Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-10-30T03:18:42.026Z Has data issue: false hasContentIssue false

Using Melnikov's method to solve Silnikov's problems*

Published online by Cambridge University Press:  14 November 2011

Xiao-Biao Lin
Affiliation:
Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8205, U.S.A.

Synopsis

A function space approach is employed to obtain bifurcation functions for which the zeros correspond to the occurrence of periodic or aperiodic solutions near heteroclinic or homoclinic cycles. The bifurcation function for the existence of homoclinic solutions is the limiting case where the period is infinite. Examples include generalisations of Silnikov's main theorems and a retreatment of a singularly perturbed delay differential equation.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Blazquez, C. M.. Bifurcations from a homoclinic orbit in parabolic differential equations. Proc. Roy. Soc. Edinburgh Sect. A 103 (1986), 265274.CrossRefGoogle Scholar
2Bohr, H.. Almost Periodic Functions (New York: Chelsea Publishing Company, 1951).Google Scholar
3Chow, S. N. and Deng, B.. Homoclinic and heteroclinic bifurcation in Banach spaces (preprint).Google Scholar
4Chow, S. N., Deng, B. and Fiedler, B.. Homoclinic bifurcations at resonant eigenvalues (preprint).Google Scholar
5Chow, S. N., Deng, B. and Terman, D.. The bifurcation of a homoclinic orbit from two heteroclinic orbits—a topological approach (preprint).Google Scholar
6Chow, S. N., Deng, B. and Terman, D.. The bifurcation of a homoclinic and a periodic orbit from two heteroclinic orbits—an analytic approach. SIAM J. App. Math. (to appear).Google Scholar
7Chow, S. N., Hale, J. K. and Mallet-Paret, J.. An example of bifurcation to homoclinic orbits. J. Differential Equations 37 (1980), 351373.CrossRefGoogle Scholar
8Chow, S. N., Lin, X. B. and Mallet-Paret, J.. Transition layers for singularly perturbed delay-differential equations with monotone nonlinearities. J. Dyn. Differential Equations 1 (1989), 343.CrossRefGoogle Scholar
9Guckenheimer, J. and Holmes, P.. Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Applied Mathematical Sciences 42 (New York: Springer, 1983, 2nd printing 1986).Google Scholar
10Hale, J.. Theory of Functional Differential Equations (Berlin: Springer, 1977).CrossRefGoogle Scholar
11Hale, J. and Lin, X. B.. Heteroclinic orbits for retarded functional differential equations. J. Differential Equations 65 (1986), 175202.CrossRefGoogle Scholar
12Hartman, P.. On local homeomorphisms of Euclidean spaces. Bol. Soc. Mat. Mexicana 5 (1960), 220241.Google Scholar
13Hartman, P.. Ordinary Differential Equations (New York: Wiley, 1964).Google Scholar
14Kokubu, H.. Homoclinic and heteroclinic bifurcations of vector fields. Japan J. Appl. Math. 5 (1988), 455501.CrossRefGoogle Scholar
15Lin, X. B.. Exponential dichotomies and homoclinic orbits in functional differential equations. J. Differential Equations 63 (1986), 227254.CrossRefGoogle Scholar
16Mallet-Paret, J. and Nussbaum, R. D.. Global continuation and asymptotic behavior for periodic solutions of a differential-delay equation. Ann. Mat. Pura Appl. 145 (1986), 33128.CrossRefGoogle Scholar
17Mallet-Paret, J. and Nussbaum, R. D.. Global continuation and complicated trajectories for periodic solutions for a differential-delay equation. Proc. Symp. Pure Math. 45 (1986), 155167.CrossRefGoogle Scholar
18Palmer, K. J.. Exponential dichotomies and transversal homoclinic points. J. Differential Equations 55 (1984), 255256.CrossRefGoogle Scholar
19Schecter, Martin. Principles of functional analysis (New York and London: Academic Press, 1971).Google Scholar
20Schwartz, J. T.. Nonlinear Functional Analysis (New York: Gordon and Breach, 1969).Google Scholar
21Silnikov, L. P.. A case of the existence of a countable number of periodic motions. Soviet Math. Dokl. 6 (1965), 163166.Google Scholar
22Silnikov, L. P.. The existence of a denumerable set of periodic motions in four-dimensional space in an extended neighborhood of a saddle-focus. Soviet Math. Dokl. 8 (1967), 5458.Google Scholar
23Silnikov, L. P.. On the generalization of a periodic motion from trajectories doubly asymptotic to an equilibrium state of saddle type. Math. USSR Sb. 6 (1968), 427437.CrossRefGoogle Scholar
24Silnikov, L. P.. A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type. Math. USSR Sb. 10 (1970), 91102.CrossRefGoogle Scholar
25Yanagida, E.. Branching of double pulse solutions from single pulse solutions in nerve axon equation. J. Differential Equations 66 (1987), 243262.CrossRefGoogle Scholar
26Kirchgassner, K.. Homoclinic bifurcation of perturbed reversible systems. In Lecture Notes in Mathematics, eds Knobloch, H. W. and Schmitt, K. 1017 (1982), 328363.CrossRefGoogle Scholar
27Mielke, A.. Steady flows of inviscid fluids under localized perturbations. J. Differential Equations 65 (1986), 89116.CrossRefGoogle Scholar
28Renardy, M.. Bifurcation of singular solutions in reversible systems and applications to reaction-diffusion equations. Adv. Appl. Math. 3 (1982), 384406.CrossRefGoogle Scholar
29Walther, H. -O.. Bifurcation from homoclinic to periodic solutions by an inclination lemma with pointwise estimate. In Dynamics of Infinite Dimensional Systems, eds Chow, S. -N. & Hale, J. K., pp. 459470 (Berlin: Springer, 1987).CrossRefGoogle Scholar