Skip to main content Accessibility help
Hostname: page-component-5d59c44645-n6p7q Total loading time: 0 Render date: 2024-03-05T01:41:42.827Z Has data issue: false hasContentIssue false

19 - Monkey Hunting in Early to Mid-Holocene Eastern Java (Indonesia)

from Part IV - Asia

Published online by Cambridge University Press:  03 August 2022

Bernardo Urbani
Venezuelan Institute for Scientific Research
Dionisios Youlatos
Aristotle University, Thessaloniki
Andrzej T. Antczak
Universiteit Leiden
Get access


In this chapter, we explore the patterns of nonhuman primate exploitation in Early to Mid-Holocene East Java by looking at the faunal assemblage recovered from excavations in Braholo Cave. Cercopithecid specimens account for more than 50% of the animal remains recovered from the site. Of these, 90% were identified to represent the Javan langur (Trachypithecus auratus), suggesting deliberate hunting of this arboreal species. Age-at-death profiles demonstrate targeting of prime-aged adults and skeletal element representation suggests onsite carcass processing. We observed consistent placement of butchery marks on specific skeletal elements, indicative of routine carcass processing that also involved preparation of skeletal elements for bone tool manufacture. We discuss our findings in the framework of early hunter-gatherer subsistence economies in the region.


Human–Nonhuman primate interactions, Holocene, Subsistence economy, Southeast Asia, Indonesia, Java

World Archaeoprimatology
Interconnections of Humans and Nonhuman Primates in the Past
, pp. 474 - 496
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Aimi, M. (1981). Fossil Macaca nemestrina (Linnaeus, 1976) from Java, Indonesia. Primates, 22(3), 409413.CrossRefGoogle Scholar
Amano, N., Moigne, A. M., Ingicco, T., Sémah, F., Awe, R. D., & Simanjuntak, T. (2016). Subsistence strategies and environment in Late Pleistocene–Early Holocene Eastern Java: Evidence from Braholo Cave. Quaternary International, 416(1), 4663.CrossRefGoogle Scholar
Barker, G. (2005). The archaeology of foraging and farming in Niah Cave, Sarawak. Asian Perspectives, 44(1), 90106.CrossRefGoogle Scholar
Barker, G., & Farr, L. (eds.) (2016). Archaeological Investigations in the Niah Caves, Sarawak. McDonald Institute for Archaeological Research, Cambridge.Google Scholar
Barker, G., Barton, H., Bird, M., et al. (2007). The “human revolution” in lowland tropical Southeast Asia: the antiquity and behavior of anatomically modern humans at Niah Cave (Sarawak, Borneo). Journal of Human Evolution, 52(3), 243226.Google Scholar
Barton, H. W., Piper, P. J., Rabett, R. J., & Reeds, I. (2009). Composite hunting technologies from the Terminal Pleistocene and Early Holocene, Niah Cave, Borneo. Journal of Archaeological Science, 36, 17081714.CrossRefGoogle Scholar
Bellwood, P. (1997). Prehistory of the Indo-Malaysian Archipelago (revised edition). Honolulu: University of Hawai’i Press.CrossRefGoogle Scholar
Bellwood, P. (2013). First Migrants: Ancient Migration in Global Perspective. Chichester: Wiley-Blackwell.Google Scholar
Birchette, M. G. (1982). The postcranial skeleton of Paracolobus chemeroni. PhD thesis, Harvard University .Google Scholar
Borries, C., Larney, E., Lu, A., Ossi, K., & Koenig, A. (2008). Costs of large groups: developmental and reproductive rates in wild Phayre’s leaf monkeys (Trachypithecus phayrei). In Proceedings of the 77th Annual Meeting of the American Journal of Physical Antropology 71.Google Scholar
Botes, I.Gh. (1926). Étude morphologique et morphogénique du squelette du bras et de l’avant-bras chez les primates. Libraire Octave Doin, Gaston Doin & cie, éditeurs. Paris.Google Scholar
Dam, R. A., Fluin, J., Suparan, P., & van der Kaars, S. (2001). Palaeoenvironmental developments in the Lake Tondano area (N. Sulawesi, Indonesia) since 33,000 yr BPPalaeogeography, Palaeoclimatology, Palaeoecology171(3), 147183.CrossRefGoogle Scholar
Delson, E. (1973). Fossil Colobine monkeys of the Circum-Mediterranean Region and the evolutionary history of the Cercopithecidae (Primates, Mammalia). PhD thesis. Columbia University.Google Scholar
Détroit, F. (2006). Homo sapiens in Southeast Asian archipelagos: the Holocene fossil evidence with special reference to funerary practices in East Java. In Simanjuntak, T., Pojoh, M., & Hisyam, M., eds., Austronesian Diaspora and the Ethnogeneses of People in Indonesian Archipelago, Proceedings of the International Symposium. Jakarta: LIPI Press, 186204.Google Scholar
Dubois, N., Oppo, D. W., Galy, V. V., et al. (2014). Indonesian vegetation response to changes in rainfall seasonality over the past 25,000 yearsNature Geoscience, 7(7), 513517.Google Scholar
Groves, C. P. (1971). Systematics of the genus Nycticebus. In Taxonomy, Anatomy, Reproduction. Proceedings of the Third International Congress of Primatology 1, 4453.Google Scholar
Groves, C. P. (1998). Systematics of tarsiers and lorisesPrimates, 39(1), 1327.Google Scholar
Groves, C., & Maryanto, I. (2008). Craniometry of slow lorises (genus Nycticebus) of insular Southeast Asia. In Shekelle, M., Groves, C., Maryanto, I., Schulze, H., & Fitch-Snyder., H. Primates of the Oriental Night. Jakarta: LIPI Press, 115122.Google Scholar
Harrison, T., Krigbaum, J., & Manser, J. (2006). Primate biogeography and ecology on the Sunda Shelf Islands: a paleontological and zooarchaeological perspective. In Lehman, S. N., & Fleagle, J. G.. Primate Biogeography. New York: Springer, 331372.Google Scholar
Ingicco, T. (2010). Les primates quaternaires de Song Terus (Java Est, Indonésie) implications paléobiogéographiques et archéozoologiques pour l’Asie du Sud-Est. Ph.D. thesis, Muséum national d’Histoire naturelle, Paris.Google Scholar
Ingicco, T., Moigne, A.-M., & Gommery, D. 2012. A deciduous and permanent dental wear stage system for assessing the age of Trachypithecus sp. specimens (Colobinae, Primates). Journal of Archaeological Science, 39, 421427.CrossRefGoogle Scholar
Ingicco, T., Amano, N., Setiagama, K., et al. (2020). From food to grave good: Non-human primate exploitation in Early to Mid-Holocene Eastern Java (Indonesia). Current Anthropology, 61, 264277.CrossRefGoogle Scholar
Jenkins, F. A. (1973). The functional anatomy and evolution of the mammalian humero‐ulnar articulationAmerican Journal of Anatomy, 137(3), 281297.CrossRefGoogle ScholarPubMed
Ji, X., Youlatos, D., Jablonski, N. G., et al. (2020). Oldest colobine calcaneus from East Asia (Zhaotong, Yunnan, China), Journal of Human Evolution, 147, 113Google Scholar
Jolly, C. (1967). The evolution of the baboons. In Vartborg, H., ed., The Baboon in Medical Research. Vol. II. Austin: University of Texas Press, 427457.Google Scholar
Kershaw, A. P., van der Kaars, S., & Moss, P. T. (2001). Late Quaternary Milankovitch-scale climatic change and variability and its impact on monsoonal Australasia. Marine Geology, 201 (1–3), 8195.Google Scholar
Knussmann, R. (1967). Humerus, ulna and radius der Simiae. Bibliotheca Primatologica, vol. 5, Basel: Prager.Google Scholar
Kool, K. M. (1993). The diet and feeding behavior of the silver leaf monkey (Trachypithecus auratus sondaicus) in Indonesia. International Journal of Primatology, 14(5), 667700.CrossRefGoogle Scholar
Ky-Kidd, K., & Piper, P. (2004). Identification of morphological variation in the humeri of Bornean primates and its application to zooarchaeology. Archaeofauna, 13, 8595.Google Scholar
Langley, M. C., Amano, N., Wedage, O., et al. (2020). Bows and arrows and complex symbolic displays 48,000 years ago in the South Asian tropics. Science Advances, 6, eaba3831Google Scholar
Larson, S. G., & Stern, J. T. (1989). Role of supraspinatus in the quadrupedal locomotion of vervets (Cercopithecus aethiops): implications for interpretation of humeral morphologyAmerican Journal of Physical Anthropology79(3), 369377.Google Scholar
Lewis, H., Paz, V., Lara, M., et al. (2008). Terminal Pleistocene to mid-Holocene occupation and an early cremation burial at Ille Cave, Palawan, Philippines. Antiquity, 82(316), 318335.Google Scholar
Lucas, P. W., & Teaford, M. F. (1994). Functional morphology of colobine teeth. In Davies, G., & Oates, J., eds., Colobine Monkeys: Their Ecology, Behaviour and Evolution Cambridge: Cambridge University Press, 173–203.Google Scholar
Lucas, P. W., Corlett, R. T., & Luke, D. A. (1986). Postcanine tooth size and diet in anthropoid primatesZeitschrift für Morphologie und Anthropologie, 76(3), 253276.CrossRefGoogle ScholarPubMed
Nekaris, K. A. I., & Jaffe, S. (2007). Unexpected diversity of slow lorises (Nycticebus spp.) within the Javan pet trade implications for slow loris taxonomyContributions to Zoology76(3), 187196.Google Scholar
Nekaris, K. A. I., Moore, R. S., Rode, E. J., & Fry, B. G. (2013). Mad, bad and dangerous to know: the biochemistry, ecology and evolution of slow loris venomJournal of Venomous Animals and Toxins including Tropical Diseases19(1), 21.Google Scholar
Newsome, J., & Flenley, J. R. (1988). Late Quaternary vegetational history of the central highlands of Sumatra. II. Palaeopalynology and vegetational history. Journal of Biogeography, 1, 555578.CrossRefGoogle Scholar
Nijman, V. (2000). Geographic distribution of ebony leaf monkey Trachypithecus auratusContributions to Zoology, 69(3), 157177.Google Scholar
Nijman, V., & Van Balen, S. B. (1998). A faunal survey of the Dieng Mountains, Central Java, Indonesia: distribution and conservation of endemic primate taxaOryx32(02), 145156.Google Scholar
Lara, M., Paz, V., Lewis, H., & Solheim, W. (2015). Bone modifications in an Early Holocene cremation burial from Palawan, Philippines. International Journal of Osteoarchaeology, 25(5), 637652.Google Scholar
Lloyd-Smith, L. R. (2009). Chronologies of the dead: Later prehistoric burial practice at the Niah Caves, Sarawak. PhD thesis, University of Cambridge.Google Scholar
Maloney, B. K., & McCormac, F. G. (1995). A 30,000-year pollen and radiocarbon record from Highland Sumatra as evidence for climatic changeRadiocarbon, 37(02), 181190.CrossRefGoogle Scholar
Maloney, B. K., & McCormac, F. G. (1996). Palaeoenvironments of North Sumatra: a 30,000-year-old pollen record from Pea BullokBulletin of the Indo-Pacific Prehistory Association14, 7382.Google Scholar
Morwood, M. J., Sutikna, T., Saptomo, E. W., et al. (2008). Climate, people and faunal succession on Java, Indonesia: evidence from Song GupuhJournal of Archaeological Science, 35 (7), 17761789.CrossRefGoogle Scholar
O’Connor, S. (2007). New evidence from East Timor contributes to our understanding of earliest modern human colonisation east of the Sunda ShelfAntiquity81(313), 523535.CrossRefGoogle Scholar
O’Connor, S., Ono, R., & Clarkson, C. (2011). Pelagic fishing at 42,000 years before the present and the maritime skills of modern humansScience334(6059), 11171121.Google Scholar
Olivier, G., & Caix, M. (1959). L’humérus du Semnopithèque. Mammalia, 23(1), 7790.CrossRefGoogle Scholar
Olivier, G., & Fenart, R. (1956). Les os de la jambe du Semnopithèque. Mammalia, 20(3), 249275.Google Scholar
Olivier, G., & Fontaine, M. (1957). Les os du pied du Semnopithèque. Mammalia, 21(4), 142189.CrossRefGoogle Scholar
Olivier, G., & Piganiol, G. (1957). Le fémur du Semnopithèque. Mammalia, 21(4), 430451.Google Scholar
Olivier, G., & Soutoul, J. (1960). L’avant-bras du Semnopithèque. Mammalia 24(2), 228258.Google Scholar
Olivier, G., & Soutoul, J. (1961). Les os de la main du Semnopithèque. Mammalia, 25, 499527.Google Scholar
Pasveer, J. M. (2004). The Djief Hunters, 26,000 years of Rainforest Exploitation on the Bird’s Head of Papua, Indonesia. Modern Quaternary Research in Southeast Asia, volume 17. Rotterdam: Balkema.Google Scholar
Pawlik, A. F., Piper, P. J., Paylona, M. G. P., et al. (2014). Adaptation and foraging from the Terminal Pleistocene to the Early Holocene: Excavation at Bubog on Ilin Island, Philippines. Journal of Field Archaeology, 39(3), 230247.CrossRefGoogle Scholar
Pawlik, A. F., Piper, P. J., Wood, R. E., et al. (2015). Shell tool technology in Island Southeast Asia: an early Middle Holocene Tridacna adze from Ilin Island, Mindoro, Philippines. Antiquity, 89(344), 292308.CrossRefGoogle Scholar
Piper, P. J., & Rabett, R. J. (2009). Hunting in a tropical rainforest: evidence from the Terminal Pleistocene at Lobang Hangus, Niah Caves, Sarawak. International Journal of Osteoarchaeology, 19(4), 551565.Google Scholar
Piper, P., & Rabett, R. (2016). Vertebrate fauna from the Niah Caves, In Barker, G., & Farr, L., eds., Archaeological Investigations in the Niah Caves, Sarawak. Cambridge: McDonald Institute for Archaeological Research, 401454.Google Scholar
Piper, P. J., Rabett, R. J., & Kurui, E. B. (2008). Using community, composition and structural variation in terminal Pleistocene vertebrate assemblages to identify human hunting behavior at Niah Caves, Borneo. Bulletin of the Indo-Pacific Prehistory Association, 28, 8898.Google Scholar
Preuschoft, H. (1969). Statische Untersuchungen am Fuß der Primaten. Zeitschrift für Anatomie und Entwicklungsgeschichte, 129, 285345Google Scholar
Rabett, R. J. (2005). The early exploitation of Southeast Asian mangroves: Bone technology from caves and open sites. Asian Perspectives, 44, 154179.Google Scholar
Rabett, R. J. (2012). Human Adaptation in the Asian Palaeolithic: Hominin Dispersal and Behaviour during the Late Quaternary. Cambridge: Cambridge University Press.Google Scholar
Rabett, R. J., & Piper, P. J. (2012). The emergence of bone technologies at the end of the Pleistocene in Southeast Asia: regional and evolutionary implications. Cambridge Archaeological Journal, 22, 3756.Google Scholar
Ravosa, M. J. (1998). Cranial allometry and geographic variation in slow lorises (Nycticebus)American Journal of Primatology, 45(3), 225243.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Richardson, M., Mittermeier, R. A., Rylands, A. B., & Konstant, B. (2008). Macaca nemestrina. The IUCN Red List of Threatened Species. Version 2015.1. Available from: www.iucnredlist.orgGoogle Scholar
Rose, M. D. (1983). Miocene hominoid postcranial morphology: monkey-like, ape-like, neither, or both? In Ciochon, R. L., & Corruccini, R. S., eds., New Interpretations of Ape and Human Ancestry. New York: Plenum Press, 405417.Google Scholar
Rose, M. D. (1988). Another look at the anthropoid elbow. Journal of Human Evolution, 17(1–2), 193224.Google Scholar
Russell, J. M., Vogel, H., Konecky, B. L., et al. (2014). Glacial forcing of central Indonesian hydroclimate since 60,000 y BPProceedings of the National Academy of Sciences of the United States of America, 111(14), 51005105.Google Scholar
Sémah, F., Sémah, A.-M., Falguères, C., et al. (2004). The significance of the Punung karst area (Eastern Java) for the chronology of the Javanese Palaeolithic, with special reference to the Song Terus cave. In Keates, S. G., & Pasveer, J., eds., Modern Quaternary Research in Southeast Asia, vol. 18, Rotterdam: Balkema, 4561.Google Scholar
Senturia, S. J. (1995). Morphometry and allometry of the primate humerusPrimates 36(4), 523547.Google Scholar
Senut, B. (1986). Long bones of the primate upper limb: monomorphic or dimorphic? Human Evolution, 1(1), 7.Google Scholar
Setiagama, F. K. (2006). L’industrie osseuse de l’horizon Keplek, Holocène de la grotte de Song Terus, Punung, Java Est (Indonésie). Master’s thesis, Muséum national d’Histoire naturelle.Google Scholar
Simanjuntak, T., & Asikin, I. N. (2004). Early Holocene human settlement in eastern Java. Bulletin of the Indo-Pacific Prehistory Association, 2, 1319.Google Scholar
Supriatna, J., & Wahyono, E. H. (2000). PanduanLapangan Primata Indonesia. Jakarta:Yaysan Obor Indonesia.Google Scholar
Swindler, D. R. (2002). Primate Dentition. An Introduction to the Teeth of Non-human Primates. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Szabó, K., Brumm, A., Bellwood, P., et al. (2007). Shell artefact production at 32,000–28,000 BP in Island Southeast Asia: thinking across media? Current Anthropology48(5), 701723.Google Scholar
van den Bergh, G. D., de Vos, J., & Sondaar, P. Y. (2001). The Late Quaternary palaeogeography of mammal evolution in the Indonesian ArchipelagoPalaeogeography, Palaeoclimatology, Palaeoecology171(3), 385408.CrossRefGoogle Scholar
van der Kaars, W. A. (1998). Marine and terrestrial pollen records of the last glacial cycle from the Indonesian region: Bandung Basin and Banda Sea. Palaeoclimates, 3, 209219.Google Scholar
van der Kaars, W. A., & Dam, M. A. C. (1995). A 135,000-year record of vegetational and climatic change from the Bandung area, West-Java, Indonesia. Palaeogeography, Palaeoclimatology, Palaeoecology, 117(1–2), 5572.Google Scholar
van der Kaars, W. A., Wang, X., Kershaw, P., Guichard, F., & Setiabudi, D. A. (2000). A Late Quaternary palaeoecological record from the Banda Sea, Indonesia: Patterns of vegetation, climate and biomass burning in Indonesia and northern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 155(1–2), 135153.Google Scholar
Washburn, S. L. (1942). Skeletal proportions of adult langurs and macaques, Human Biology, 14(4), 444472.Google Scholar
Wedage, O., Amano, N., Langley, M. C., et al. (2019). Specialized rainforest hunting by Homo sapiens ~45,000 years ago. Nature Commications, 10(1), 739.Google Scholar
Wedage, O., Roberts, P., Faulkner, P., et al. (2020). Late Pleistocene to early-Holocene rainforest foraging in Sri Lanka: Multidisciplinary analysis at Kitulgala Beli-lena. Quaternary Science Reviews, 231, 106200.Google Scholar
Willis, M. S., & Swindler, D. R. (2004). Molar size and shape variations among Asian colobines. American Journal of Physical Anthropology, 125(1), 5160.Google Scholar
Wirdateti, , Okayama, T., & Kurniati, H. (2006). Genetic diversity of slow loris (Nycticebus coucang) based on mitochondrial DNATropics15(4), 377381.Google Scholar
Wirdateti, , Dahrudin, H., & Sumadidjaya, A. (2011). Distribution and habitat of Javan Loris (Nycticebus javanicus) in plantations at Lebak District and Salak Mount (West Java)Journal Zoo Indonesia20(1), 1726.Google Scholar
Wurster, C. M., Bird, M. I., Bull, I. D., et al. (2010). Forest contraction in north equatorial Southeast Asia during the Last Glacial Period. Proceedings of the National Academy of Sciences of the United States of America, 107 (35), 1550815511.Google Scholar
Yeager, C. P., & Kirkpatrick, R. C. (1998) Asian colobine social structure: ecological and evolutionary constraints. Primates, 39(2), 147.Google Scholar
Youlatos, D. (2003). Calcaneal features of the Greek Miocene primate Mesopithecus pentelicus (Cercopithecoidea: Colobinae). Geobios, 36(2), 229239.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats