Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T15:10:04.163Z Has data issue: false hasContentIssue false

4 - Snow and avalanches

from Part I - Global drivers

Published online by Cambridge University Press:  05 September 2015

Christian Huggel
Affiliation:
Universität Zürich
Mark Carey
Affiliation:
University of Oregon
John J. Clague
Affiliation:
Simon Fraser University, British Columbia
Andreas Kääb
Affiliation:
Universitetet i Oslo
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The High-Mountain Cryosphere
Environmental Changes and Human Risks
, pp. 50 - 70
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barry, R, Thian, YG (2011) The Global Cryosphere. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Beniston, M, Keller, F, Goyette, S (2003) Snow pack in the Swiss Alps under changing climatic conditions: an empirical approach for climate impacts studies. Theoretical and Applied Climatology 74 (1–2):1931CrossRefGoogle Scholar
Callaghan, TV, Johansson, M, Brown, RD, et al. (2011) Changing snow cover and its impacts. In: AMAP (ed.) Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate Change and the Cryosphere. Arctic Monitoring and Assessment Programme, Oslo, pp. 4.14.58.Google Scholar
McClung, D, Schaerer, P (2006) The Avalanche Handbook. The Mountaineers, Seattle.Google Scholar
Keiler, M, Knight, J, Harrison, S (2010) Climate change and geomorphological hazards in the eastern European Alps. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences 368:24612479Google ScholarPubMed
Grünewald, T, Stötter, J, Pomeroy, JW, et al. (2013) Statistical modelling of the snow depth distribution in open alpine terrain. Hydrology and Earth System Sciences 17 (8):30053021CrossRefGoogle Scholar
Stewart, IT (2009) Changes in snowpack and snowmelt runoff for key mountain regions. Hydrological Processes 23 (1):7894CrossRefGoogle Scholar
Viviroli, D, Dürr, HH, Messerli, B, Meybeck, M, Weingartner, R (2007) Mountains of the world, water towers for humanity: typology, mapping, and global significance. Water Resources Research 43 (7):W07447CrossRefGoogle Scholar
Diffenbaugh, NS, Scherer, M, Ashfaq, M (2013) Response of snow-dependent hydrologic extremes to continued global warming. Nature Climate Change 3 (4):379384CrossRefGoogle ScholarPubMed
Grünewald, T, Schirmer, M, Mott, R, Lehning, M (2010) Spatial and temporal variability of snow depth and ablation rates in a small mountain catchment. The Cryosphere 4 (2):215225CrossRefGoogle Scholar
Dedieu, JP, Lessard-Fontaine, A, Ravazzani, G, Cremonese, E, Shalpykova, G, Beniston, M (2014) Shifting mountain snow patterns in a changing climate from remote sensing retrieval. Science of the Total Environment 493:12671279CrossRefGoogle Scholar
de Quervain, MR, de Crécy, L, LaChapelle, ER, Lossev, K, Shoda, M, Nakamura, T (1981) Avalanche Atlas. Illustrated International Avalanche Classification. UNESCO, Paris.Google Scholar
Schweizer, J, Jamieson, B, Schneebeli, M (2003) Snow avalanche formation. Review of Geophysics 41 (4):1016CrossRefGoogle Scholar
Fierz, C, Armstrong, R, Durand, Y, et al. (2009) The International Classification for Seasonal Snow on the Ground. UNESCO, Paris.Google Scholar
Bründl, M, Bartelt, P, Schweizer, J, Keiler, M, Glade, T (2010) Review and future challenges in snow avalanche risk analysis. In: Alcántara-Ayala, I, Goudie, A (eds) Geomorphological Hazards and Disaster Prevention. Cambridge University Press, Cambridge, pp. 4961.CrossRefGoogle Scholar
Christen, M, Bühler, Y, Bartelt, P, et al. (2012) Integral hazard management using a unified software environment: numerical simulation tool ‘RAMMS’ for gravitational natural hazards. In: Koboltschnig, G, Hübl, J, Braun, J (eds) Internationales Symposion Interpraevent. Proceedings Vol. 1. International Research Society Interpraevent, Klagenfurt, pp. 7786.Google Scholar
Mokrov, E, Chernouss, P, Fedorenko, Y, Husebye, E (2000) The influence of seismic effect on avalanche release. In: Proceedings of the 2000 International Snow Science Workshop, October 1–6 , Big Sky, Montana, pp. 338341.Google Scholar
Qiu, J (2014) Avalanche hotspot revealed. Nature 509 (7499):142143CrossRefGoogle ScholarPubMed
Fedorenko, Y, Chernouss, P, Mokrov, E, Husebye, E, Beketova, E (2002) Dynamic avalanche modelling including seismic loading in the Khibiny mountains. In: International Research Society Interpraevent (ed.) Interpraevent 2002 in the Pacific Rim, Matsumoto, 14–18 October 2002. International Research Society Interpraevent, Tokyo, pp. 705714.Google Scholar
Fuchs, S, Keiler, M (2013) Space and time: coupling dimensions in natural hazard risk management? In: Müller-Mahn, D (ed.) The Spatial Dimension of Risk: How Geography Shapes the Emergence of Riskscapes. Earthscan, London, pp. 189201.Google Scholar
Scharr, K, Steinicke, E, Borsdorf, A (2012) Sochi/Сочи 2014: Olympic Winter Games between high mountains and seaside. Revue de Géographie Alpine 100 (4):114.Google Scholar
Sokratov, SA, Seliverstov, YG, Shnyparkov, AL, Koltermann, KP (2013) Antropogennoe vliyanie na lavinnuyu i selevuyu aktivnist’ [Anthropogenic effect on avalanche and debris flow activity]. Lyed i sneg [Ice and Snow] 122 (2):121128.Google Scholar
Stethem, C, Jamieson, B, Schaerer, P, Liverman, D, Germain, D, Walker, S (2003) Snow avalanche hazard in Canada: a review. Natural Hazards 28 (2–3):487515.CrossRefGoogle Scholar
Aubrecht, C, Fuchs, S, Neuhold, C (2013) Spatio-temporal aspects and dimensions in integrated disaster risk management. Natural Hazards 68 (3):12051216.CrossRefGoogle Scholar
Fuchs, S, Kuhlicke, C, Meyer, V (2011) Editorial for the special issue: vulnerability to natural hazards – the challenge of integration. Natural Hazards 58 (2):609619.CrossRefGoogle Scholar
Holub, M, Fuchs, S (2009) Mitigating mountain hazards in Austria: legislation, risk transfer, and awareness building. Natural Hazards and Earth System Sciences 9 (2):523537.CrossRefGoogle Scholar
Holub, M, Suda, J, Fuchs, S (2012) Mountain hazards: reducing vulnerability by adapted building design. Environmental Earth Sciences 66 (7):18531870.CrossRefGoogle Scholar
Zischg, A, Fuchs, S, Keiler, M, Stötter, J (2005) Temporal variability of damage potential on roads as a conceptual contribution towards a short-term avalanche risk simulation. Natural Hazards and Earth System Sciences 5 (2):235242.CrossRefGoogle Scholar
Keiler, M, Sailer, R, Jörg, P, et al. (2006) Avalanche risk assessment: a multi-temporal approach, results from Galtür, Austria. Natural Hazards and Earth System Sciences 6 (4):637651.CrossRefGoogle Scholar
Stocker, TF, Qin, D, Plattner, G-K, et al. (eds) (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.Google Scholar
Hidalgo, HG, Das, T, Dettinger, MD, et al. (2009) Detection and attribution of streamflow timing changes to climate change in the Western United States. Journal of Climate 22 (13):38383855.CrossRefGoogle Scholar
Seneviratne, SI, Nicholls, N, Easterling, D, et al. (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Field, CB, Barros, V, Stocker, TF, et al. (eds) Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 109230.CrossRefGoogle Scholar
Støren, EN, Paasche, Ø (2014) Scandinavian floods: from past observations to future trends. Global and Planetary Change 113:3443.CrossRefGoogle Scholar
Glazovskaya, TG (1998) Global distribution of snow avalanches and changing activity in the Northern Hemisphere due to climate change. Annals of Glaciology 26:337342.CrossRefGoogle Scholar
Auer, I, Böhm, R, Jurkovic, A, et al. (2007) HISTALP: historical instrumental climatological surface time series of the Greater Alpine Region. International Journal of Climatology 27 (1):1746.CrossRefGoogle Scholar
Eckert, N, Baya, H, Deschatres, M (2010) Assessing the response of snow avalanche runout altitudes to climate fluctuations using hierarchical modeling: application to 61 winters of data in France. Journal of Climate 23 (12):31573180.CrossRefGoogle Scholar
Sharma, SS, Ganju, A (2000) Complexities of avalanche forecasting in Western Himalaya: an overview. Cold Regions Science and Technology 31 (2):95102.CrossRefGoogle Scholar
Haegeli, P, McClung, DM (2007) Expanding the snow-climate classification with avalanche-relevant information: initial description of avalanche winter regimes for southwestern Canada. Journal of Glaciology 53 (181):266276.CrossRefGoogle Scholar
Germain, D, Filion, L, Hétu, B (2009) Snow avalanche regime and climatic conditions in the Chic-Choc Range, eastern Canada. Climatic Change 92 (1–2):141167CrossRefGoogle Scholar
Laternser, M, Pfister, C (1997) Avalanches in Switzerland 1500–1990. In: Matthews, JA, Brunsden, D, Frenzel, B, Gläser, B, Weiß, MM (eds) Rapid Mass Movements as a Source of Climate Evidence for the Holocene. Gustav Fischer Verlag, Stuttgart, pp. 241266.Google Scholar
Laternser, M, Schneebeli, M (2002) Temporal trend and spatial distribution of avalanche activity during the last 50 years in Switzerland. Natural Hazards 27 (3):201230CrossRefGoogle Scholar
Baggi, S, Schweizer, J (2009) Characteristics of wet-snow avalanche activity: 20 years of observations from a high alpine valley (Dischma, Switzerland). Natural Hazards 50 (1):97108.CrossRefGoogle Scholar
Lazar, B, Williams, M (2008) Climate change in western ski areas: potential changes in the timing of wet avalanches and snow quality for the Aspen ski area in the years 2030 and 2100. Cold Regions Science and Technology 51 (2–3):219228.CrossRefGoogle Scholar
Messerli, B (2012) Global change and the world's mountains. Mountain Research and Development 32 (S1):S55S63.CrossRefGoogle Scholar
Löffler, R, Steinicke, E (2006) Counterurbanization and its socioeconomic effects in high mountain areas of the Sierra Nevada (California/Nevada). Mountain Research and Development 26 (1):6471.CrossRefGoogle Scholar
Kaltenborn, BP, Andersen, O, Nellemann, C (2009) Amenity development in the Norwegian mountains: effects of second home owner environmental attitudes on preferences for alternative development options. Landscape and Urban Planning 91 (4):195201.CrossRefGoogle Scholar
Slaymaker, O, Embleton-Hamann, C (2009) Mountains. In: Slaymaker, O, Spencer, T, Embleton-Hamann, C (eds) Geomorphology and Global Environmental Change. Cambridge University Press, Cambridge, pp. 3770.CrossRefGoogle Scholar
Bätzing, W (2002) Die aktuellen Veränderungen von Umwelt, Wirtschaft, Gesellschaft und Bevölkerung in den Alpen. Im Auftrag des Umweltbundesamtes, gefördert durch das Bundesministerium für Umwelt,Naturschutz und Reaktorsicherheit, vol. P26. Umweltbundesamt, Berlin.Google Scholar
Steiger, R (2012) Scenarios for skiing tourism in Austria: integrating demographics with an analysis of climate change. Journal of Sustainable Tourism 20 (6):867882CrossRefGoogle Scholar
Gonseth, C (2013) Impact of snow variability on the Swiss winter tourism sector: implications in an era of climate change. Climatic Change 119 (2):307320.CrossRefGoogle Scholar
Agrawala, S (ed.) (2007) Climate Change in the European Alps: Adapting Winter Tourism and Natural Hazards Management. OECD, Paris.Google Scholar
de Jong, C (2012) Zum Management der Biodiversität von Tourismus-und Wintersportgebieten in einer Ära des globalen Wandels. Jahrbuch des Vereins zum Schutz der Bergwelt 2011/2012 (76/77):131168.Google Scholar
Olefs, M, Fischer, A, Lang, J (2010) Boundary conditions for artificial snow production in the Austrian Alps. Journal of Applied Meteorology and Climatology 49 (6):10961113.CrossRefGoogle Scholar
Kristensen, K, Habritz, C, Harbitz, A (2003) Road traffic and avalanches: methods for risk evaluation and risk management. Surveys in Geophysics 24 (5–6):603616.CrossRefGoogle Scholar
Hendrikx, J, Owens, I (2008) Modified avalanche risk equations to account for waiting traffic on avalanche prone roads. Cold Regions Science and Technology 51 (2–3):214218.CrossRefGoogle Scholar
Margreth, S, Stoffel, L, Wilhelm, C (2003) Winter opening of high alpine pass roads: analysis and case studies from the Swiss Alps. Cold Regions Science and Technology 37 (3):467482.CrossRefGoogle Scholar
Rheinberger, C, Bründl, M, Rhyner, J (2009) Dealing with the White Death: avalanche risk management for traffic routes. Risk Analysis 29 (1):7694.CrossRefGoogle ScholarPubMed
Bründl, M, Etter-J, H, Steiniger, M, Klingler, C, Rhyner, J, Ammann, W (2004) IFKIS: a basis for managing avalanche risk in settlements and on roads in Switzerland. Natural Hazards and Earth System Sciences 4 (2):257262.CrossRefGoogle Scholar
Fuchs, S, Keiler, M, Sokratov, SA, Shnyparkov, A (2013) Spatiotemporal dynamics: the need for an innovative approach in mountain hazard risk management. Natural Hazards 68 (3):12171241.CrossRefGoogle Scholar
Castella, J-C, Verburg, PH (2007) Combination of process-oriented and pattern-oriented models of land-use change in a mountain area of Vietnam. Ecological Modelling 202 (3–4):410420.CrossRefGoogle Scholar
Martin, B, Giacona, F (2009) Analyse géohistorique du risque d'avalanche dans le massif des Vosges. Houille Blanche 2009 (2):94101CrossRefGoogle Scholar
Cammerer, H, Thieken, AH, Verburg, PH (2013) Spatio-temporal dynamics in the flood exposure due to land use changes in the Alpine Lech Valley in Tyrol (Austria). Natural Hazards 68 (3):12431270.CrossRefGoogle Scholar
Culbertson, K, Turner, D, Kolberg, J (1993) Toward a definition of sustainable development in the Yampa Valley of Colorado. Mountain Research and Development 13 (4):359369.CrossRefGoogle Scholar
Riebsame, WE, Gosnell, H, Theobald, DM (1996) Land use and landscape change in the Colorado mountains I: theory, scale, and pattern. Mountain Research and Development 16 (4):395405.CrossRefGoogle Scholar
Hufschmidt, G, Crozier, M, Glade, T (2005) Evolution of natural risk: research framework and perspectives. Natural Hazards and Earth System Sciences 5 (3):375387.CrossRefGoogle Scholar
Kappes, M, Keiler, M, von Elverfeldt, K, Glade, T (2012) Challenges of analyzing multi-hazard risk: a review. Natural Hazards 64 (2):19251958.CrossRefGoogle Scholar
Keiler, M (2004) Development of the damage potential resulting from avalanche risk in the period 1950–2000, case study Galtür. Natural Hazards and Earth System Sciences 4 (2):249256.CrossRefGoogle Scholar
Fuchs, S, Keiler, M (2008) Variability of natural hazard risk in the European Alps: evidence from damage potential exposed to snow avalanches. In: Pinkowski, J (ed.) Disaster Management Handbook. CRC Press and Taylor & Francis, Boca Raton, FL and London, pp. 267279.Google Scholar
Schneebeli, M, Laternser, M, Ammann, W (1997) Destructive snow avalanches and climate change in the Swiss Alps. Eclogae Geologicae Helvetiae 90 (3):457461Google Scholar
Schneebeli, M, Laternser, M, Föhn, P, Ammann, W (1998) Wechselwirkungen zwischen Klima, Lawinen und technischen Massnahmen. vdf Hochschulverlag an der ETH, ZürichGoogle Scholar
Fuchs, S, Bründl, M (2005) Damage potential and losses resulting from snow avalanches in settlements of the canton of Grisons, Switzerland. Natural Hazards 34 (1):5369.CrossRefGoogle Scholar
Luzian, R (2002) Die österreichische Schadenslawinen-Datenbank. Forschungsanliegen – Aufbau – erste Ergebnisse. Mitteilungen der forstlichen Bundesversuchsanstalt Wien 175. Forstliche Bundesversuchsanstalt, Wien.Google Scholar
Fuchs, S (2013) Vulnerability landscape Austria. Wildbach-und Lawinenverbau 172:154165.Google Scholar
Keiler, M, Kellerer-Pirklbauer, A, Otto, J-C (2012) Concepts and implications of environmental change and human impact: studies from Austrian geomorphological research. Geografiska Annaler Series A, Physical Geography 94 (1):15CrossRefGoogle Scholar
Campbell, C, Bakermans, L, Jamieson, B, Stethem, C (eds) (2007) Current and Future Snow Avalanche Threats and Mitigation Measures in Canada. Canadian Avalanche Centre, Revelstoke, BC.Google Scholar
Gardner, J, Dekens, J (2007) Mountain hazards and the resilience of social–ecological systems: lessons learned in India and Canada. Natural Hazards 41 (2):317336.CrossRefGoogle Scholar
Sharma, U, Scolobig, A, Patt, A (2012) The effects of decentralization on the production and use of risk assessment: insights from landslide management in India and Italy. Natural Hazards 64 (2):13571371.CrossRefGoogle Scholar
Shnyparkov, AL, Fuchs, S, Sokratov, SA, Koltermann, KP, Seliverstov, YG, Vikulina, MA (2012) Theory and practice of individual snow avalanche risk assessment in the Russian arctic. Geography, Environment, Sustainability 5 (3):6481.CrossRefGoogle Scholar
Keiler, M, Zischg, A, Fuchs, S, Hama, M, Stötter, J (2005) Avalanche related damage potential: changes of persons and mobile values since the mid-twentieth century, case study Galtür. Natural Hazards and Earth System Sciences 5 (1):4958.CrossRefGoogle Scholar
Fuchs, S, Thöni, M, McAlpin, MC, Gruber, U, Bründl, M (2007) Avalanche hazard mitigation strategies assessed by cost effectiveness analyses and cost benefit analyses: evidence from Davos, Switzerland. Natural Hazards 41 (1):113129.CrossRefGoogle Scholar
Vikulina, MA, Shnyparkov, AL (2006) K voprosu o terminologii i pokazatelyakh lavinnoi deyatel'nosti [To the question on terminology and characteristics of the avalanche actions]. In Proceedings of the III international conference ‘Avalanches and related subjects’, Kirovsk, Russia, September 4–8, 2006 [Trudy III Mezhdunarodnaya konferentsiya “Laviny i smezhnye voprosy”, Kirovsk, 4–8 sentyabrya 2006]. Apatit-media, Kirovsk.Google Scholar
Fuchs, S, Zischg, A (2013) Vulnerabilitätslandkarte Österreich. Universität für Bodenkultur, Institut für alpine Naturgefahren, Wien.Google Scholar
Fuchs, S, Keiler, M, Zischg, A, Bründl, M (2005) The long-term development of avalanche risk in settlements considering the temporal variability of damage potential. Natural Hazards and Earth System Sciences 5 (6):893901.CrossRefGoogle Scholar
Berke, P, Smith, G (2009) Hazard mitigation, planning, and disaster resiliency: challenges and strategic choices for the 21st century. In: Fra Paleo, U (ed.) Building Safer Communities: Risk Governance, Spatial Planning and Responses to Natural Hazards. IOS Press, Amsterdam, pp. 120.Google Scholar
Böhm, R (2009) Klimarekonstruktion der instrumentellen Periode – Probleme und Lösungen für den Großraum Alpen. In: Schmidt, R, Matulla, C, Psenner, R (eds) Klimawandel in Österreich. Innsbruck Univerity Press, Innsbruck, pp. 145164.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×