Published online by Cambridge University Press: 11 July 2007
We consider some geometric aspects of regular Sturm—Liouville problems. First, we clarify a natural geometric structure on the space of boundary conditions. This structure is the base for studying the dependence of Sturm—Liouville eigenvalues on the boundary condition, and reveals many new properties of these eigenvalues. In particular, the eigenvalues for separated boundary conditions and those for coupled boundary conditions, or the eigenvalues for self-adjoint boundary conditions and those for non-self-adjoint boundary conditions, are closely related under this structure. Then we give complete characterizations of several subsets of boundary conditions such as the set of self-adjoint boundary conditions that have a given real number as an eigenvalue, and determine their shapes. The shapes are shown to be independent of the differential equation in question. Moreover, we investigate the differentiability of continuous eigenvalue branches under this structure, and discuss the relationships between the algebraic and geometric multiplicities of an eigenvalue.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.