Partial mitochondrial cytochrome c oxidase subunit I (mt COI) sequences were generated from: Toxoplasma gondii (strains CTG, GTI, MAS, ME49, PTG, TgCatBr5, TgCat, Br64, TgCgCal, TgToucan); Neospora caninum (Strain NC1); Hammondia hammondi (Strain H.H–20); H. heydorni; H. cf. triffittae; Cystoisospora felis; C. suis; C. canis; C. rivolta; C. cf. ohioensis; Caryospora bigenetica; Sarcocystis rileyi; and S. neurona. Nuclear 18S rDNA sequences were generated for H. heydorni, H. hammondi, C. suis, C. canis, C. felis, C. rivolta, C. cf. ohioensis, S. neurona, and S. rileyi. Aligned, concatenated 18S rDNA and COI sequences were Bayesian analysed using partitioned nucleotide substitution models [HKY + I + G for 18S; GTR + I + G codon (code = metmt) for COI]. Phylogenetic hypotheses supported a monophyletic Sarcocystidae and its subfamilie with two major clades within the Toxoplasmatinae: (1) a monophyletic clade of Cystoisospora spp. with Nephroisospora eptesici; and (2) a clade of Toxoplasma, Neospora and Hammondia. Within the latter, Hammondia was shown to be paraphyletic; H. heydorni and H. triffittae were monophyletic with N. caninum [canine definitive hosts (DHs)], whereas H. hammondi was monophyletic with T. gondii (feline DHs). A new genus is erected to resolve the paraphyly of the genus Hammondia confirmed using mt COI and combined 18S/COI sequence datasets.