 304, 189 Google Scholar
Michalik, D., Lindegren, L., & Hobbs, D., 2015, A&A, 574, A115 Google Scholar
Prusti, T., et al. 2016, A&A 595, id.A1, 36 pp.Google Scholar
Roeser, S., Demleitner, M., & Schilbach, E., 2010, AJ, 139, 2440 Google Scholar
Skrutskie, M. F. et al., 2006, ApJ, 131, 1163 CrossRefGoogle Scholar
Wright, E. L., et al. 2010 AJ, 140, 1868 CrossRefGoogle Scholar
Zacharias, N., Finch, C. T., Girard, T. M., Henden, A., Bartlett, J. L., Monet, D. G., & Zacharias, M. I. 2013, AJ, 145, 14 pp.Google Scholar