Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-30T04:14:31.322Z Has data issue: false hasContentIssue false

14 - Supersymmetric dark matter at colliders

Published online by Cambridge University Press:  04 August 2010

Gianfranco Bertone
Affiliation:
Institut d'Astrophysique de Paris
Get access

Summary

Introduction

The study of the interactions of elementary particles at high-energy accelerators over the past 40 years has led us to a paradoxical situation. On one hand, these studies have apparently solved the problem of the nature of the strong and weak nuclear interactions. The precision data from LEP, SLC, the Tevatron and the B-factories has confirmed the leading theory of the strong interactions – QCD – to per cent accuracy and the leading theory of the electroweak interactions SU(2) × U(1) Yang–Mills theory to the accuracy of parts per mil. On the other hand, there are important phenomena in Nature that are completely outside the scope of this ‘Standard Model’. Dark matter, which makes up 80% of the matter in the Universe and cannot be composed of any Standard Model particle, provides the most striking example.

Most of the information that we have now on dark matter relates to the properties we can learn from gravitational measurements. We know the overall cosmic density of dark matter, and the local density of dark matter on the scale of galaxies and clusters. Soon we can hope to have measurements of dark matter at the particle level, of the rates of dark matter annihilation in the Galaxy and of dark matter scattering in underground detectors. To learn what the dark matter particle is and how it fits into a more general theory of Nature, it will be important to interpret these measurements in terms of data obtained from particle physics experiments.

Type
Chapter
Information
Particle Dark Matter
Observations, Models and Searches
, pp. 276 - 305
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×