Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T19:24:54.818Z Has data issue: false hasContentIssue false

5 - Vibrations in Graphene

from Part I

Published online by Cambridge University Press:  22 June 2017

Phaedon Avouris
Affiliation:
IBM T. J. Watson Research Center, New York
Tony F. Heinz
Affiliation:
Stanford University, California
Tony Low
Affiliation:
University of Minnesota
Get access
Type
Chapter
Information
2D Materials
Properties and Devices
, pp. 71 - 89
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

5.6 References

Dresselhaus, M. S., Dresselhaus, G., and Jorio, A., Group Theory: Application to the Physics of Condensed Matter (Springer-Verlag, 2008).Google Scholar
Malard, L. M., Guimarães, M. H. D., Mafra, D. L., Mazzoni, M. S. C., and Jorio, A., Group-theory analysis of electrons and phonons in N-layer graphene systems. Physical Review B, 79 (2009), 125426.Google Scholar
Ribeiro-Soares, J., Almeida, R. M., Cançado, L. G., Dresselhaus, M. S., and Jorio, A., Group theory for structural analysis and lattice vibrations in phosphorene systems. Physical Review B, 91 (2015), 205421.Google Scholar
Reich, S. and Thomsen, C., Raman spectroscopy of graphite. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 362:1824 (2004), 2271–88.Google Scholar
Ferrari, A. C., Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Communications, 143:1 (2007), 4757.CrossRefGoogle Scholar
Jorio, A., Dresselhaus, M. S., and Saito, R., Raman Spectroscopy in Graphene Related Systems (Wiley-VCH, 2011).Google Scholar
Ferrari, A. C. and Basko, D. M., Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotechnology, 8 (2013), 235–46.Google Scholar
Huang, M., Yan, H., Chen, C., Song, D., Heinz, T. F., and Hone, J., Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy. Proceedings of the National Academy of Sciences, 106:18 (2009), 7304–8.CrossRefGoogle ScholarPubMed
Das, A., Pisana, S., Chakraborty, B., Piscanec, S., Saha, S. K., Waghmare, U.V., Novoselov, K. S., Krishnamurthy, H. R., Geim, A. K., Ferrari, A. C., and Sood, A. K., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotechnology, 3:4 (2008), 210–15.Google Scholar
Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Ning Lau, C., Superior thermal conductivity of single-layer graphene. Nano Letters, 8:3(2008), 902–7.CrossRefGoogle ScholarPubMed
Acik, M., Lee, G., Mattevi, C., Chhowalla, M., Cho, K., and Chabal, Y. J., Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nature Materials, 9(2010), 840–5.CrossRefGoogle ScholarPubMed
Dovbeshko, G., Gnatyuk, O., Fesenko, O., Rynder, A., and Posudievsky, O., Enhancement of infrared absorption of biomolecules absorbed on single-wall carbon nanotubes and graphene nanosheets. Journal of Nanophotonics, 6:1 (2012), 061711.CrossRefGoogle Scholar
Zhang, L. M., Li, Z. Q., Basov, D. N., Fogler, M. M., Hao, Z., and Martin, M. C., Determination of the electronic structure of bilayer graphene from infrared spectroscopy. Physical Review B, 78:23 (2008), 235408.CrossRefGoogle Scholar
Li, Z. Q., Henriksen, E. A., Jiang, Z., Hao, Z., Martin, M. C., Kim, P., and Basov, D. N., Dirac charge dynamics in graphene by infrared spectroscopy. Nature Physics, 4:7 (2008), 532–5.CrossRefGoogle Scholar
Venezuela, P., Lazzeri, M., and Mauri, F., Theory of double-resonant Raman spectra in graphen: Intensity and line shape of defect-induced and two-phonon bands. Physical Review B, 84 (2011), 035433.CrossRefGoogle Scholar
Jorio, A. and Cançado, L. G.. Raman spectroscopy of twisted bilayer graphene. Solid State Communications, 1756 (2013), 312CrossRefGoogle Scholar
Wirtz, L. and Rubio, A., The phonon dispersion of graphite revisited. Solid State Communications, 131:3 (2004), 141–52.Google Scholar
Dubay, O., Kresse, G., and Kuzmany, H., Phonon softening in metallic nanotubes by a Peierls-like mechanism. Physical Review Letters, 88(2002), 235506.Google Scholar
Piscanec, S., Lazzeri, M., Mauri, F., Ferrari, A. C., and Robertson, J., Kohn anomalies and electron–phonon interactions in graphite. Physical Review Letters, 93:18 (2004), 185503.Google Scholar
Pisana, S., Lazzeri, M., Casiraghi, C., Novoselov, K. S., Geim, A. K., Ferrari, A. C., and Mauri, F., Breakdown of the adiabatic Born–Oppenheimer approximation in graphene. Nature Materials, 6:3 (2007), 198201.Google Scholar
Lazzeri, M., Attaccalite, C., Wirtz, L., and Mauri, F., Impact of the electron–electron correlation on phonon dispersion: Failure of LDA and GGA DFT functionals in graphene and graphite. Physical Review B, 78:8 (2008), 081406.Google Scholar
Mohr, M., Maultzsch, J., Dobardžić, E., Reich, S., Milošević, I., Damnjanović, M., Bosak, A., Krisch, M., and Thomsen, C., Phonon dispersion of graphite by inelastic X-ray scattering. Physical Review B, 76:3 (2007), 035439.Google Scholar
Grüneis, A., Serrano, J., Bosak, A., Lazzeri, M., Molodtsov, S. L., Wirtz, L., and Pichler, T., Phonon surface mapping of graphite: Disentangling quasi-degenerate phonon dispersions. Physical Review B, 80:8 (2009), 085423.CrossRefGoogle Scholar
Saito, R., Jorio, A., Souza Filho, A. G., Dresselhaus, G., Dresselhaus, M. S., and Pimenta, M. A., Probing phonon dispersion relations of graphite by double resonance Raman scattering. Physical Review Letters, 88 (2001), 027401.Google Scholar
Mafra, D. L., Samsonidze, G., Malard, L. M., Elias, D. C., Brant, J. C., Plentz, F., Alves, E. S., and Pimenta, M. A., Determination of LA and TO phonon dispersion relations of graphene near the Dirac point by double resonance Raman scattering. Physical Review B, 76:23 (2007), 233407.Google Scholar
Frank, O., Mohr, M., Maultzsch, J., Thomsen, C., Riaz, I., Jalil, R., and Galiotis, C., Raman 2D-band splitting in graphene: theory and experiment. ACS Nano, 5:3 (2011), 2231–9.Google Scholar
Carozo, V., Almeida, C. M., Ferreira, E. H. M., Cançado, L. G., Achete, C. A., and Jorio, A., Raman signature of graphene superlattices. Nano Letters, 11:11 (2011), 4527–34.Google Scholar
Righi, A., Costa, S. D., Chacham, H., Fantini, C., Venezuela, P., Magnuson, C., Colombo, L., Bacsa, W. S., Ruoff, R. S., and Pimenta, M. A., Graphene moiré patterns observed by Umklapp double-resonance Raman scattering. Physical Review B, 84:24(2011), 241409.CrossRefGoogle Scholar
Campos-Delgado, J., Cançado, L. G., Achete, C. A., Jorio, A., and Raskin, J.-P., Raman scattering study of the phonon dispersion in twisted bilayer graphene. Nano Research, 6:4 (2013), 269–74.Google Scholar
Thomsen, C. and Reich, S., Double resonant Raman scattering in graphite. Physical Review Letters, 85 (2000), 5214.CrossRefGoogle ScholarPubMed
Bernard, S., Whiteway, E., Yu, V., Austing, D. G., and Hilke, M., Probing the experimental phonon dispersion of graphene using 12C and 13C isotopes. Physical Review B, 86 (2012), 085409.Google Scholar
Carozo, V., Almeida, C. M., Fragneaud, B., Bedê, P., Moutinho, J., Ribeiro-Soares, M. V. O., Andrade, N., Souza Filho, A. G., Matos, M. J. S., Wang, B., Terrones, M., Capaz, R. B., Jorio, A., Achete, C. A., and Cançado, L. G., Resonance effects on the Raman spectra of graphene superlattices. Physical Review B, 88 (2013), 085401.Google Scholar
Lui, C. H., Malard, L. M., Kim, S. H., Lantz, G., Leverge, F. E., Saito, R., and Heinz, T., Observation of layer-breathing mode vibrations in few-layer graphene through combination Raman scattering. Nano Letters, 12:11 (2012), 5539–44.Google Scholar
Kim, K., Coh, S., Tan, L. Z., Regan, W., Yuk, J. M., Chatterjee, E., Crommie, M. F., Cohen, M. L., Louie, S. G., and Zettl, A., Raman spectroscopy study of ratated double-layer graphene: misorientation-angle dependence of electronic structure. Physical Review Letters, 108 (2012), 246103.CrossRefGoogle Scholar
Havener, R. W., Zhuang, H., Brown, L., Hennig, R. G., and Park, J., Angle-resolved Raman imaging of interlayer rotations and interactions in twisted bilayer graphene. Nano Letters, 12:6 (2012), 3162–7.CrossRefGoogle ScholarPubMed
Wang, Y., Su, Z., Wu, W., Nie, S., Xie, N., Gong, H., Guo, Y., Lee, J. H., Xing, X., Lu, S., Wang, H., Lu, X., McCarty, K., Pei, F., Robles-Hernandez, S., Hadjiev, V. G., and Bao, J., Twisted bilayer graphene superlattices, arXiv:1301.4488v1.Google Scholar
Li, P. and Appelbaum, I., Electrons and holes in phosphorene. Physical Review B, 90 (2014), 115439.Google Scholar
Takeda, K. and Shiraishi, K., Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Physical Review B, 50 (1994), 14916.Google Scholar
Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., and Geim, A. K., Raman spectrum of graphene and graphene layers. Physical Review Letters, 97 (2006), 187401.Google Scholar
Malard, L. M., Pimenta, M. A., Dresselhaus, G., and Dresselhaus, M. S., Raman spectroscopy in graphene. Physics Reports, 473:5–6 (2009), 5188.Google Scholar
Cançado, L. G., Reina, A., Kong, J., and Dresselhaus, M. S., Geometrical approach for the study of G′ band in the Raman spectrum of monolayer graphene, bilayer graphene, and bulk graphite. Physical Review B, 77 (2008), 245408.CrossRefGoogle Scholar
Nicklow, R., Wakabayashi, N., and Smith, H. G., Lattice dynamics of pyrolytic graphite. Physical Review B, 5 (1972), 4951–62.CrossRefGoogle Scholar
Yin, M. T. and Cohen, M. L., Structural theory of graphite and graphitic silicon. Physical Review B, 29 (1984), 6996.Google Scholar
Jiang, Jin-Wu, Tang, Hui, Wang, Bing-Shen, and Su, Zhao-Bin, Raman and infrared properties and layer dependence of the phonon dispersions in multilayered graphene. Physical Review B, 77 (2008), 235421.Google Scholar
Michel, K. H. and Verberck, B., Theory of rigid-plane phonon modes in layered crystals. Physical Review B, 85 (2012), 094303.Google Scholar
Popov, V. N. and Van Alsenoy, C., Low-frequency phonons of few-layer graphene within a tight-binding model. Physical Review B, 90 (2014), 245429.Google Scholar
Tan, P. H., Han, W. P., Zhao, W. J., Wu, Z. H., Chang, K., Wang, H., Wang, Y. F., Bonini, N., Marzari, N., Pugno, N., Savini, G., Lombardo, A., and Ferrari, A. C., The shear mode of multilayer graphene. Nature Materials, 11 (2012), 294300.Google Scholar
Boschetto, D., Malard, L., Lui, C. H., Mak, K. F., Li, Z., Yan, H., and Heinz, T. F., Real-time observation of interlayer vibrations in bilayer and few-layer graphene. Nano Letters, 13 (2013), 4620–3.Google Scholar
Lui, C. H., Malard, L. M., Kim, S., Lantz, G., Laverge, F. E., Saito, R., and Heinz, T. F., Observation of layer-breathing mode vibrations in few-layer graphene through combination Raman scattering. Nano Letters, 12 (2012), 5539–44.Google Scholar
Lui, C. H. and Heinz, T. F., Measurement of layer breathing mode vibrations in few-layer graphene. Physical Review B, 87 (2013), 121404(R).Google Scholar
Cong, Chunxiao and Yu, Ting, Enhanced ultra-low-frequency interlayer shear modes in folded graphene layers. Nature Communications, 5 (2014), 4709.Google Scholar
Lui, C. H., Ye, Z., Keiser, C., Xiao, X., and He, R., Temperature-activated layer-breathing vibrations in few-layer graphene. Nano Letters, 14 (2014), 4615–21.Google Scholar
Mishina, T., Nitta, K., and Masumoto, K. Y., Coherent lattice vibration of interlayer shearing mode of graphite. Physical Review B, 62 (2000), 2908.Google Scholar
Zhang, X., Han, W. P., Wu, J. B., Milana, S., Lu, Y., Li, Q. Q., Ferrari, A. C., and Tan, P. H., Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Physical Review B, 87 (2013), 115413.Google Scholar
Zhang, X., Qiao, X. F., Shi, W., Wu, J.B., Jiang, D. S., and Tan, P. H., Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chemical Society Review, 44 (2015), 2757–85.Google Scholar
Zhao, Y., Luo, X., Li, H., Zhang, J., Araujo, P. T., Gan, C. K., Wu, J., Zhang, H., Quek, S. Y., Dresselhaus, M. S., and Xiong, Q., Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Letters, 13 (2013), 1007–15.Google Scholar
Liu, K., Zhang, L., Cao, T., Jin, C., Qiu, D., Zhou, Q., Zettl, A., Yang, P., Louie, S. G., and Wang, F., Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nature Communications, 5 (2014), 4966.Google Scholar
Lui, C. H., Ye, Z., Ji, C., Chiu, K. C., Chou, C. T., Andersen, T. I., Means-Shively, C., Anderson, H., Wu, J. M., Kidd, T., Lee, Y. H., and He, R., Observation of interlayer phonon modes in van der Waals heterostructures. Physical Review B, 91 (2015), 165403.Google Scholar
Ge, S., Liu, X., Qiao, X., Wang, Q., Xu, Z., Qiu, J., Tan, P. H., Zhao, J., and Sun, D., Coherent longitudinal acoustic phonon approaching THz frequency in multilayer molybdenum disulphide. Scientific Reports, 4 (2014), 5722.Google Scholar
Wu, Jiang-Bin, Hu, Zhi-Xin, Zhang, X., Han, Wen-Peng, Lu, Y., Shi, W., Qiao, Xiao-Fen, Ijiäs, M., Milana, S., Ji, W., Ferrari, A. C., and Tan, Ping-Heng, Interface coupling in twisted multilayer graphene by resonant Raman spectroscopy of layer breathing modes. ACS Nano, 9 (2015), 7440–9.Google Scholar
Gardiner, D. J., Practical Raman Spectroscopy. (Springer-Verlag, 1989).Google Scholar
Steiner, M., Freitag, M., Perebeinos, V., Tsang, J. C., Small, J. P., Kinoshita, M., Yuan, D., Liu, J., and Avouris, P.. Phonon populations and electrical power dissipation in carbon nanotube transistors. Nature Nanotechnology, 4 (2009), 320.Google Scholar
Faugeras, C., Faugeras, B., Orlita, M., Potemski, M., Nair, R. R., and Geim, A. K., Thermal conductivity of graphene in corbino membrane geometry. ACS Nano, 4 (2010), 1889.Google Scholar
Berciaud, S., Han, M. Y., Mak, K. F., Brus, L. E., Kim, P., and Heinz, T. F., Electron and optical phonon temperatures in electrically biased graphene. Physical Review Letters, 104 (2010), 227401.Google Scholar
Bonini, N., Lazzeri, M., Marzari, N., and Mauri, F., Phonon anharmonicities in graphite and graphene. Physical Review Letters, 99 (2007), 176802.Google Scholar
Song, D., Wang, F., Dukovic, G., Zheng, M., Semke, E. D., Brus, L. E., and Heinz, T. F., Direct measurement of the lifetime of optical phonons in single-walled carbon nanotubes. Physical Review Letters, 100 (2008), 225503.Google Scholar
Jorio, A., Souza Filho, A. G., Dresselhaus, G., Dresselhaus, M. S., Saito, R., Hafner, J. H., Lieber, C. M., Matinaga, F. M., Dantas, M. S. S., and Pimenta, M. A., Joint density of electronic states for one isolated single-wall carbon nanotube studied by resonant Raman scattering. Physical Review B, 63 (2001), 245416.Google Scholar
Souza Filho, A. G., Jorio, A., Hafner, J. H., Lieber, C. M., Saito, R., Pimenta, M. A., Dresselhaus, G., and Dresselhaus, M. S., Electronic transition energy Eii for an isolated (n, m) single-wall carbon nanotube obtained by anti-Stokes/Stokes resonant Raman intensity ratio. Physical Review B, 63 (2001), 241404(R).Google Scholar
Klyshko, D. N., Correlation between the Stokes and anti-Stokes components in inelastic scattering of light. Soviet Journal of Quantum Electronics, 7 (1977), 755.Google Scholar
Jorio, A., Kasperczyk, M., Clark, N., Neu, E., Maletinsky, P., Vijayaraghavan, A., and Novotny, L., Optical-phonon resonances with saddle-point excitons in twisted-bilayer graphene. Nano Letters, 14 (2014), 5687.Google Scholar
Parra-Murillo, C. A., Santos, M. F., Monken, C. H., and Jorio, A., Stokes–anti-Stokes correlation in the inelastic scattering of light by matter and generalization of the Bose–Einstein population function. Physical Review B, 93 (2016), 125141.Google Scholar
Kasperczyk, M., de Aguiar Júnior, F. S., Rabelo, C., Saraiva, A., Santos, M. F., Novotny, L., and Jorio, A.. Temporal quantum correlations in inelastic light scattering from water. Physical Review Letters, 117 (2016), 243603.Google Scholar
Kang, K., Abdula, D., Cahill, D.G., and Shim, M.. Lifetimes of optical phonons in graphene and graphite by time-resolved incoherent anti-Stokes–Raman scattering. Physical Review B, 81 (2010), 165405.CrossRefGoogle Scholar
Lee, K. C., Sussman, B. J., Sprague, M. R., Michelberger, P., Reim, K. F., Nunn, J., Langford, N. K., Bustard, P. J., Jaksch, D., and Walmsley, I. A., Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond. Nature Photonics, 6 (2012), 41.Google Scholar
Kasperczyk, M., Jorio, A., Neu, E., Maletinksy, P., and Novotny, L., Stokes–anti-Stokes correlations in Raman scattering from diamond membranes. Optics Letters, 40 (2015), 2393.Google Scholar
Carter, W. H. and Wolf, E., Coherence properties of Lambertian and non-Lambertian sources. Journal of the Optical Society of America, 65 (1975), 1067.Google Scholar
Carminati, R. and Greffet, J.-J., Near-field effects in spatial coherence of thermal sources. Physical Review Letters, 82 (1999), 1660.Google Scholar
Shchegrov, A. V., Joulain, K., Carminati, R., and Greffet, J.-J., Near-field spectral effects due to electromagnetic surface excitations. Physical Review Letters, 85 (2000), 1548.CrossRefGoogle ScholarPubMed
Roychowdhury, H. and Wolf, E., Effects of spatial coherence on near-field spectra. Optics Letters, 28 (2003), 170.CrossRefGoogle ScholarPubMed
Apostol, A. and Dogariu, A., Spatial correlations in the near field of random media. Physical Review Letters, 91 (2003), 093901.Google Scholar
Cançado, L. G., Beams, R., Jorio, A., and Novotny, L., Theory of spatial coherence in near-field Raman scattering. Physical Review X, 4 (2014), 031054.Google Scholar
Beams, R., Cançado, L. G., Oh, S.-H., Jorio, A., and Novotny, L., Spatial coherence in near-field Raman scattering. Physical Review Letters, 113 (2014), 186101.Google Scholar
Richter, H., Wang, Z. P., and Ley, L., The one phonon Raman spectrum in microcrystalline silicon. Solid State Communications, 39 (1981), 625.Google Scholar
Ribeiro-Soares, J., Oliveros, M. E., Garin, C., David, M. V., Martins, L. G. P., Almeida, C. A., Martins-Ferreira, E. H., Takai, K., Enoki, T., Magalhães-Paniagoa, R., Malachias, A., Jorio, A., Archanjo, B. S., Achete, C. A., and Cançado, L. G., Structural analysis of polycrystalline graphene systems by Raman spectroscopy. Carbon, 95 (2015), 646–52.Google Scholar
Beams, R., Cançado, L. G., and Novotny, L., Raman characterization of defects and dopants in graphene. Journal of Physics: Condensed Matter, 27 (2015), 083002.Google Scholar
Pimenta, M. A., Dresselhaus, G., Dresselhaus, M. S., Cançado, L. G., Jorio, A., and Saito, R., Studying disorder in graphite-based systems by Raman spectroscopy. Physical Chemistry Chemical Physics, 9 (2007), 1276.CrossRefGoogle ScholarPubMed
Lucchese, M. M., Stavale, F., Ferriera, E. H., Vilane, C., Moutinho, M. V. O., Capaz, R. B., Achete, C. A., and Jorio, A., Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon, 48 (2010), 1592.Google Scholar
Tuinstra, F. and Koenig, J. L., Raman spectrum of graphite. Journal of Chemical Physics, 53 (1970), 1126.Google Scholar
Ferrari, A. C. and Robertson, J., Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Physical Review B, 64 (2001), 075414.Google Scholar
Cançado, L. G., Pimenta, M. A., Saito, R., Jorio, A., Ladeira, L. O., Grueneis, A., Souza-Filho, A. G., Dresselhaus, G., and Dresselhaus, M. S., Stokes and anti-Stokes double resonance Raman scattering in two-dimensional graphite, Physical Review B, 66 (2002), 035415.Google Scholar
Cançado, L. G., Jorio, A., Martins Ferreira, E. H., Stavale, F., Achete, C. A., Capaz, R. B., Moutinho, M. V. O., Lombardo, A., Kulmala, T. S., and Ferrari, A. C., Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Letters, 11 (2011), 3190.Google Scholar
Eckmann, A., Felten, A., Mishchenko, A., Britnell, L., Krupke, R., Novoselov, K. S., and Casiraghi, C., Probing the nature of defects in graphene by Raman spectroscopy. Nano Letters, 12 (2012), 3925.Google Scholar
Grüneis, A., Saito, R., Samsonidze, Ge. G., Kimura, T., Pimenta, M. A., Jorio, A., Souza Filho, A. G., Dresselhaus, G., and Dresselhaus, M. S.. Inhomogeneous optical absorption around the K point in graphite and carbon nanotubes. Physical Review B, 67 (2003), 165402.Google Scholar
Cançado, L. G., Pimenta, M. A., Neves, B. R. A., Dantas, M. S., and Jorio, A., Influence of the atomic structure on the Raman spectra of graphite edges. Physical Review Letters, 93 (2004), 247401.Google Scholar
Casiraghi, C., Hartschuh, A., Qian, H., Piscanec, S., Georgi, C., Fasoli, A., Novoselov, K. S., Basko, D. M., and Ferrari, A. C., Raman spectroscopy of graphene edges. Nano Letters, 9 (2009), 1433.Google Scholar
Cançado, L. G., Jorio, A., and Pimenta, M. A., Measuring the absolute Raman cross section of nanographites as a function of laser energy and crystallite size. Physical Review B, 76 (2007), 064304.Google Scholar
Klar, P., Lidorikis, E., Eckmann, A., Verzhbitskiy, I. A., Ferrari, A. C., and Casiraghi, C.. Raman scattering efficiency of graphene, Physical Review B, 87 (2013), 205435.CrossRefGoogle Scholar
Cançado, L. G., Takai, K., Enoki, T., Endo, M., Kim, Y. A., Mizusaki, H., Jorio, A., Coelho, L. N., Magalhães-Paniago, R., and Pimenta, M. A., General equation for the determination of the crystallite size L[a] of nanographite by Raman spectroscopy. Applied Physics Letters, 88 (2006), 163106.Google Scholar
Martins Ferreira, E. H., Moutinho, M. V. O., Stavale, F., Lucchese, M. M., Capaz, R. B., Achete, C. A., and Jorio, A., Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder. Physical Review B, 82 (2010), 125429.Google Scholar
Giro, R., Archanjo, B. S., Martins Ferreira, E. H., Capaz, R. B., Jorio, A., and Achete, C. A.. Quantifying defects in N-layer graphene via a phenomenological model of Raman spectroscopy. Nuclear Instruments and Methods in Physics Research Section B, 319 (2014), 71–4.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×