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  Abstract
  Approximately 1–4% of children today are conceived using assisted reproductive technologies (ARTs), including in vitro fertilization (IVF). IVF is considered safe and the great majority of these children are healthy, yet there is increasing physiological and molecular evidence from animal models that ART is associated with postnatal metabolic and cardiovascular alterations. Understanding the mechanisms underlying these changes and determining whether they have biological significance is of paramount importance for optimizing the design of culture conditions and improving the health of ART children across the life course. In this review, we examine the evidence of molecular changes present in adult tissues of rodent offspring generated by preimplantation manipulation of gametes and embryos. Although embryo manipulation in vitro can induce common transcriptional effects in the blastocyst, transcriptional and metabolomic signatures in adult IVF tissues are largely tissue-specific. However, there is pervasive evidence of oxidative stress and metabolic dysfunction, indicating a lasting effect of IVF on molecular physiology.
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