Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-28T21:47:37.956Z Has data issue: false hasContentIssue false

Part I - Global drivers

Published online by Cambridge University Press:  05 September 2015

Christian Huggel
Affiliation:
Universität Zürich
Mark Carey
Affiliation:
University of Oregon
John J. Clague
Affiliation:
Simon Fraser University, British Columbia
Andreas Kääb
Affiliation:
Universitetet i Oslo
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The High-Mountain Cryosphere
Environmental Changes and Human Risks
, pp. 7 - 106
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Nesje, A, Bakke, J, Dahl, SO, Lie, Ø, Matthews, JA. Norwegian mountain glaciers in the past, present and future. Global and Planetary Change 2008;60(1):1027.CrossRefGoogle Scholar
Hurrell, JW. Decadal trends in the North Atlantic Oscillation. Science 1995;269:676679.CrossRefGoogle ScholarPubMed
Imhof, P, Nesje, A, Nussbaumer, SU. Climate and glacier fluctuations at Jostedalsbreen and Folgefonna, southwestern Norway and in the western Alps from the ‘Little Ice Age’ until the present: the influence of the North Atlantic Oscillation. The Holocene 2012;22(2):235247.CrossRefGoogle Scholar
López-Moreno, J, Vicente-Serrano, S, Morán-Tejeda, E, Lorenzo-Lacruz, J, Kenawy, A, Beniston, M. Effects of the North Atlantic Oscillation (NAO) on combined temperature and precipitation winter modes in the Mediterranean mountains: observed relationships and projections for the 21st century. Global and Planetary Change 2011;77(1):6276.CrossRefGoogle Scholar
Scherrer, SC, Appenzeller, C. Swiss Alpine snow pack variability: major patterns and links to local climate and large-scale flow. Climate Research 2006;32(3):187199.CrossRefGoogle Scholar
IPCC. Annex I: atlas of global and regional climate projections. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, TF, Qin, D, Plattner, G-K, Tignor, M, Allen, SK, Boschung, J, Nauels, A, Xia, Y, Bex, V and Midgley, PM (eds). Cambridge and New York: Cambridge University Press; 2013.Google Scholar
Jylhä, K, Tuomenvirta, H, Ruosteenoja, K. Climate change projections for Finland during the 21st century. Boreal Environment Research 2004;9(2):127152.Google Scholar
Nesje, A, Jansen, E, Birks, HJB, Bjune, AE, Bakke, J, Andersson, C, et al. Holocene climate variability in the northern North Atlantic region: a review of terrestrial and marine evidence. Geophysical Monograph Series 2005;158:289322.Google Scholar
Nesje, A, Lie, Ø, Dahl, SO. Is the North Atlantic Oscillation reflected in Scandinavian glacier mass balance records? Journal of Quaternary Science 2000;15(6):587601.3.0.CO;2-2>CrossRefGoogle Scholar
Laternser, M, Schneebeli, M. Long-term snow climate trends of the Swiss Alps (1931–99). International Journal of Climatology 2003;23(7):733750.CrossRefGoogle Scholar
Beniston, M. Variations of snow depth and duration in the Swiss Alps over the last 50 years: links to changes in large-scale climatic forcings. Climatic Change. 1997;36(3–4):281300.CrossRefGoogle Scholar
Cayan, DR. Interannual climate variability and snowpack in the western United States. Journal of Climate 1996;9(5):928948.2.0.CO;2>CrossRefGoogle Scholar
Bitz, C, Battisti, D. Interannual to decadal variability in climate and the glacier mass balance in Washington, western Canada, and Alaska. Journal of Climate 1999;12(11):31813196.2.0.CO;2>CrossRefGoogle Scholar
Moore, RD, McKendry, IG. Spring snowpack anomaly patterns and winter climatic variability, British Columbia, Canada. Water Resources Research 1996;32(3):623632.CrossRefGoogle Scholar
Alexander, MA. Extratropical air–sea interaction, SST variability, and the Pacific decadal oscillation (PDO). In: Climate Dynamics: Why Does Climate Vary, Sun, D, Bryan, F (eds). Washington, DC: American Geophysical Union; 2010. pp. 123148.CrossRefGoogle Scholar
Newman, M, Compo, GP, Alexander, MA. ENSO-forced variability of the Pacific Decadal Oscillation. Journal of Climate 2003;16(23):38533857.2.0.CO;2>CrossRefGoogle Scholar
Flato, G, Marotzke, J, Abiodun, B, Braconnot, P, Chou, S, Collins, W, et al. Evaluation of climate models. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, TF, Qin, D, Plattner, GK, Tignor, M, Allen, SK, Boschung, J, Nauels, A, Xia, Y, Bex, V, Midgley, PM (eds). Cambridge and New York: Cambridge University Press; 2013.Google Scholar
Hunter, T, Tootle, G, Piechota, T. Oceanic–atmospheric variability and western U.S. snowfall. Geophysical Research Letters 2006;33:L13706.CrossRefGoogle Scholar
Nowak, K, Hoerling, M, Rajagopalan, B, Zagona, E. Colorado river basin hydroclimatic variability. Journal of Climate 2012;25(12):43894403.CrossRefGoogle Scholar
Schubert, S, Gutzler, D, Wang, H, Dai, A, Delworth, T, Deser, C, et al. A US CLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing patterns: overview and results. Journal of Climate 2009;22(19):52515272.CrossRefGoogle Scholar
McCabe, GJ, Dettinger, MD. Primary modes and predictability of year-to-year snowpack variations in the western United States from teleconnections with Pacific Ocean climate. Journal of Hydrometeorology 2002;3(1):1325.2.0.CO;2>CrossRefGoogle Scholar
Mantua, NJ, Hare, SR. The Pacific decadal oscillation. Journal of Oceanography. 2002;58(1):3544.CrossRefGoogle Scholar
Timilsena, J, Piechota, T, Tootle, G, Singh, A. Associations of interdecadal/interannual climate variability and long-term Colorado River basin streamflow. Journal of Hydrology 2009;365(3–4):289301.CrossRefGoogle Scholar
Zhang, R, Delworth, TL, Held, IM. Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature? Geophysical Research Letters 2007;34:L02709.Google Scholar
Aizen, V, Aizen, E, Melack, J, Martma, T. Isotopic measurements of precipitation on central Asian glaciers (southeastern Tibet, northern Himalayas, central Tien Shan). Journal of Geophysical Research: Atmospheres (1984–2012) 1996;101(D4):91859196.CrossRefGoogle Scholar
Oberhänsli, H, Novotná, K, Píšková, A, Chabrillat, S, Nourgaliev, DK, Kurbaniyazov, AK, et al. Variability in precipitation, temperature and river runoff in W Central Asia during the past ~2000yrs. Global and Planetary Change 2011;76(1):95104.CrossRefGoogle Scholar
Dimri, A. Sub-seasonal interannual variability associated with the excess and deficit Indian winter monsoon over the Western Himalayas. Climate Dynamics 2013:113.Google Scholar
Torrence, C, Webster, PJ. The annual cycle of persistence in the El Nño/Southern Oscillation. Quarterly Journal of the Royal Meteorological Society. 1998;124(550):19852004.Google Scholar
Webster, PJ. The annual cycle and the predictability of the tropical coupled ocean–atmosphere system. Meteorology and Atmospheric Physics 1995;56(1–2):3355.CrossRefGoogle Scholar
Kumar, KK, Rajagopalan, B, Hoerling, M, Bates, G, Cane, M. Unraveling the mystery of Indian monsoon failure during El Niño. Science 2006;314(5796):115119.CrossRefGoogle ScholarPubMed
Paeth, H, Scholten, A, Friederichs, P, Hense, A. Uncertainties in climate change prediction: El Niño–Southern Oscillation and monsoons. Global and Planetary Change 2008;60(3):265288.CrossRefGoogle Scholar
Ramanathan, V, Carmichael, G. Global and regional climate changes due to black carbon. Nature Geoscience 2008;1(4):221227.CrossRefGoogle Scholar
Lau, K, Kim, M, Kim, K. Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Climate Dynamics 2006;26(7–8):855864.CrossRefGoogle Scholar
Xu, B, Cao, J, Hansen, J, Yao, T, Joswia, DR, Wang, N, et al. Black soot and the survival of Tibetan glaciers. Proceedings of the National Academy of Sciences 2009;106(52):2211422118.CrossRefGoogle ScholarPubMed
Braun, C, Bezada, M. The history and disappearance of glaciers in Venezuela. Journal of Latin American Geography 2013;12(2):85124.CrossRefGoogle Scholar
Garreaud, R, Vuille, M, Clement, AC. The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeography, Palaeoclimatology, Palaeoecology 2003;194(1):522.CrossRefGoogle Scholar
Francou, B, Vuille, M, Favier, V, Cáceres, B. New evidence for an ENSO impact on low-latitude glaciers: Antizana 15, Andes of Ecuador, 0 28′ S. Journal of Geophysical Research: Atmospheres (1984–2012) 2004;109:D18106.CrossRefGoogle Scholar
Vuille, M, Kaser, G, Juen, I. Glacier mass balance variability in the Cordillera Blanca, Peru and its relationship with climate and the large-scale circulation. Global and Planetary Change 2008;62(1):1428.CrossRefGoogle Scholar
Garreaud, R, Aceituno, P. Interannual rainfall variability over the South American Altiplano. Journal of Climate. 2001;14(12):27792789.2.0.CO;2>CrossRefGoogle Scholar
Vuille, M, Bradley, RS, Keimig, F. Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing. Journal of Geophysical Research: Atmospheres (1984–2012) 2000;105(D10):1244712460.CrossRefGoogle Scholar
Wagnon, P, Ribstein, P, Francou, B, Sicart, J-E. Anomalous heat and mass budget of Glaciar Zongo, Bolivia, during the 1997/98 El Niño year. Journal of Glaciology 2001;47(156):2128.CrossRefGoogle Scholar
Kayano, MT, Capistrano, VB. How the Atlantic multidecadal oscillation (AMO) modifies the ENSO influence on the South American rainfall. International Journal of Climatology 2014;34(1):162178.CrossRefGoogle Scholar
Chiessi, CM, Mulitza, S, Pätzold, J, Wefer, G, Marengo, JA. Possible impact of the Atlantic Multidecadal Oscillation on the South American summer monsoon. Geophysical Research Letters 2009;36(21). DOI: 10.1029/2009GL039914CrossRefGoogle Scholar
Garreaud, RD, Vuille, M, Compagnucci, R, Marengo, J. Present-day South American climate. Palaeogeography, Palaeoclimatology, Palaeoecology. 2009;281(3):180195.CrossRefGoogle Scholar
Vuille, M, Francou, B, Wagnon, P, Juen, I, Kaser, G, Mark, BG, et al. Climate change and tropical Andean glaciers: past, present and future. Earth-Science Reviews 2008;89(3):7996.CrossRefGoogle Scholar
Vuille, M, Bradley, RS, Werner, M, Keimig, F. 20th century climate change in the tropical Andes: Observations and model results. Climatic Change 2003;59(1–2):7599.CrossRefGoogle Scholar
Rabatel, A, Francou, B, Soruco, A, Gomez, J, Cáceres, B, Ceballos, J, et al. Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 2013;7(1):81102.CrossRefGoogle Scholar
Soruco, A, Vincent, C, Francou, B, Gonzalez, JF. Glacier decline between 1963 and 2006 in the Cordillera Real, Bolivia. Geophysical Research Letters. 2009;36:L03502.CrossRefGoogle Scholar
Ramirez, E, Francou, B, Ribstein, P, Descloitres, M, Guerin, R, Mendoza, J, et al. Small glaciers disappearing in the tropical Andes: a case-study in Bolivia – Glaciar Chacaltaya (16 S). Journal of Glaciology 2001;47(157):187194.CrossRefGoogle Scholar
Cooley, WD. Letter to the editor (on Kilimanjaro). Athenaeum. 1849;1125:516517.Google Scholar
Røhr, PC, Killingtveit, Å. Rainfall distribution on the slopes of Mt. Kilimanjaro. Hydrological Sciences Journal 2003;48(1):6577.CrossRefGoogle Scholar
Thompson, LG, Mosley-Thompson, E, Davis, ME, Henderson, KA, Brecher, HH, Zagorodnov, VS, et al. Kilimanjaro ice core records: evidence of Holocene climate change in tropical Africa. Science 2002;298(5593):589593.CrossRefGoogle ScholarPubMed
Cullen, N, Sirguey, P, Mölg, T, Kaser, G, Winkler, M, Fitzsimons, S. A century of ice retreat on Kilimanjaro: the mapping reloaded. Cryosphere 2013;7(2):419431.CrossRefGoogle Scholar
Oerlemans, J. Glaciers and Climate Change. Lisse , PA: A.A. Balkema Publishers; 2001.Google Scholar
Mölg, T, Chiang, JC, Gohm, A, Cullen, NJ. Temporal precipitation variability versus altitude on a tropical high mountain: observations and mesoscale atmospheric modelling. Quarterly Journal of the Royal Meteorological Society. 2009;135(643):14391455.CrossRefGoogle Scholar
Mölg, T, Renold, M, Vuille, M, Cullen, NJ, Stocker, TF, Kaser, G. Indian Ocean zonal mode activity in a multicentury integration of a coupled AOGCM consistent with climate proxy data. Geophysical Research Letters 2006;33:L18710.CrossRefGoogle Scholar
Kaser, G, Mölg, T, Cullen, NJ, Hardy, DR, Winkler, M. Is the decline of ice on Kilimanjaro unprecedented in the Holocene? The Holocene 2010;20(7):10791091.CrossRefGoogle Scholar
Latif, M, Dommenget, D, Dima, M, Grötzner, A. The role of Indian Ocean sea surface temperature in forcing east African rainfall anomalies during December–January 1997/98. Journal of Climate 1999;12(12):34973504.2.0.CO;2>CrossRefGoogle Scholar
Fairman, JG, Nair, US, Christopher, SA, Mölg, T. Land use change impacts on regional climate over Kilimanjaro. Journal of Geophysical Research: Atmospheres (1984–2012) 2011;116:D03110.CrossRefGoogle Scholar
Pepin, N, Duane, W, Hardy, D. The montane circulation on Kilimanjaro, Tanzania and its relevance for the summit ice fields: comparison of surface mountain climate with equivalent reanalysis parameters. Global and Planetary Change 2010;74(2):6175.CrossRefGoogle Scholar
Cai, W, Borlace, S, Lengaigne, M, van Rensch, P, Collins, M, Vecchi, G, et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change 2014;4:111116.CrossRefGoogle Scholar
Hawkins, E, Sutton, R. Time of emergence of climate signals. Geophysical Research Letters 2012;39(1). DOI: 10.1029/2011GL050087CrossRefGoogle Scholar
Francis, JA, Vavrus, SJ. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophysical Research Letters 2012;39:L06801.CrossRefGoogle Scholar

References

IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, TF, Qin, D, Plattner, G-K, Tignor, M, Allen, SK, Boschung, J, Nauels, A, Xia, Y, Bex, V and Midgley, PM (eds). Cambridge and New York: Cambridge University Press; 2013Google Scholar
Serquet, G, Marty, C, Rebetez, M, Monthly trends and the corresponding altitudinal shift in the snowfall/precipitation day ratio. Theoretical and Applied Climatology, 114:3–4 (2013), 437444. doi: 10.1007/s00704-013-0847-7.CrossRefGoogle Scholar
Ceppi, P, Scherrer, SC, Fischer, AM, Appenzeller, C, Revisiting Swiss temperature trends 1959–2008. International Journal of Climatology, 32 (2012), 203213. doi:10.1002/joc.2260CrossRefGoogle Scholar
Begert, M, Schlegel, T, Kirchhofer, W, Homogeneous temperature and precipitation series of Switzerland from 1864 to 2000. International Journal of Climatology, 25 (2005), 6580. doi:10.1002/joc.1118CrossRefGoogle Scholar
Rolland, C, Spatial and seasonal variations of air temperature lapse rates in Alpine regions. Journal of Climate 16 (2003), 10321046.2.0.CO;2>CrossRefGoogle Scholar
Kunz, H, Scherrer, SC, Liniger, MA, Appenzeller, C, The evolution of era-40 surface temperatures and total ozone compared to observed Swiss time series. Meteorologische Zeitschrift, 16:2 (2007), 171181. doi:10.1127/0941-2948/2007/0183.CrossRefGoogle Scholar
Frei, C, Interpolation of temperature in a mountainous region using nonlinear profiles and non-Euclidean distances. International Journal of Climatology, 34 (2013), 15851605. doi: 10.1002/joc.3786.CrossRefGoogle Scholar
Scherrer, SC and Appenzeller, C, Fog and low stratus over the Swiss Plateau: a climatological study. International Journal of Climatology, 34 (2013), 678686. doi: 10.1002/joc.3714.CrossRefGoogle Scholar
Scherrer, SC, Die grössten Temperatursprünge im automatischen Messnetz der MeteoSchweiz, Fachbericht MeteoSchweiz, 248 (2014), 142 (in German).Google Scholar
Oke, TR, Boundary Layer Climates, 2nd edn. London: Methuen; 1987.Google Scholar
Hughes, PD, Response of a Montenegro glacier to extreme summer heatwaves in 2003 and 2007. Geografiska Annaler, 90 :4 (2008), 259267.CrossRefGoogle Scholar
Paul, F, Machguth, H, Kääb, A, On the impact of glacier albedo under conditions of extreme glacier melt: the summer of 2003 in the Alps. EARSeL eProceedings, 4 (2005), 139149.Google Scholar
Allen, SK, Huggel, C, Extremely warm temperatures as a potential cause of recent high mountain rockfall. Global and Planetary Change, 107 (2013), 5969.CrossRefGoogle Scholar
Gruber, S, Hoelzle, M, Haeberli, W, Permafrost thaw and destabilization of Alpine rock walls in the hot summer of 2003. Geophysical Research Letters, 31 (2004), L13504.CrossRefGoogle Scholar
Zappa, M, Kan, C, Extreme heat and runoff extremes in the Swiss Alps. Natural Hazards and Earth System Sciences, 7 (2007), 375389.CrossRefGoogle Scholar
Zhang, X, Alexander, L, Hegerl, GC, Jones, P, Klein Tank, A, Peterson, TC, Trewin, B, Zwiers, FW, Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdisplinary Reviews: Climate Change, 2 (6) (2011), 851870. doi: 10.1002/wcc.147Google Scholar
Orlowsky, B, Seneviratne, SI, Global changes in extremes events: regional and seasonal dimension. Climatic Change, 110 (3–4) (2012), 669696.CrossRefGoogle Scholar
Perkins, SE, Alexander, LV, Nairn, JR, Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophysical Research Letters, 39 (2012), L20714.CrossRefGoogle Scholar
Della-Marta, PM, Haylock, MR, Luterbacher, J, Wanner, H, Doubled length of western European summer heat waves since 1880. Journal of Geophysical Research: Atmospheres, 112 (2007), D15103.CrossRefGoogle Scholar
Beniston, M, Decadal-scale changes in the tails of probability distribution functions of climate variables in Switzerland. International Journal of Climatology, 29 (10) (2009), 13621368.CrossRefGoogle Scholar
Beniston, M and Stephenson, DB, Extreme climatic events and their evolution under changing climatic conditions. Global and Planetary Change, 44:1–4 (2004), 19.CrossRefGoogle Scholar
Appenzeller, C, Begert, M, Zenklusen, E, Scherrer, SC, Monitoring climate at Jungfaujoch in the high Swiss Alpine region. Science of the Total Environment, 391 (2008), 262268.CrossRefGoogle ScholarPubMed
Klein Tank, AMG, Können, GP, Selten, FM, Signals of anthropogenic influence on European warming as seen in the trend patterns of daily temperature variance. International Journal of Climatology, 25 (2005), 116.CrossRefGoogle Scholar
Luterbacher, J, Dietrich, T, Xoplaki, E, Grosjean, M, Wanner, H, European seasonal and annual temperature variability, trends, and extremes since 1500. Science, 303 (2004), 14991503.CrossRefGoogle ScholarPubMed
Zemp, M, Frauenfelder, R, Haeberli, W, Hoelzle, M, Worldwide glacier mass balance measurements: general trends and first results of the extraordinary year 2003 in Central Europe. In: Russian Academy of Sciences (ed.), XIII Glaciological Symposium, Shrinkage of the Glaciosphere: Facts and Analysis. Data of Glaciological Studies [Materialy Glyatsiologicheskikh Issledovaniy], vol. 99, pp. 312. St. Petersburg; 2005.Google Scholar
Daly, C, Guidelines for assessing the suitability of spatial climate data sets. International Journal of Climatology, 26 (2006), 707721. doi:10.1002/joc.1322.CrossRefGoogle Scholar
Frei, C, Schär, C, A precipitation climatology of the Alps from high-resolution rain-gauge observations. International Journal of Climatology, 18 (1998), 873900.3.0.CO;2-9>CrossRefGoogle Scholar
Barry, RG, Mountain Weather and Climate. 3rd edition, Cambridge: Cambridge University Press; 2008.CrossRefGoogle Scholar
Schwarb, M, Daly, C, Frei, C, Schär, C, Mean annual/seasonal precipitation throughout the European Alps, 1971–1990. In Hydrological Atlas of Switzerland, Plate 2.6 & 2.7. Switzerland: University of Berne; 2001. www.hades.unibe.ch/enGoogle Scholar
Barros, AP, Joshi, M, Putkonen, J, Burbank, DW, A study of the 1999 monsoon rainfall in a mountainous region in central Nepal using TRMM products and rain gauge observations. Geophysical Research Letters, 27 (2000), 36833686. doi: 10.1029/2000GL011827.CrossRefGoogle Scholar
Anders, AM, Roe, GH, Durran, DR, Montgomery, DR, Hallet, B, Precipitation and the form of mountain ranges. Bulletin of the American Meteorological Society, 85 (2004), 498499.Google Scholar
New, M, Hulme, M, Jones, P, Representing twentieth-century space-time climate variability. Part I: development of a 1961–1990 mean monthly terrestrial climatology. Journal of Climate, 12 (1999), 829856.2.0.CO;2>CrossRefGoogle Scholar
Wüest, M, Frei, C, Altenhoff, A, Hagen, M, Litschi, M, Schär, C, A gridded hourly precipitation dataset for Switzerland using rain-gauge analysis and radar-based disaggregation. International Journal of Climatology, 30 (2010), 17641775. doi: 10.1002/joc.2025CrossRefGoogle Scholar
Tapiador, FJ, Turk, FJ, Petersen, W, et al., Global precipitation measurement: methods, datasets and applications. Atmospheric Research, 104–105 (2012), 7097.CrossRefGoogle Scholar
Sevruk, B, Ondrás, M, Chvílac, B, The WMO precipitation measurement intercomparison. Atmospheric Research, 92 (3) (2009), 376380.CrossRefGoogle Scholar
Kotlarski, S, Keuler, K, Christensen, OB, Colette, A, Déqué, M, Gobiet, A, Wulfmeyer, V, Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geoscientific Model Development Discussions, 7 (1) (2014), 217293. doi:10.5194/gmdd-7-217-2014.Google Scholar
Rotach, M, Appenzeller, C, Albisser, PE, Starkniederschlagsereignis August 2005, Arbeitsberichte 211, MeteoSchweiz (2006), Zürich, Switzerland (in German).Google Scholar
Beniston, M, August 2005 intense rainfall event in Switzerland: not necessarily an analog for strong convective events in a greenhouse climate. Geophysical Research Letters, 33 (2006), L05701. doi:10.1029/2005GL025573.CrossRefGoogle Scholar
Kalnay, E, Kanamitsu, M, Kistler, R, et al., The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77 (1996), 437471.2.0.CO;2>CrossRefGoogle Scholar
Rienecker, MM, Suarez, MJ, Gelaro, R, et al., MERRA: NASA's modern-era retrospective analysis for research and applications. Journal of Climate, 24 (2011), 36243648.CrossRefGoogle Scholar
Adler, RF, Huffman, GJ, Chang, A, et al., The Version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). Journal of Hydrometeorology, 4 (2003), 11471167.2.0.CO;2>CrossRefGoogle Scholar
Huffman, GJ, Adler, RF, Morrissey, M, et al., Global precipitation at one-degree daily resolution from multi-satellite observations. Journal of Hydrometeorology, 2 (2001), 3650.2.0.CO;2>CrossRefGoogle Scholar
McPhee, J, Margulis, S, Validation and error characterization of the GPCP-1DD precipitation product over the contiguous United States. Journal of Hydrometeorology, 6 (2005), 441459. doi: http://dx.doi.org/10.1175/JHM429.1CrossRefGoogle Scholar
Rubel, F, Skomorowski, P, Rudolf, B, Verification scores for the operational GPCP-1DD product over the European Alps. Meteorologische Zeitschrift, 11 (5) (2002), 367370. doi:10.1127/0941-2948/2002/0011-0367.CrossRefGoogle Scholar
Haylock, MR, Hofstra, N, Klein Tank, AMG, Klok, EJ, Jones, PD, New, M, A European daily high-resolution gridded dataset of surface temperature and precipitation. Journal of Geophysical Research: Atmospheres, 113, (2008), D20119. doi:10.1029/2008JD10201.Google Scholar
Schwarb, M, The Alpine precipitation climate, PhD thesis, ETH-Zürich, no. 13911 (2000), http://e-collection.library.ethz.ch/view/eth:23937?lang=en.Google Scholar
Turco, M, Zollo, AL, Ronchi, C, De Luigi, C, Mercogliano, P, Assessing gridded observations for daily precipitation extremes in the Alps with a focus on northwest Italy. Natural Hazards and Earth System Science, 13 (6) (2013), 14571468. doi:10.5194/nhess-13-1457-2013.CrossRefGoogle Scholar
Salzmann, N, Mearns, OL, Assessing the performance of multiple regional climate model simulations for seasonal mountain snow in the Upper Colorado River Basin. Journal of Hydrometeorology, 13 (2012), 539556. doi:http://dx.doi.org/10.1175/2011JHM1371.1CrossRefGoogle Scholar
Borga, M, Boscolo, P, Zanon, F, Sangati, M, Hydrometeorological analysis of the 29 August 2003 flash flood in the Eastern Italian Alps. Journal of Hydrometeorology, 8 (2007), 1049.CrossRefGoogle Scholar
Daly, C, Neilson, RP, Phillips, DL, A statistical-topographic model for mapping climatological precipitation over mountainous terrain. Journal of Applied Meteorology, 33 (1994), 140158.2.0.CO;2>CrossRefGoogle Scholar

References

Barry, R, Thian, YG (2011) The Global Cryosphere. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Beniston, M, Keller, F, Goyette, S (2003) Snow pack in the Swiss Alps under changing climatic conditions: an empirical approach for climate impacts studies. Theoretical and Applied Climatology 74 (1–2):1931CrossRefGoogle Scholar
Callaghan, TV, Johansson, M, Brown, RD, et al. (2011) Changing snow cover and its impacts. In: AMAP (ed.) Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate Change and the Cryosphere. Arctic Monitoring and Assessment Programme, Oslo, pp. 4.14.58.Google Scholar
McClung, D, Schaerer, P (2006) The Avalanche Handbook. The Mountaineers, Seattle.Google Scholar
Keiler, M, Knight, J, Harrison, S (2010) Climate change and geomorphological hazards in the eastern European Alps. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences 368:24612479Google ScholarPubMed
Grünewald, T, Stötter, J, Pomeroy, JW, et al. (2013) Statistical modelling of the snow depth distribution in open alpine terrain. Hydrology and Earth System Sciences 17 (8):30053021CrossRefGoogle Scholar
Stewart, IT (2009) Changes in snowpack and snowmelt runoff for key mountain regions. Hydrological Processes 23 (1):7894CrossRefGoogle Scholar
Viviroli, D, Dürr, HH, Messerli, B, Meybeck, M, Weingartner, R (2007) Mountains of the world, water towers for humanity: typology, mapping, and global significance. Water Resources Research 43 (7):W07447CrossRefGoogle Scholar
Diffenbaugh, NS, Scherer, M, Ashfaq, M (2013) Response of snow-dependent hydrologic extremes to continued global warming. Nature Climate Change 3 (4):379384CrossRefGoogle ScholarPubMed
Grünewald, T, Schirmer, M, Mott, R, Lehning, M (2010) Spatial and temporal variability of snow depth and ablation rates in a small mountain catchment. The Cryosphere 4 (2):215225CrossRefGoogle Scholar
Dedieu, JP, Lessard-Fontaine, A, Ravazzani, G, Cremonese, E, Shalpykova, G, Beniston, M (2014) Shifting mountain snow patterns in a changing climate from remote sensing retrieval. Science of the Total Environment 493:12671279CrossRefGoogle Scholar
de Quervain, MR, de Crécy, L, LaChapelle, ER, Lossev, K, Shoda, M, Nakamura, T (1981) Avalanche Atlas. Illustrated International Avalanche Classification. UNESCO, Paris.Google Scholar
Schweizer, J, Jamieson, B, Schneebeli, M (2003) Snow avalanche formation. Review of Geophysics 41 (4):1016CrossRefGoogle Scholar
Fierz, C, Armstrong, R, Durand, Y, et al. (2009) The International Classification for Seasonal Snow on the Ground. UNESCO, Paris.Google Scholar
Bründl, M, Bartelt, P, Schweizer, J, Keiler, M, Glade, T (2010) Review and future challenges in snow avalanche risk analysis. In: Alcántara-Ayala, I, Goudie, A (eds) Geomorphological Hazards and Disaster Prevention. Cambridge University Press, Cambridge, pp. 4961.CrossRefGoogle Scholar
Christen, M, Bühler, Y, Bartelt, P, et al. (2012) Integral hazard management using a unified software environment: numerical simulation tool ‘RAMMS’ for gravitational natural hazards. In: Koboltschnig, G, Hübl, J, Braun, J (eds) Internationales Symposion Interpraevent. Proceedings Vol. 1. International Research Society Interpraevent, Klagenfurt, pp. 7786.Google Scholar
Mokrov, E, Chernouss, P, Fedorenko, Y, Husebye, E (2000) The influence of seismic effect on avalanche release. In: Proceedings of the 2000 International Snow Science Workshop, October 1–6 , Big Sky, Montana, pp. 338341.Google Scholar
Qiu, J (2014) Avalanche hotspot revealed. Nature 509 (7499):142143CrossRefGoogle ScholarPubMed
Fedorenko, Y, Chernouss, P, Mokrov, E, Husebye, E, Beketova, E (2002) Dynamic avalanche modelling including seismic loading in the Khibiny mountains. In: International Research Society Interpraevent (ed.) Interpraevent 2002 in the Pacific Rim, Matsumoto, 14–18 October 2002. International Research Society Interpraevent, Tokyo, pp. 705714.Google Scholar
Fuchs, S, Keiler, M (2013) Space and time: coupling dimensions in natural hazard risk management? In: Müller-Mahn, D (ed.) The Spatial Dimension of Risk: How Geography Shapes the Emergence of Riskscapes. Earthscan, London, pp. 189201.Google Scholar
Scharr, K, Steinicke, E, Borsdorf, A (2012) Sochi/Сочи 2014: Olympic Winter Games between high mountains and seaside. Revue de Géographie Alpine 100 (4):114.Google Scholar
Sokratov, SA, Seliverstov, YG, Shnyparkov, AL, Koltermann, KP (2013) Antropogennoe vliyanie na lavinnuyu i selevuyu aktivnist’ [Anthropogenic effect on avalanche and debris flow activity]. Lyed i sneg [Ice and Snow] 122 (2):121128.Google Scholar
Stethem, C, Jamieson, B, Schaerer, P, Liverman, D, Germain, D, Walker, S (2003) Snow avalanche hazard in Canada: a review. Natural Hazards 28 (2–3):487515.CrossRefGoogle Scholar
Aubrecht, C, Fuchs, S, Neuhold, C (2013) Spatio-temporal aspects and dimensions in integrated disaster risk management. Natural Hazards 68 (3):12051216.CrossRefGoogle Scholar
Fuchs, S, Kuhlicke, C, Meyer, V (2011) Editorial for the special issue: vulnerability to natural hazards – the challenge of integration. Natural Hazards 58 (2):609619.CrossRefGoogle Scholar
Holub, M, Fuchs, S (2009) Mitigating mountain hazards in Austria: legislation, risk transfer, and awareness building. Natural Hazards and Earth System Sciences 9 (2):523537.CrossRefGoogle Scholar
Holub, M, Suda, J, Fuchs, S (2012) Mountain hazards: reducing vulnerability by adapted building design. Environmental Earth Sciences 66 (7):18531870.CrossRefGoogle Scholar
Zischg, A, Fuchs, S, Keiler, M, Stötter, J (2005) Temporal variability of damage potential on roads as a conceptual contribution towards a short-term avalanche risk simulation. Natural Hazards and Earth System Sciences 5 (2):235242.CrossRefGoogle Scholar
Keiler, M, Sailer, R, Jörg, P, et al. (2006) Avalanche risk assessment: a multi-temporal approach, results from Galtür, Austria. Natural Hazards and Earth System Sciences 6 (4):637651.CrossRefGoogle Scholar
Stocker, TF, Qin, D, Plattner, G-K, et al. (eds) (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.Google Scholar
Hidalgo, HG, Das, T, Dettinger, MD, et al. (2009) Detection and attribution of streamflow timing changes to climate change in the Western United States. Journal of Climate 22 (13):38383855.CrossRefGoogle Scholar
Seneviratne, SI, Nicholls, N, Easterling, D, et al. (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Field, CB, Barros, V, Stocker, TF, et al. (eds) Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 109230.CrossRefGoogle Scholar
Støren, EN, Paasche, Ø (2014) Scandinavian floods: from past observations to future trends. Global and Planetary Change 113:3443.CrossRefGoogle Scholar
Glazovskaya, TG (1998) Global distribution of snow avalanches and changing activity in the Northern Hemisphere due to climate change. Annals of Glaciology 26:337342.CrossRefGoogle Scholar
Auer, I, Böhm, R, Jurkovic, A, et al. (2007) HISTALP: historical instrumental climatological surface time series of the Greater Alpine Region. International Journal of Climatology 27 (1):1746.CrossRefGoogle Scholar
Eckert, N, Baya, H, Deschatres, M (2010) Assessing the response of snow avalanche runout altitudes to climate fluctuations using hierarchical modeling: application to 61 winters of data in France. Journal of Climate 23 (12):31573180.CrossRefGoogle Scholar
Sharma, SS, Ganju, A (2000) Complexities of avalanche forecasting in Western Himalaya: an overview. Cold Regions Science and Technology 31 (2):95102.CrossRefGoogle Scholar
Haegeli, P, McClung, DM (2007) Expanding the snow-climate classification with avalanche-relevant information: initial description of avalanche winter regimes for southwestern Canada. Journal of Glaciology 53 (181):266276.CrossRefGoogle Scholar
Germain, D, Filion, L, Hétu, B (2009) Snow avalanche regime and climatic conditions in the Chic-Choc Range, eastern Canada. Climatic Change 92 (1–2):141167CrossRefGoogle Scholar
Laternser, M, Pfister, C (1997) Avalanches in Switzerland 1500–1990. In: Matthews, JA, Brunsden, D, Frenzel, B, Gläser, B, Weiß, MM (eds) Rapid Mass Movements as a Source of Climate Evidence for the Holocene. Gustav Fischer Verlag, Stuttgart, pp. 241266.Google Scholar
Laternser, M, Schneebeli, M (2002) Temporal trend and spatial distribution of avalanche activity during the last 50 years in Switzerland. Natural Hazards 27 (3):201230CrossRefGoogle Scholar
Baggi, S, Schweizer, J (2009) Characteristics of wet-snow avalanche activity: 20 years of observations from a high alpine valley (Dischma, Switzerland). Natural Hazards 50 (1):97108.CrossRefGoogle Scholar
Lazar, B, Williams, M (2008) Climate change in western ski areas: potential changes in the timing of wet avalanches and snow quality for the Aspen ski area in the years 2030 and 2100. Cold Regions Science and Technology 51 (2–3):219228.CrossRefGoogle Scholar
Messerli, B (2012) Global change and the world's mountains. Mountain Research and Development 32 (S1):S55S63.CrossRefGoogle Scholar
Löffler, R, Steinicke, E (2006) Counterurbanization and its socioeconomic effects in high mountain areas of the Sierra Nevada (California/Nevada). Mountain Research and Development 26 (1):6471.CrossRefGoogle Scholar
Kaltenborn, BP, Andersen, O, Nellemann, C (2009) Amenity development in the Norwegian mountains: effects of second home owner environmental attitudes on preferences for alternative development options. Landscape and Urban Planning 91 (4):195201.CrossRefGoogle Scholar
Slaymaker, O, Embleton-Hamann, C (2009) Mountains. In: Slaymaker, O, Spencer, T, Embleton-Hamann, C (eds) Geomorphology and Global Environmental Change. Cambridge University Press, Cambridge, pp. 3770.CrossRefGoogle Scholar
Bätzing, W (2002) Die aktuellen Veränderungen von Umwelt, Wirtschaft, Gesellschaft und Bevölkerung in den Alpen. Im Auftrag des Umweltbundesamtes, gefördert durch das Bundesministerium für Umwelt,Naturschutz und Reaktorsicherheit, vol. P26. Umweltbundesamt, Berlin.Google Scholar
Steiger, R (2012) Scenarios for skiing tourism in Austria: integrating demographics with an analysis of climate change. Journal of Sustainable Tourism 20 (6):867882CrossRefGoogle Scholar
Gonseth, C (2013) Impact of snow variability on the Swiss winter tourism sector: implications in an era of climate change. Climatic Change 119 (2):307320.CrossRefGoogle Scholar
Agrawala, S (ed.) (2007) Climate Change in the European Alps: Adapting Winter Tourism and Natural Hazards Management. OECD, Paris.Google Scholar
de Jong, C (2012) Zum Management der Biodiversität von Tourismus-und Wintersportgebieten in einer Ära des globalen Wandels. Jahrbuch des Vereins zum Schutz der Bergwelt 2011/2012 (76/77):131168.Google Scholar
Olefs, M, Fischer, A, Lang, J (2010) Boundary conditions for artificial snow production in the Austrian Alps. Journal of Applied Meteorology and Climatology 49 (6):10961113.CrossRefGoogle Scholar
Kristensen, K, Habritz, C, Harbitz, A (2003) Road traffic and avalanches: methods for risk evaluation and risk management. Surveys in Geophysics 24 (5–6):603616.CrossRefGoogle Scholar
Hendrikx, J, Owens, I (2008) Modified avalanche risk equations to account for waiting traffic on avalanche prone roads. Cold Regions Science and Technology 51 (2–3):214218.CrossRefGoogle Scholar
Margreth, S, Stoffel, L, Wilhelm, C (2003) Winter opening of high alpine pass roads: analysis and case studies from the Swiss Alps. Cold Regions Science and Technology 37 (3):467482.CrossRefGoogle Scholar
Rheinberger, C, Bründl, M, Rhyner, J (2009) Dealing with the White Death: avalanche risk management for traffic routes. Risk Analysis 29 (1):7694.CrossRefGoogle ScholarPubMed
Bründl, M, Etter-J, H, Steiniger, M, Klingler, C, Rhyner, J, Ammann, W (2004) IFKIS: a basis for managing avalanche risk in settlements and on roads in Switzerland. Natural Hazards and Earth System Sciences 4 (2):257262.CrossRefGoogle Scholar
Fuchs, S, Keiler, M, Sokratov, SA, Shnyparkov, A (2013) Spatiotemporal dynamics: the need for an innovative approach in mountain hazard risk management. Natural Hazards 68 (3):12171241.CrossRefGoogle Scholar
Castella, J-C, Verburg, PH (2007) Combination of process-oriented and pattern-oriented models of land-use change in a mountain area of Vietnam. Ecological Modelling 202 (3–4):410420.CrossRefGoogle Scholar
Martin, B, Giacona, F (2009) Analyse géohistorique du risque d'avalanche dans le massif des Vosges. Houille Blanche 2009 (2):94101CrossRefGoogle Scholar
Cammerer, H, Thieken, AH, Verburg, PH (2013) Spatio-temporal dynamics in the flood exposure due to land use changes in the Alpine Lech Valley in Tyrol (Austria). Natural Hazards 68 (3):12431270.CrossRefGoogle Scholar
Culbertson, K, Turner, D, Kolberg, J (1993) Toward a definition of sustainable development in the Yampa Valley of Colorado. Mountain Research and Development 13 (4):359369.CrossRefGoogle Scholar
Riebsame, WE, Gosnell, H, Theobald, DM (1996) Land use and landscape change in the Colorado mountains I: theory, scale, and pattern. Mountain Research and Development 16 (4):395405.CrossRefGoogle Scholar
Hufschmidt, G, Crozier, M, Glade, T (2005) Evolution of natural risk: research framework and perspectives. Natural Hazards and Earth System Sciences 5 (3):375387.CrossRefGoogle Scholar
Kappes, M, Keiler, M, von Elverfeldt, K, Glade, T (2012) Challenges of analyzing multi-hazard risk: a review. Natural Hazards 64 (2):19251958.CrossRefGoogle Scholar
Keiler, M (2004) Development of the damage potential resulting from avalanche risk in the period 1950–2000, case study Galtür. Natural Hazards and Earth System Sciences 4 (2):249256.CrossRefGoogle Scholar
Fuchs, S, Keiler, M (2008) Variability of natural hazard risk in the European Alps: evidence from damage potential exposed to snow avalanches. In: Pinkowski, J (ed.) Disaster Management Handbook. CRC Press and Taylor & Francis, Boca Raton, FL and London, pp. 267279.Google Scholar
Schneebeli, M, Laternser, M, Ammann, W (1997) Destructive snow avalanches and climate change in the Swiss Alps. Eclogae Geologicae Helvetiae 90 (3):457461Google Scholar
Schneebeli, M, Laternser, M, Föhn, P, Ammann, W (1998) Wechselwirkungen zwischen Klima, Lawinen und technischen Massnahmen. vdf Hochschulverlag an der ETH, ZürichGoogle Scholar
Fuchs, S, Bründl, M (2005) Damage potential and losses resulting from snow avalanches in settlements of the canton of Grisons, Switzerland. Natural Hazards 34 (1):5369.CrossRefGoogle Scholar
Luzian, R (2002) Die österreichische Schadenslawinen-Datenbank. Forschungsanliegen – Aufbau – erste Ergebnisse. Mitteilungen der forstlichen Bundesversuchsanstalt Wien 175. Forstliche Bundesversuchsanstalt, Wien.Google Scholar
Fuchs, S (2013) Vulnerability landscape Austria. Wildbach-und Lawinenverbau 172:154165.Google Scholar
Keiler, M, Kellerer-Pirklbauer, A, Otto, J-C (2012) Concepts and implications of environmental change and human impact: studies from Austrian geomorphological research. Geografiska Annaler Series A, Physical Geography 94 (1):15CrossRefGoogle Scholar
Campbell, C, Bakermans, L, Jamieson, B, Stethem, C (eds) (2007) Current and Future Snow Avalanche Threats and Mitigation Measures in Canada. Canadian Avalanche Centre, Revelstoke, BC.Google Scholar
Gardner, J, Dekens, J (2007) Mountain hazards and the resilience of social–ecological systems: lessons learned in India and Canada. Natural Hazards 41 (2):317336.CrossRefGoogle Scholar
Sharma, U, Scolobig, A, Patt, A (2012) The effects of decentralization on the production and use of risk assessment: insights from landslide management in India and Italy. Natural Hazards 64 (2):13571371.CrossRefGoogle Scholar
Shnyparkov, AL, Fuchs, S, Sokratov, SA, Koltermann, KP, Seliverstov, YG, Vikulina, MA (2012) Theory and practice of individual snow avalanche risk assessment in the Russian arctic. Geography, Environment, Sustainability 5 (3):6481.CrossRefGoogle Scholar
Keiler, M, Zischg, A, Fuchs, S, Hama, M, Stötter, J (2005) Avalanche related damage potential: changes of persons and mobile values since the mid-twentieth century, case study Galtür. Natural Hazards and Earth System Sciences 5 (1):4958.CrossRefGoogle Scholar
Fuchs, S, Thöni, M, McAlpin, MC, Gruber, U, Bründl, M (2007) Avalanche hazard mitigation strategies assessed by cost effectiveness analyses and cost benefit analyses: evidence from Davos, Switzerland. Natural Hazards 41 (1):113129.CrossRefGoogle Scholar
Vikulina, MA, Shnyparkov, AL (2006) K voprosu o terminologii i pokazatelyakh lavinnoi deyatel'nosti [To the question on terminology and characteristics of the avalanche actions]. In Proceedings of the III international conference ‘Avalanches and related subjects’, Kirovsk, Russia, September 4–8, 2006 [Trudy III Mezhdunarodnaya konferentsiya “Laviny i smezhnye voprosy”, Kirovsk, 4–8 sentyabrya 2006]. Apatit-media, Kirovsk.Google Scholar
Fuchs, S, Zischg, A (2013) Vulnerabilitätslandkarte Österreich. Universität für Bodenkultur, Institut für alpine Naturgefahren, Wien.Google Scholar
Fuchs, S, Keiler, M, Zischg, A, Bründl, M (2005) The long-term development of avalanche risk in settlements considering the temporal variability of damage potential. Natural Hazards and Earth System Sciences 5 (6):893901.CrossRefGoogle Scholar
Berke, P, Smith, G (2009) Hazard mitigation, planning, and disaster resiliency: challenges and strategic choices for the 21st century. In: Fra Paleo, U (ed.) Building Safer Communities: Risk Governance, Spatial Planning and Responses to Natural Hazards. IOS Press, Amsterdam, pp. 120.Google Scholar
Böhm, R (2009) Klimarekonstruktion der instrumentellen Periode – Probleme und Lösungen für den Großraum Alpen. In: Schmidt, R, Matulla, C, Psenner, R (eds) Klimawandel in Österreich. Innsbruck Univerity Press, Innsbruck, pp. 145164.Google Scholar

References

IPCC, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, TF, Qin, D, Plattner, G-K, Tignor, M, Allen, SK, Boschung, J, Nauels, A, Xia, Y, Bex, V, Midgley, PM (eds) (New York, NY: Cambridge University Press, 2013).Google Scholar
Yin, J, Overpeck, JT, Griffies, SM, Hu, A, Russell, JL, Stouffer, RJ, Different magnitudes of projected subsurface ocean warming around Greenland and Antarctica. Nature Geosciences, 4: 8 (2011): 524528.CrossRefGoogle Scholar
Nie, Y, Liu, Q, Liu, S, Glacial lake expansion in the central Himalayas by Landsat images, 1990–2010. PLoS ONE, 8: 12 (2013): e83973.CrossRefGoogle ScholarPubMed
Willis, MJ, Melkonian, AK, Pritchard, ME, Rivera, A, Ice loss from the Southern Patagonian Ice Field, South America, between 2000 and 2012. Geophysical Research Letters, 39: 17 (2012): L17501.CrossRefGoogle Scholar
Bury, J, Bebbington, A, New geographies of extractive industries in Latin America. In Bebbington, A and Bury, J (eds.) Subterranean Struggles: New Dynamics of Mining, Oil, and Gas in Latin America (Austin, TX: University of Texas Press, 2013), pp. 2766.CrossRefGoogle Scholar
Silver, DB, Super cycle: past, present and future. Mining Engineering, 60: 6 (2008): 7277.Google Scholar
Bury, J, Mark, BG, Carey, M, et al., New geographies of water and climate change in Peru: coupled natural and social transformations in the Santa River watershed. Annals of the Association of American Geographers, 103: 2 (2013): 363374.CrossRefGoogle Scholar
Bebbington, A, Bury, J, (eds.) Subterranean Struggles: New Dynamics of Mining, Oil, and Gas in Latin America (Austin, TX: University of Texas Press, 2013).Google Scholar
Baraer, M, Mark, BG, McKenzie, JM, et al., Glacier recession and water resources in Peru's Cordillera Blanca. Journal of Glaciology, 58: 207 (2012): 134150.CrossRefGoogle Scholar
Bury, JT, Mark, BG, McKenzie, JM, et al., Glacier recession and human vulnerability in the Yanamarey watershed of the Cordillera Blanca, Peru. Climatic Change, 105: 1–2 (2011): 179206.CrossRefGoogle Scholar
Kronenberg, J, Linking ecological economics and political ecology to study mining, glaciers and global warming. Environmental Policy and Governance, 23: 2 (2013): 7590.CrossRefGoogle Scholar
Orlove, BS, Wiegandt, E, Luckman, BH, Darkening Peaks: Glacier Retreat, Science, and Society (Oakland, CA: University of California Press, 2008).CrossRefGoogle Scholar
Carey, M, In the Shadow of Melting Glaciers: Climate Change and Andean Society (New York: Oxford University Press, 2010).CrossRefGoogle Scholar
IPCC, Climate Change 2014: Impacts, Adaptation, and Vulnerability (New York: Cambridge University Press, 2014).Google Scholar
Vaughan, DG, ComisoI, JC, Allison, I, et al., Observations: cryosphere. In Stocker, TF, Qin, D, Plattner, G-K, Tignor, M, Allen, SK, Boschung, J, Nauels, A, Xia, Y, Bex, V, Midgley, PM (eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (New York: Cambridge University, 2013).Google Scholar
Arendt, A, Bolch, T, Cogley, J, et al., Randolph Glacier Inventory: A Dataset of Global Glacier Outlines. Global Land Ice Measurements from Space (Boulder, CO: Institute of Arctic and Alpine Research, 2012).Google Scholar
Bolch, T, Kulkarni, A, Kääb, A, et al., The state and fate of Himalayan glaciers. Science, 336: 6079 (2012): 310314.CrossRefGoogle ScholarPubMed
Box, JE, Decker, DT, Greenland marine-terminating glacier area changes: 2000–2010. Annals of Glaciology, 52: 59 (2011): 9198.CrossRefGoogle Scholar
Kargel, JS, Leonard, GJ, Bishop, MP, Kaab, A, Raup, BH, Global Land Ice Measurements from Space: Satellite Multispectral Imaging of Glaciers (New York: Springer Praxis, 2014).CrossRefGoogle Scholar
Rabatel, A, Francou, B, Soruco, A, et al., Review article of the current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. The Cryosphere Discuss, 6: 4 (2012): 24772536.Google Scholar
Vaughan, DG, ComisoI, JC, Allison, I, et al., Observations: Cryosphere Supplementary Material. In Stocker, TF, Qin, D, Plattner, G-K, Tignor, M, Allen, SK, Boschung, J, Nauels, A, Xia, Y, Bex, V, Midgley, PM (eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (New York: Cambridge University, 2013).Google Scholar
Rignot, E, Mouginot, J, Morlighem, M, Seroussi, H, Scheuchl, B, Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith and Kohler glaciers, West Antarctica from 1992 to 2011. Geophysical Research Letters, 41: 10 (2014): 35023509.CrossRefGoogle Scholar
Bridge, G, Mapping the bonanza: geographies of mining investment in an era of neoliberal reform. The Professional Geographer, 56: 3 (2004): 406421.CrossRefGoogle Scholar
Bridge, G, Le Billon, P, Oil (Malden, MA: Polity Press, 2013).Google Scholar
Ghazvinian, J, Untapped: The Scramble for Africa's Oil (Orlando, FL: Harvest Books, 2008).Google Scholar
Huber, MT, Lifeblood: Oil, Freedom, and the Forces of Capital (Minneapolis , MN: University of Minnesota Press, 2013).CrossRefGoogle Scholar
Humphreys, D, The great metals boom: a retrospective. Resources Policy, 35: 1 (2010): 113.CrossRefGoogle Scholar
Radetzki, M, Eggert, RG, Lagos, G, Lima, M, Tilton, JE, The boom in mineral markets: how long might it last? Resources Policy, 33: 3 (2008): 125128.CrossRefGoogle Scholar
Sawyer, S, Crude Chronicles: Indigenous Politics, Multinational Oil, and Neoliberalism in Ecuador (Durham, NC: Duke University Press, 2004).Google Scholar
Watts, M, Crude Politics: Life and Death on the Nigerian Oil Fields (Berkeley, CA: University of California, 2009).Google Scholar
Barclays, Energy and Power Spending Outlook (London: Barclays Capital, 2012).Google Scholar
MEG, World Exploration Trends (Halifax: Megals Economics Group, 2013).Google Scholar
Salidjanova, N, Going Out: An Overview of China's Outward Foreign Direct Investment (Washington, DC: US–China Economic & Security Review Commission, 2011).Google Scholar
Brading, D, Harry, C, Colonial Silver Mining : Mexico and Peru (Berkeley, CA: Center for Latin American Studies, Institute of International Studies, University of California, 1972).Google Scholar
Galeano, EH, Open Veins of Latin America (New York: Monthly Review Press, 1973).CrossRefGoogle Scholar
Nash, JC, We Eat the Mines and the Mines Eat Us: Dependency and Exploitation in Bolivian Tin Mines (New York: Columbia University Press, 1982).Google Scholar
Willow, A, Wylie, S, Politics, ecology, and the new anthropology of energy: exploring the emerging frontiers of hydraulic fracking. Journal of Political Ecology, 21: (2014): 222236.CrossRefGoogle Scholar
Hudgins, A, Poole, A, Framing fracking: private property, common resources, and regimes of governance. Ecology, 21: (2014): 222348.Google Scholar
Black, BC, Crude Reality: Petroleum in World History (Lanham, MD: Rowman & Littlefield Publishers, 2012).Google Scholar
Brenning, A, The impact of mining on rock glaciers and glaciers. In Orlove, BS, Wiegandt, E, Luckman, BH (eds.), Darkening Peaks: Glacier Retreat, Science, and Society (Oakland, CA: University of California Press, 2008) pp. 196205.CrossRefGoogle Scholar
Fields, S, The price of gold in Chile. Environmental Health Perspectives, 114: 9 (2006): A536.CrossRefGoogle Scholar
Urkidi, L, A glocal environmental movement against gold mining: Pascua-Lama in Chile. Ecological Economics, 70: 2 (2010): 219227.CrossRefGoogle Scholar
Cervantes, AM, Charahua, H, Identification of Environmental Impacts in Quebrada Honda, Huaraz, in Environmental Sciences (Huaraz: National University of Ancash Santiago Antunez de Mayolo, 1999).Google Scholar
Peruano (March 14, 2013). Illegal mining threatens glaciers in the Cordillera Blanca. El Peruano, 1.Google Scholar
O.B. Group, The Report: Mongolia 2012 (Oxford: Oxford Business Group, 2012).Google Scholar
USGS, 2011 Minerals Yearbook Canada (Washington, DC: United States Geological Survey, 2011).Google Scholar
Khan, SA, Kjær, KH, Bevis, M, et al., Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming. Nature Climate Change, 4 (2014): 292299.CrossRefGoogle Scholar
GPMP, Report to Inastsisartut, the Parliament of Greenland, Concerning Mineral Resource Activities in Greenland (Kallallit Nunaat: Greenland Bureau of Minerals and Petroleum, 2013).Google Scholar
USGS, Circum-Arctic Resource Appraisal: Estimates of Undiscovered Oil and Gas North of the Arctic Circle (Menlo Park, CA: USGS, 2008).Google Scholar
USGS, Assessment of Undiscovered Oil and Gas Resources of the East Greenland Rift Basins Province (Menlo Park, CA: USGS, 2007).Google Scholar
O'Rourke, D, Connolly, S, Just oil? The distribution of environmental and social impacts of oil production and consumption. Annual Review of Environment and Resources, 28: 1 (2003): 587617.CrossRefGoogle Scholar
Efstathiou, JJ (July 28, 2013). Rig grounding revives debate over Shell's Arctic drilling. Bloomberg, 28.Google Scholar
Bair, J, Frontiers of Commodity Chain Research (Palo Alto, CA: Stanford University Press, 2009).Google Scholar
Gereffi, G, Korzeniewicz, M, Commodity Chains and Global Capitalism (Westport, CT: Greenwood Press, 1994).Google Scholar
Rolston, JS, The politics of pits and the materiality of mine labor: making natural resources in the American West. American Anthropologist, 115: 4 (2013): 582594.CrossRefGoogle Scholar
Schroeder, RA, Tanzanite as conflict gem: certifying a secure commodity chain in Tanzania. Geoforum, 41: 1 (2010): 5665.CrossRefGoogle Scholar
Huber, MT, Energizing historical materialism: fossil fuels, space and the capitalist mode of production. Geoforum, 40: 1 (2009): 105115.CrossRefGoogle Scholar
Bridge, G, Mapping the bonanza: geographies of mining investment in an era of neoliberal reform. The Professional Geographer, 56: 3 (2004): 406421.CrossRefGoogle Scholar
Bridge, G, Past peak oil: political economy of energy crises. In Peet, R, Robbins, P, Watts, M (eds.) Global Political Ecology (London: Routledge, 2011), pp. 307324.Google Scholar
Dunning, T, Crude Democracy: Natural Resource Wealth and Political Regimes (Cambridge: Cambridge University Press, 2008).CrossRefGoogle Scholar
Bebbington, A, Social Conflict, Economic Development and the Extractive Industry: Evidence from South America (London: Routledge, 2011).CrossRefGoogle Scholar
Ross, ML, The Oil Curse: How Petroleum Wealth Shapes the Development of Nations (Princeton, NJ: Princeton University Press, 2012).CrossRefGoogle Scholar
Himley, M, Geographies of environmental governance: the nexus of nature and neoliberalism. Geography Compass, 2: 2 (2008): 433451.CrossRefGoogle Scholar
Eaton, K, Backlash in Bolivia: regional autonomy as a reaction against indigenous mobilization. Politics & Society, 35: 1 (2007): 71102.CrossRefGoogle Scholar
Perreault, T, Extracting justice: natural gas, indigenous mobilization, and the Bolivian state. In Sawyer, S, Gomez, DT (eds.) The Politics of Resource Extraction: Indigenous Peoples, Multinational Corporations and the State (London: Palgrave, 2012), pp. 75102.CrossRefGoogle Scholar
Bebbington, A, Bury, J, Institutional challenges for mining and sustainability in Peru. Proceedings of the National Academy of Sciences, 106: 41 (2009): 1729617301.CrossRefGoogle ScholarPubMed
Fresco, LO, Challenges for food system adaptation today and tomorrow. Environmental Science & Policy, 12: 4 (2009): 378385.CrossRefGoogle Scholar
Milner, AM, Brown, LE, Hannah, DM, Hydroecological response of river systems to shrinking glaciers. Hydrological Processes, 23: 1 (2009): 6277.CrossRefGoogle Scholar
Viviroli, D, Dürr, H, Messerli, B, Meybeck, M, Weingartner, R, Mountains of the world, water towers for humanity: typology, mapping, and global significance. Water Resources Research, 43: 7 (2007): 7447.CrossRefGoogle Scholar
Xu, J, Grumbine, R, Shrestha, A, et al., The melting Himalayas: cascading effects of climate change on water, biodiversity, and livelihoods. Conservation Biology, 23: 3 (2009): 520530.CrossRefGoogle ScholarPubMed
Juen, I, Kaser, G, Georges, C, Modelling observed and future runoff from a glacierized tropical catchment (Cordillera Blanca, Perú). Global and Planetary Change, 59: 1–4 (2007): 3748.CrossRefGoogle Scholar
Bury, J, Livelihoods in transition: transnational gold mining operations and local change in Cajamarca, Peru. The Geographical Journal, 170: 1 (2004): 7891.CrossRefGoogle Scholar
Bury, J, Mark, B, McKenzie, JM, French, A, Baraer, M, Glacier recession and human vulnerability in the Yanamarey watershed of the Cordillera Blanca, Peru. Climatic Change, 105: (2011): 179206.CrossRefGoogle Scholar
Mark, BG, Bury, J, French, A, McKenzie, J, Baraer, M, Huh, K, Climate change and tropical Andean glacier recession: evaluating hydrologic changes and livelihood vulnerability in the Cordillera Blanca, Peru. Annals of the Association of American Geographers, 100: 4 (2010): 112.CrossRefGoogle Scholar
EPA, Toxics Release Inventory (Washington, DC: Environmental Protection Agency, 2012).Google Scholar
Buxton, A, MMSD+10: Reflecting on a Decade of Mining and Sustainable Development (London: International Institute for Environment and Development, 2012).Google Scholar
Humphreys, M, Sachs, J, Stiglitz, J, Escaping the Resource Curse (New York: Columbia University Press, 2007).Google Scholar
Richards, JP, (ed.) Mining, Society, and a Sustainable World (New York: Springer, 2009).Google Scholar
Behrends, A, Reyna, S, Schlee, G, Crude Domination: An Anthropology of Oil (New York: Berghahn Books, 2011).Google Scholar
Himley, M, Regularizing extraction in Andean Peru: mining and social mobilization in an age of corporate social responsibility. Antipode, 45: 2 (2013): 394416.CrossRefGoogle Scholar
Bebbington, A, The new extraction: rewriting the political ecology of the Andes. NACLA Report on the Americas, 42: 5 (2009): 1220.CrossRefGoogle Scholar
van Geen, A, Bravo, C, Gil, V, Sherpa, S, Jack, D, Lead exposure from soil in Peruvian mining towns: a national assessment supported by two contrasting examples. Bulletin of the World Health Organization, 90: 12 (2012): 878886.CrossRefGoogle Scholar
Rawlings, DE, Johnson, BD, Biomining (New York: Springer Verlag, 2007).CrossRefGoogle ScholarPubMed
Rohwerder, T, Gehrke, T, Kinzler, K, Sand, W, Bioleaching review part A: progress in bioleaching – fundamentals and mechanisms of bacterial metal sulfide oxidation. Applied Microbiology and Biotechnology, 63: 3 (2003): 239248.CrossRefGoogle Scholar
Labban, M, Deterritorializing extraction: bioaccumulation and the planetary mine. Annals of the Association of American Geographers, 104: 3 (2014): 560576.CrossRefGoogle Scholar
Brierley, CL, How will biomining be applied in future? Transactions of Nonferrous Metals Society of China, 18: 6 (2008): 13021310.CrossRefGoogle Scholar
Olson, GJ, Brierley, JA, Brierley, CL, Bioleaching review part B: progress in bioleaching – applications of microbial processes by the minerals industries. Applied Microbiology and Biotechnology, 63: 3 (2003): 249257.CrossRefGoogle ScholarPubMed
Watling, H, The bioleaching of sulphide minerals with emphasis on copper sulphides: a review. Hydrometallurgy, 84: 1–2 (2006): 81108.CrossRefGoogle Scholar
Nimmo, M, NI 43–101 Technical Report: Clarian-Clipperton Zone Project, Pacific Ocean (Boulder, CO: Golder Associates, 2012).Google Scholar
Nautilus. Solwara 1 Project-High Grade Copper and Gold (2014), accessed May 1, 2014 at www.nautilusminerals.com/s/Projects-Solwara.asp.Google Scholar
Mohwinkel, D, Kleint, C, Koschinsky, A, Phase associations and potential selective extraction methods for selected high-tech metals from ferromanganese nodules and crusts with siderophores. Applied Geochemistry, 43: (2014): 1321.CrossRefGoogle Scholar
USGS, Mineral Commodity Summaries (Washington, DC: USGS, 2012).Google Scholar

References

O'Brien, KL, Wolf, J, A values-based approach to vulnerability and adaptation to climate change. Wiley Interdisciplinary Reviews: Climate Change, 1 :2 (2010), 232242.Google Scholar
UNFCCC. Summary note: outcomes of the work programme to consider approaches to address loss and damage associated with climate change impacts in developing countries that are particularly vulnerable to the adverse effects of climate change – (AC/2013/8), (2013). http://unfccc.int/files/adaptation/cancun_adaptation_framework/adaptation_committee/application/pdf/l_and_d_summary_25_feb.pdf.Google Scholar
Morrissey, J, Oliver-Smith, A, Perspectives on non-economic loss and damage. (2013). www.loss-and-damage.net/download/7213.pdf.Google Scholar
Graeber, D, Toward an Anthropological Theory of Value: The False Coin of Our Own Dreams (Basingstoke: Palgrave Macmillan, 2001).CrossRefGoogle Scholar
Appadurai, A, The Social Life of Things: Commodities in Cultural Perspective (Cambridge: Cambridge University Press, 1986).CrossRefGoogle Scholar
Graham, S, Barnett, J, Fincher, R, Hurlimann, A, Mortreux, C, Waters, E, The social values at risk from sea-level rise. Environmental Impact Assessment Review, 41 (2013), 4552.CrossRefGoogle Scholar
UNESCO, Operational Guidelines for the Implementation of the World Heritage Convention (Paris: World Heritage Centre, 2013).Google Scholar
Orlove, B, Wiegandt, E, Luckman, BH (eds.), Darkening Peaks: Glacier Retreat, Science, and Society (Berkeley, CA: University of California Press, 2008).CrossRefGoogle Scholar
Carey, M, The history of ice: How glaciers became an endangered species. Environmental History, 12: 3 (2007), 497527.CrossRefGoogle Scholar
Cruikshank, J, Do Glaciers Listen? Local Knowledge, Colonial Encounters, and Social Transformation (Vancouver: University of British Columbia Press, 2005).Google Scholar
Toennies, F, Gemeinschaft und Gesellschaft (Leipzig: Fues Verlag, 1887).Google Scholar
Barth, F, Ethnic Groups and Boundaries (Boston, MA: Little, Brown, 1969).Google Scholar
Cohen, A, Community. In Social and Cultural Anthropology: The Key Concepts, eds. Rapport, N., Overing, J. (London and New York: Routledge, 2002), pp. 6064.Google Scholar
Escobar, A, Culture sits in places: reflections on globalism and subaltern strategies of localization. Political Geography 20: 2 (2011), 139174.CrossRefGoogle Scholar
Fried, M, Continuities and discontinuities of place. Journal of Environmental Psychology, 20 (2000), 193205.CrossRefGoogle Scholar
Foucault, M, Les Mots et les choses (Paris: Editions Gallimard, 1966).Google Scholar
Sökefeld, M, Debating self, identity, and culture in anthropology. Current Anthropology, 40: 4 (1999), 417448.CrossRefGoogle Scholar
Devine-Wright, P, Think global, act local? The relevance of place attachments and place identities in a climate changed world. Global Environmental Change, 23: 1 (2013), 6169.CrossRefGoogle Scholar
Messner, R, König Ortler (Lana, Italy: Tappeiner Verlag, 2004).Google Scholar
Carturan, L, Filippi, R, Seppi, R, et al., Area and volume loss of the glaciers in the Ortles-Cevedale group (Eastern Italian Alps): controls and imbalance of the remaining Glaciers. The Cryosphere, 7 (2013), 13391359.CrossRefGoogle Scholar
ASTAT, Südtirol in Zahlen-Alto Adige in cifre (Bozen, Italy: Südtirol Landesinstitut für Statistik, 2011).Google Scholar
Rampold, J, Vinschgau, 2nd edn. (Bozen, Italy: Verlagsanstalt Athesia, 1997).Google Scholar
Hurton, J, Sulden: Geschichte, Land, Leute und Berge, 7th edn. (Bozen, Italy: Eigenverlag, 2004).Google Scholar
Grote, G, The South Tyrol Question, 1866–2010: From National Rage to Regional State (Bern: Peter Lang, 2012).CrossRefGoogle Scholar
Zappe, M, Das ethnische Zusammenleben in Südtirol : Sprachsoziologische, sprachpolitische und soziokulturelle Einstellungen der deutschen, italienischen und ladinischen Sprachgruppen vor und nach den gegenwärtigen Umbrüchen (Frankfurt am Main: Peter Land, 1996).Google Scholar
ASTAT, Das neue Autonomiestatut, 14th edn. (Bozen, Italy: Südtirol Landesinstitut für Statistik, 2009).Google Scholar
Beniston, M, Fox, DG, Impacts of climate change on mountain regions. In IPCC 1995: Climate Change: Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analysis (Working Group II) (Cambridge: Cambridge University Press, 1996), pp. 191213.Google Scholar
Ramírez, E, Francou, B, Ribstein, P, et al., Small glaciers disappearing in the Tropical Andes: a case study in Bolivia; the Chacaltaya Glacier (16º). Journal of Glaciology. 47 :157 (2001), 187194.CrossRefGoogle Scholar
Kaser, G, Osmaston, H, Tropical Glaciers (Cambridge: Cambridge University Press, 2002).Google Scholar
Bradley, R, Vuille, SM, Daz, HF, Vergara, W, Threats to water supplies in the tropical Andes. Science, 312 (2011), 17551756.CrossRefGoogle Scholar
Pelto, MS. Impact of climate change on North Cascade alpine glaciers, and alpine runoff. Northwest Science, 82 :1 (2008), 6575.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×