Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-29T09:03:57.401Z Has data issue: false hasContentIssue false

21 - Ideal MHD in special relativity

Published online by Cambridge University Press:  05 March 2013

J. P. Goedbloed
Affiliation:
FOM-Institute for Plasma Physics
Rony Keppens
Affiliation:
Katholieke Universiteit Leuven, Belgium
Stefaan Poedts
Affiliation:
Katholieke Universiteit Leuven, Belgium
Get access

Summary

We have seen that the MHD description for the macroscopic dynamics of plasmas offers a uniquely powerful, unifying, viewpoint on both laboratory and astrophysical plasmas. The applicability of the MHD viewpoint was discussed previously in Volume [1], along with the various approximations made to arrive at the MHD equations from first principles. For most laboratory plasmas, the single fluid ideal or resistive MHD model eventually needs to be extended towards a multi-fluid model and by including important kinetic effects, since its continuum approach to plasma modeling neglected, e.g., Landau damping as well as many other velocity-space dependent physical phenomena. For many astrophysical plasmas, we face yet another shortcoming of the MHD model used thus far, namely that we restricted all attention to non-relativistic plasma velocities. This is perfectly adequate for most of the plasma found in our own solar system. However, astronomical observations indicate that, e.g., the extragalactic jets associated with Active Galactic Nuclei clearly harbor dynamically important magnetic fields and relativistically flowing plasmas. In order to model these plasmas in a continuum model, the restriction on the plasma velocities must be alleviated, by revisiting the ideal MHD equations in a frame-invariant relativistic formulation within fourdimensional space-time. In this chapter, we present such a formulation, restricting our attention to special relativity where we still have a “flat” geometry. In recent years, modern computational techniques such as those discussed in Chapter 19 have started to be used in this more demanding relativistic MHD regime. Since such activities are necessarily still maturing, we only summarize the numeric algorithmic challenges posed by the ideal MHD model in special relativity.

Type
Chapter
Information
Advanced Magnetohydrodynamics
With Applications to Laboratory and Astrophysical Plasmas
, pp. 543 - 590
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×