Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-30T04:08:27.056Z Has data issue: false hasContentIssue false

16 - SUSY tools

Published online by Cambridge University Press:  04 August 2010

Gianfranco Bertone
Affiliation:
Institut d'Astrophysique de Paris
Get access

Summary

The long-awaited Large Hadron Collider (LHC) is expected to start taking data in 2009. The LHC research programme has traditionally been centred around the discovery of the Higgs boson. However, the Standard Model description of this particle calls for New Physics. Until a few years ago, the epitome of this New Physics has been supersymmetry, which when endowed with a discrete symmetry called R-parity furnishes a good dark matter candidate. Recently a few alternatives have been put forward. Originally, they were confined to solving the Higgs problem, but it has been discovered that, generically, their most viable implementation (in accord with electroweak precision data, proton decay, etc.) fares far better if a discrete symmetry is embedded in the model. The discrete symmetry is behind the existence of a possible dark matter candidate.

From another viewpoint, stressed in many parts of this book, the past few years have witnessed spectacular advances in cosmology and astrophysics confirming that ordinary matter is a minute part of what constitutes the Universe at large. At the same time in which the LHC will be gathering data, a host of non-collider astrophysical and cosmological observations with ever-increasing accuracy will be carried out in search of dark matter. For example, the upcoming PLANCK experiment will make cosmology enter the era of precision measurements, akin to what we witnessed with the LEP experiments.

The emergence of this new paradigm means it is of utmost importance to analyse and combine data from these upcoming observations with those at the LHC.

Type
Chapter
Information
Particle Dark Matter
Observations, Models and Searches
, pp. 325 - 344
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×