Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-jxkh9 Total loading time: 0.352 Render date: 2023-02-01T14:10:51.624Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

5 - Further switched systems

from Part I - Theory

Published online by Cambridge University Press:  21 February 2011

Jan Lunze
Affiliation:
Ruhr-Universität, Bochum, Germany
Françoise Lamnabhi-Lagarrigue
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
Get access

Summary

Mixed logical dynamical systems and linear complementarity systems are representations of switched systems, which under the conditions described here are equivalent to the model used in Chapter 4. They are particularly useful for model-predictive control. The equivalences of several hybrid system models show that different models, which are suitable for specific analysis and design problems and have been investigated in detail, cover the same class of hybrid systems. The analysis of the well-posedness of the models leads to conditions on the model equations under which a unique solution exists.

Model-predictive control of hybrid systems

Model-predictive control (MPC) is a widely used technology in industry for control design of highly complex multivariable processes. The idea behind MPC is to start with a model of the open-loop process that explains the dynamical relations among system's variables (command inputs, internal states, and measured outputs). Then, constraint specifications on system variables are added, such as input limitations (typically due to actuator saturation) and desired ranges where states and outputs should remain. Desired performance specifications complete the control problem setup and are expressed through different weights on tracking errors and actuator efforts (as in classical linear quadratic regulation). At each sampling time, an open-loop optimal control problem based on the given model, constraints, weights, and with initial condition set at the current (measured or estimated) state, is repeatedly solved through numerical optimization.

Type
Chapter
Information
Handbook of Hybrid Systems Control
Theory, Tools, Applications
, pp. 139 - 192
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
1
Cited by

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×