Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-10-30T20:36:24.899Z Has data issue: false hasContentIssue false

Recurrent ∼24 h Periods in RXTE ASM Data

Published online by Cambridge University Press:  05 March 2013

Sean A. Farrell*
Affiliation:
School of Physical, Environmental & Mathematical Sciences, University of New South Wales, Australian Defence Force Academy (UNSW@ADFA), Canberra ACT 2600, Australia
Paul M. O'Neill
Affiliation:
Astrophysics Group, Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
Ravi K. Sood
Affiliation:
School of Physical, Environmental & Mathematical Sciences, University of New South Wales, Australian Defence Force Academy (UNSW@ADFA), Canberra ACT 2600, Australia
*
CCorresponding author. Email: s.farrell@adfa.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Analysis of data from the Rossi X-ray Timing Explorer satellite's All Sky Monitor (ASM) instrument for several X-ray binary sources has identified a recurrent ∼24 h period. This period is sometimes highly significant, giving rise to the possibility of it being identified as an orbital or super-orbital period. Further analysis has revealed the same period in a number of other X-ray sources. As a result this period has been discounted as spurious, described variously as arising from daily variations in background levels, the scheduling of ASM observations and beating between the sampling period and long-term secular trends in the light curves. We present here an analysis of the spurious periods and show that the dominant mechanism is in fact spectral leakage of low-frequency power present in the light curves.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2005

References

Benlloch, S. 2004, PhD thesis, Eberhard-Karls-Universität Tübingen, 84 Google Scholar
Bradt, H. V., Rothschild, R. E., & Swank, J. H. 1993, A&AS, 97, 355 Google Scholar
Buxton, M., & Vennes, S. 2003, MNRAS, 342, 105 CrossRefGoogle Scholar
Corbet, R. H. D. 2003, ApJ, 595, 1086 CrossRefGoogle Scholar
Corbet, R. H. D., Finely, J. P., & Peele, A. G. 1999, ApJ, 511, 876 Google Scholar
Dieters, S., O'Neill, P. M., Farrell, S. S., & Sood, R. K. 2005, ASR, 35, 1185 Google Scholar
Farrel, S. A., O'Neill, P. M., & Sood, R. K. 2005, MNRAS, submittedGoogle Scholar
Horne, J. H., & Baliunas, S. L. 1986, ApJ, 302, 757 Google Scholar
Hynes, R. I., Steeghs, D., Casares, J., Charles, P. A., & O'Brien, K. 2003, ApJ, 583, L95 Google Scholar
Jahoda, K., Swank, J. H., Giles, A. B., Stark, M. J., Strohmayer, T., & Zhang, W. 1996, in Proc. Spie, 2808, eds. O. H. Siegmund, & M. A. Gummin (Bellingham, WA: SPIE), 59 CrossRefGoogle Scholar
Kong, A. K. H., Charles, P. A., & Kuulkers, E. 1998, NewA, 3, 301 CrossRefGoogle Scholar
Levine, A. M., Bradt, H. V., Cui, W., Jernigan, J. G., Morgan, E. H., Remillard, R., Shiery, R. E., & Smith, D. A. 1996, ApJ, 469, L33 CrossRefGoogle Scholar
Lomb, N. R. 1975, Ap&SS, 39, 447 Google Scholar
Plett, M. 1978, in Astrophysics and Space Science Library, ed. J. R. Wertz (Dordrecht: D. Reidel Publishing), 113 Google Scholar
Press, W. H., & Rybicki, G. B. 1989, ApJ, 338, 227 Google Scholar
Scargle, J. D. 1982, ApJ, 263, 835 Google Scholar
Shaw, S. E., Westmore, M. J., Bird, A. J., Dean, A. J., Ferguson, C., Gurriaran, R., Lockley, J. J., & Willis, D. R. 2003, A&A, 398, 391 Google Scholar
Smale, A. P., et al. 1988, MNRAS, 233, 51 Google Scholar
Zdziarski, A. A., et al. 2004, MNRAS, 351, 791 Google Scholar