Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T19:44:29.226Z Has data issue: false hasContentIssue false

Late Neoproterozoic Metazoa: Weird, Wonderful and Ghostly

Published online by Cambridge University Press:  21 July 2017

Jere H. Lipps
Affiliation:
Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley, California 94720
James W. Valentine
Affiliation:
Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley, California 94720
Get access

Abstract

The Late Neoproterozoic or Ediacaran biota contains a variety of enigmatic fossils of uncertain, but likely metazoan, affinities. The protistan group Choanoflagellata and Metazoa share a common ancestor predating the first fossils by perhaps 100's of millions of years. Sponge choanocytes closely resemble choanoflagellates, establishing a morphologic similarity as well. Fossils in the late Neoproterozoic may represent stem or early groups of cnidarians, while others resemble eumetazoans and bilaterians. These organisms occurred on all continents except Antarctica, and occupied four major habitats from prodeltaic to deep slope environments in each area. Their paleoecology was complex but similar to modern soft-bodied slope organisms. Ediacaran trophic structures were complex as well and included a wide variety of feeding types from detritovores, herbivores on microbial mats, filter-feeders, and predators. Ediacaran assemblages thus constitute the evolutionary and ecological precursors of later Phanerozoic and modern biotas.

Type
Research Article
Copyright
Copyright © 2004 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, M. M., and Conway Morris, S. 1982. A review, with descriptions of four unusual forms, of the soft-bodied fauna of the Conception and St. John's groups (late Precambrian), Avalon Peninsula, Newfoundland, p. 18. In Mamet, B. and Copeland, M. J. (eds.), Proceedings of the Third North American Paleontological Convention. Universite de Montreal and Geological Survey of Canada, Montreal and Ottawa.Google Scholar
Baldauf, S. L. 2003. The deep roots of eukaryotes. Science, 300:17031706.Google Scholar
Barford, G. H., Albaréde, F., Knoll, A. H., Xiao, S., Télouk, P., Frei, R., and Baker, J. 2002. New Lu-Hf and Pb-Pb age constraints on the earliest animal fossils. Earth and Planetary Science Letters, 201:203212.Google Scholar
Bengtson, S., and Zhao, Y. 1992. Predatorial borings in Late Precambrian mineralized exoskeletons. Science, 257:367369.Google Scholar
Benus, A. P. 1988. Sedimentological context of a deep-water Ediacaran fauna (Mistaken Point Formation, Avalon Zone, eastern Newfoundland). Pp. 89 in Landing, E., Narbonne, G. M., and Myrow, P. (eds.). Trace fossils, small shelly fossils and the Precambrian-Cambrian boundary. New York State Mus. Bull. 463.Google Scholar
Brasier, M., and Antcliffe, B. 2004. Decoding the Ediacaran enigma. Science, 305:11151117.Google Scholar
Butterfield, N. J. 1997. Plankton ecology and the Proterozoic-Phanerozoic transition. Paleobiology, 23(2):247262.Google Scholar
Clapton, M. E., and Narbonne, G. M. 2002. Ediacaran epifaunal tiering. Geology, 30:627630.Google Scholar
Clapton, M. E., Narbonne, G. M., and Gehling, J. G. 2003. Paleoecology of the oldest know animal communities: Ediacaran assemblages at Mistaken Point, Newfoundland. Paleobiology, 29(4):527544.Google Scholar
Collins, A. G., Lipps, J. H., and Valentine, J. W. 2000. Modern mucociliary creeping trails and the bodyplans of Neoproterozoic trace-makers. Paleobiology, 26(1):4755.2.0.CO;2>CrossRefGoogle Scholar
Conway Morris, S. 1993. Ediacaran-Like Fossils in Cambrian Burgess Shale-Type Faunas of North-America. Palaeontology, 36 (SEP):593635.Google Scholar
Cook, C. E., Jimenez, E., Akam, M., and Salo, E. 2004. The Hox gene complement of acoel flatworms, a basal bilaterian clade. Evolution and Development, 6:154163.Google Scholar
Crimes, T. P. 1992. The record of trace fossils across the Proterozoic-Cambrian boundary, p. 177202. In Lipps, J. H. and Signor, P. W. (eds.), Origin and early evolution of the Metazoa. Plenum, New York.Google Scholar
Crimes, T. P., and Droser, M. 1992. Trace fossils and bioturbation: the other fossil record. Annual Review of Ecology and Systematics, 23:339360.Google Scholar
Droser, M. L., Gehling, J. G., and Jensen, S. 1999. When the worm turned: concordance of Early Cambrian ichnofabric and trace-fossil record in siliciclastic rocks of South Australia. Geology, 27:625629.Google Scholar
Droser, M. L., Jensen, S., and Gehling, J. G. 2002. Trace fossils and substrates of the terminal Proterozoic-Cambrian transition: implications for the record of early bilaterians and sediment mixing. Proceeding of the National Academy of Sciences of the USA, 99:1257212576.CrossRefGoogle ScholarPubMed
Dzik, J., and Ivantsov, A. Y. 2002. Internal anatomy of a new Precambrian dickinsoniid dipleurozoan from northern Russia. Nues Jb. Geol. Palaeont. Mh. Google Scholar
Fedonkin, M. A. 1992. Vendian faunas and the early evolution of Metazoa, p. 87129. In Lipps, J. H. and Signor, P. W. (eds.), Origin and early evolution of the Metazoa. Plenum Publishers, New York.Google Scholar
Fedonkin, M. A. 1994. Vendian body fossils and trace fossils, p. 370388. In Bengtson, S. (ed.), Nobel Symposium, No. 84. Early life on earth; 84th Nobel Symposium, Karlskoga, Sweden, May 16, 1992. Columbia University Press, New York, New York, USA; Chichester, England, UK.Google Scholar
Fedonkin, M. A. 1996. The Precambrian fossil record: New insight of life. Memorie della Societa Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, 27(1):4148.Google Scholar
Fedonkin, M. A., and Waggoner, B. M. 1997. The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organism. Nature, 388:868871.Google Scholar
Finnerty, J. R., and Martindale, M. Q. 1999. Ancient origins of axial patterning genes: Hox genes and ParaHox genes in the Cnidaria. Evolution and Development, 1:1623.Google Scholar
Fjerdingstad, E. 1961. The ultrastructure of choanocyte collars in Spongilla lacustris (L.) Z. Zellforsch. 53, 645657.Google Scholar
Giribet, G., Distel, D. L., Polz, M., Sterrer, W., and Wheeler, W. C. 2000. Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Platyhelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology. Systematic Biology, 49:539562.Google Scholar
Glaessner, M. F. 1984. The dawn of animal life. Cambridge University Press, Cambridge.Google Scholar
Gradstein, F. M., Ogg, J. G., Smith, A. G., Bleeker, W., and Lourens, L. J. 2004. A new geologic time scale with special reference to Precambrian and Neogene. Episodes, 27(2):83100.Google Scholar
Grazhdankin, D. 2004. Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution. Paleobiology, 30(2):203221.Google Scholar
Hoffman, P. F., Kaufman, A. J., Halverson, G. P., and Schrag, D. P. 1998. A Neoproterozoic snowball earth. Science, 281(5381): 13421346.Google Scholar
Hua, H., Pratt, B. R., and Zhang, L.-Y. 2003. Borings in Cloudina shells: Complex predator-prey dynamics in the terminal Neoproterozoic. Palaios, 18:454459.Google Scholar
Ivantsov, A. Y., and Fedonkin, M. A. 2001. Trails of active locomotion: final proof of animal nature of the Ediacara organisms [in Russian], p. 133137. In Podobina, V. M. (ed.), Evolution of Life on Earth. NTL, Tomsk.Google Scholar
Javaux, E. J., Knoll, A. H., and Walter, M. R. 2001. Morphological and ecological complexity in early eukaryotic ecosystems. Nature, 412(6842):6669.Google Scholar
Jenkins, R. J. F. 1984. Interpreting the oldest fossil cnidarians. Palaeontographica Americana, 54:95104.Google Scholar
Jenkins, R. J. F. 1992. Functional and ecological aspects of Ediacaran assemblages, p. 131176. In Lipps, J. H. and Signor, P. W. (eds.), Origin and early evolution of the Metazoa. Plenum Press, New York.CrossRefGoogle Scholar
Jenkins, R. J. F., and Gehling, J. G. 1978. A review of the frond-like fossils of the Ediacara assemblage. Records of the South Australian Museum, 17(23):347359.Google Scholar
Jensen, S., Gehling, J. G., Droser, M. L., and Grant, S. W. F. 2002. A scratch circle origin for the medusoid fossil Kullingia . Lethaia, 35:291299.Google Scholar
King, N. 2004. The unicellular ancestry of animal development. Development and Cell Biology.Google Scholar
King, N., and Carroll, S. B. 2001. A receptor tyrosine kinase from choanoflagellates: molecular insights into early animal evolution. Proceeding of the National Academy of Sciences of the USA:1503215037.Google Scholar
King, N., Hittinger, C. T., and Carroll, S. B. 2003. Evolution of key cell signaling and adhesion protein families predates animal origins. Science, 301:361363.CrossRefGoogle ScholarPubMed
Kirschvink, J. L. 1992. Late Proterozoic low-latitude globlal glaciation: the Snowball Earth, p. 5152. In Schopf, J. W. N. and Klein, C. (eds.), The Proterozoic biosphere: A multidisciplinary study. Cambridge University Press, Cambridge.Google Scholar
Knoll, A. H. 1994. Proterozoic and Early Cambrian Protists - Evidence For Accelerating Evolutionary Tempo. Proceedings of the National Academy of Sciences of the United States of America, 91(15):67436750.Google Scholar
Knoll, A. H. 2003. Life on a young planet. Princeton University Press, Princeton, NJ, 277 p.Google Scholar
Laflamme, M., Narbonne, G. M., and Anderson, M. M. 2004. Morphometric analysis of the Ediacaran frond Charniodiscus from the Mistaken Point Formation, Newfoundland. Journal of Paleontology, 78(5):827837.Google Scholar
Leadbeater, B. S. C. 1985. Class 2. Zoomastigophorea Calkins. Order 1. Choanoflagellida Kent, 1880. Pp. 106116, Lee, J. J.; Hutner, S. H.; Bovee, E. C.:An Illustrated Guide to the Protozoa. Allen Press, Lawrence, KS.Google Scholar
Li, C.-W., Chen, J.-Y., and Hua, T.-E. 1998. Precambrian sponges with cellular structures. Science, 279:879882.Google Scholar
Lipps, J. H., Bengtson, S., and Farmer, J. D. 1992. The Precambrian-Cambrian evolutionary transition, p. 453457. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic biosphere: A multidisciplinary study. Cambridge University Press, Cambridge.Google Scholar
Lipps, J. H., and Culver, S. J. 2002. The trophic role of marine microorganisms through time. Paleontological Society Papers, 8:6992.Google Scholar
Lipps, J. H., and Signor, P. W. 1992. Origin and early evolution of the Metazoa. Plenum, New York, 570 p.CrossRefGoogle Scholar
Manuel, M., and Le Parco, Y. 2000. Homeobox gene diversification in the calcareous sponge, Sycon raphanus. Mol. Phylogenet. Evol., 17:97107.Google Scholar
Martin, M. W., Grazhdankin, D. V., Bowring, S. A., Evans, D. A. D., Fedonkin, M. A., and Kirschvink, J. L. 2000. Age of Neoproterozoic bilatarian [sic] body and trace fossils, White Sea, Russia: Implications for metazoan evolution. Science, 288:841845.Google Scholar
Mcmenamin, M. A. S. 1986. The Garden of Ediacara. Palaios, 1(2):178182.CrossRefGoogle Scholar
Mcmenamin, M. A. S. 1987. The Emergence of Animals. Scientific American, 256(4):94102.Google Scholar
Medina, M., Collins, A., Taylor, J., Valentine, J. W., Lipps, J. H., Amaral-Zettler, L., and Sogin, M. 2003. Phylogeny of Opisthokonta and the evolution of multicellularity and complexity in Fungi and Metazoa. International Journal of Astrobiology, 2:203211.Google Scholar
Monastersky, R. 1998. The rise of life on Earth: Life grows up. National Geographic, 193(4): 100115.Google Scholar
Narbonne, G. M. 1998. The Ediacara biota: a terminal Neoproterozoic experiment in the evolution of life. GSA Today, 8(2):16.Google Scholar
Narbonne, G. M. 2004. Modular construction of early Ediacaran complex life forms. Science, 305:11411143.Google Scholar
Retallack, G. J. 1994. Were the Ediacaran Fossils Lichens. Paleobiology, 20(4):523544.Google Scholar
Retallack, G. J. 1995. Ediacaran Lichens - Reply. Paleobiology, 21(3):398399.Google Scholar
Ruiz-Trillo, I., Paps, J., Loukota, M., Ribera, C., Jondelius, U., Baguna, J., and Riutort, M. 2002. A phylogenetic analysis of Myosin Heavy Chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians. Proceeding of the National Academy of Sciences of the USA, 99:1124611251.Google Scholar
Ruiz-Trillo, I., Riutort, M., Littlewood, D. T. J., Herniou, E. A., and Baguna, J. 1999. Acoel flatworms: earliest extant bilaterian metazoans, not members of Platyhelminthes. Science, 283:19191923.Google Scholar
Runnegar, B. 1991. Precambrian Oxygen Levels Estimated From the Biochemistry and Physiology of Early Eukaryotes. Global and Planetary Change, 97(1-2):97111.Google Scholar
Runnegar, B. 1993. Algae and oxygen in Earth's ancient atmosphere - Reply. Science, 259(5096):835835.Google Scholar
Runnegar, B. N. 1992a. Proterozoic fossils of soft-bodied metazoans (Ediacara Faunas), p. 9991007. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic biosphere. Cambridge University Press, Cambridge.Google Scholar
Runnegar, B. N. 1992b. Proterozoic metazoan trace fossils, p. 1348. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic biosphere. Cambridge University Press, Cambridge.Google Scholar
Runnegar, B. N., and Fedonkin, M. A. 1992. Proterozoic metazoan body fossils, p. 369388. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic biosphere—A multidisciplinary study. Cambridge Univ. Press, Cambridge.Google Scholar
Seilacher, A. 1989. Vendozoa: Organismic construction in the Proterozoic biosphere. Lethaia, 22:229239.Google Scholar
Seilacher, A. 1992a. Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. Journal of the Geological Society of London, 149:607613.Google Scholar
Seilacher, A. 1992b. Vendobionta: An alternative to metazoans. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, 89(SUPPL. 1):920.Google Scholar
Seilacher, A. 1994. Early multicellular life: late Proterozoic fossils and the Cambrian explosion. Pp. 389400 in Bengtson, S. (ed.). Early Life on Earth. Columbia Univ. Press:New York.Google Scholar
Seilacher, A. 1999. Biomat-related lifestyles in the Precambrian. Palaios, 14:8693.Google Scholar
Seilacher, A., Grazhdankin, D. V., and Legouta, A. 2003. Ediacaran biota: The dawn of animal life in the shadow of giant protists. Paleontological Research, 7(1):4354.Google Scholar
Signor, P. W., and Lipps, J. H. 1992. Origin and early radiation of the Metazoa, p. 323. In Lipps, J. H. and Signor, P. W. (eds.), Origin and early evolution of the Metazoa. Plenum Press, New York.Google Scholar
Towe, K. E. 1970. Oxygen-collagen priority and the early metazoan fossil record. Proceeding of the National Academy of Sciences of the USA, 65:781788.Google Scholar
Valentine, J. W. 2001. How were vendobiont bodies patterned? Paleobiology, 27:425428.Google Scholar
Valentine, J. W. 2002. Prelude to the Cambrian explosion. Annual Review of Earth and Planetary Sciences, 30:285306.Google Scholar
Valentine, J. W. 2004. On the origin of phyla. Princeton University Press, Princeton.Google Scholar
Vidal, G., and Moczydlowska-Vidal, M. 1997. Biodiversity, speciation, and extinction trends of Proterozoic and Cambrian phytoplankton. Paleobiology, 23(2):230246.Google Scholar
Waggoner, B. M. 1995. Ediacaran lichens: a critique. Paleobiology, 21:393397.Google Scholar
Waggoner, B. M. 1996. Phylogenetic hypotheses of the relationships of arthropods to Precambrian and Cambrian problematic fossil taxa. Systematic Biology, 45:190222.Google Scholar
Waggoner, B. M. 1999. Biogeographic analyses of the Ediacara biota: a conflict with paleotectonic reconstructions. Paleobiology, 25(4):440458.Google Scholar
Waggoner, B. M. 2003. The Ediacaran biotas in space and time. Integrative and Comparative Biology, 43:104113.Google Scholar
Williams, G. C. 1997. Preliminary assessment of the phylogeny of Pennatulacea (Anthozoa: Octocorallia), with a reevaluation of Ediacaran frond-like fossils, and a synopsis of the history of evolutionary thought regarding the sea pens. Proceedings of the International Conference on Coelenterate Biology, 6:497509.Google Scholar
Xiao, S., Zhang, Y., and Knoll, A. H. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 391:553558.Google Scholar
Xiao, S. H., and Knoll, A. H. 1999. Fossil preservation in the Neoproterozoic Doushantuo phosphorite Lagerstatte, South China. Lethaia, 32(3):219240.Google Scholar
Xiao, S. H., and Knoll, A. H. 2000. Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng'An, Guizhou, South China. Journal of Paleontology, 74(5):767788.Google Scholar
Zhou, C., Tucker, R., Xiao, S., Peng, Z., Yuan, X., and Chen, Z. 2004. New constraints on the ages of Neoproterozoic glaciations in south China. Geology, 32(5):437440.Google Scholar
Zhuravlev, A. Y. 1993. Were Ediacaran Vendobionta multicellulars? Neues Jahrbuch fur Palaontologie Abhandlungen, 190:299314.Google Scholar