Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-13T05:23:41.642Z Has data issue: false hasContentIssue false

9 - Atmospheric Particles

Published online by Cambridge University Press:  19 June 2019

Christian Seigneur
Affiliation:
École des Ponts Paris Tech
Get access

Summary

Atmospheric particles and, in particular, fine particles are one of the major components of air pollution. They lead to significant adverse health effects, degrade atmospheric visibility, are involved in cloud formation and precipitation, and play a role in climate change. Particles have various sizes, ranging from ultrafine and fine to coarse, and different chemical compositions, since they may contain a large number of different inorganic and organic species. In addition, particles typically include a primary fraction, which has been emitted from various sources directly into the atmosphere, and a secondary fraction, which has been formed in the atmosphere via chemical reactions from precursor gases. The secondary fraction generally dominates the mass of fine particles. Therefore, the development of efficient emission control strategies to decrease the ambient concentrations of atmospheric particles is a challenging task, because it requires identifying the numerous sources of atmospheric particles, including those of the gaseous precursors of the secondary fraction, in order to properly characterize the processes that govern particulate matter (PM) formation and understand the complex relationships that link gaseous precursors and the secondary PM fraction.

Type
Chapter
Information
Air Pollution
Concepts, Theory, and Applications
, pp. 190 - 238
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Airparif, 2011. Source Apportionment of Airborne Particles in the Île-de-France Region, Final report, Airparif, Paris.Google Scholar
Ansari, A.S. and Pandis, S.N., 1998. Response of inorganic PM to precursor concentrations, Environ. Sci. Technol., 32, 27062714.Google Scholar
Bond, T.C. and Bergstrom, R.W., 2006. Light absorption by carbonaceous particles: An investigative review, Aerosol Sci. Technol., 40, 2767.Google Scholar
Brégonzio-Rozier, L., Siekmann, F., Giorio, C., Pangui, E., Morales, S.B., Temime-Roussel, B., Gratien, A., Michoud, V., Ravier, S., Cazaunau, M., Tapparo, A., Monod, A., Doussin, J.-F., 2016. Gaseous products and secondary organic aerosol formation during long term oxidation of isoprene and methacrolein, Atmos. Chem. Phys., 15, 29532968.Google Scholar
Capaldo, K.P., Pilinis, C., and Pandis, S.N. (2000). A computationally efficient hybrid approach for dynamic gas/aerosol transfer in air quality models, Atmos. Environ., 34, 36173627.Google Scholar
Chow, J.C., Watson, J.G., Crow, D., Lowenthal, D.H., and Merrifield, T., 2001. Comparison of IMPROVE and NIOSH carbon measurements, Aerosol Sci. Technol., 34, 2334.Google Scholar
Couvidat, F. and Seigneur, C., 2011. Modeling secondary organic aerosol formation from isoprene under dry and humid conditions, Atmos. Chem. Phys., 11, 893909.CrossRefGoogle Scholar
Couvidat, F., Debry, É., Sartelet, K., and Seigneur, C., 2012. A hydrophilic/hydrophobic organic (H2O) model: Development, evaluation and sensitivity analysis, J. Geophys. Res., 117, D10304, doi:10.1029/2011JD017214.Google Scholar
Couvidat, F., Sartelet, K., and Seigneur, C., 2013. Investigating the impact of aqueous-phase chemistry and wet deposition on organic aerosol formation using a molecular surrogate modeling approach, Environ. Sci. Technol., 47, 914922.Google Scholar
Couvidat, F. and Sartelet, K., 2015. The Secondary Organic Aerosol Processor (SOAP) model: A unified model with different ranges of complexity based on the molecular surrogate approach. Geosci. Model Dev., 8, 11111138.Google Scholar
Devilliers, M., Debry, É., Sartelet, K., and Seigneur, C., 2013. A new algorithm to solve condensation/evaporation for ultra fine, fine, and coarse particles, J. Aerosol Sci., 55, 116136.Google Scholar
Donahue, N.M., Robinson, A.L., Stanier, C.O., and Pandis, S.N., 2006. Coupled partitioning, dilution, and chemical aging of semivolatile organics, Environ. Sci. Technol., 49, 26352642.Google Scholar
Donahue, N.M., Epstein, S.A., Pandis, S.N., and Robinson, A.L., 2011. A two-dimensional volatility basis set: 1. Organic-aerosol mixing thermodynamics, Atmos. Chem. Phys., 11, 33033319.CrossRefGoogle Scholar
Dumka, U.C., Tiwari, S., Kaskaoutis, D.G., Hopke, P.K., Singh, J., Srivastava, A.K., Bisht, D.S., Attri, S.D., Tyagi, S., Misra, A., and Munawar Pasha, G.S., 2017. Assessment of PM2.5 chemical compositions in Delhi: Primary vs secondary emissions and contribution to light extinction and visibility degradation, J. Atmos. Chem., 74, 423450.Google Scholar
Eddingsaas, N.C., Loza, C.L., Yee, L.D., Chan, M., Schilling, K.A., Chhabra, P.S., Seinfeld, J.H., and Wennberg, P.O., 2012. a-Pinene photooxidation under controlled chemical conditions – Part 2: SOA yield and composition in low- and high-NOx environments, Atmos. Chem. Phys., 12, 74137427.Google Scholar
Ervens, B., 2015. Modeling the processing of aerosol and trace gases in clouds and fogs, Chem. Rev., 115, 41574198.Google Scholar
Finlayson-Pitts, B.J. and Pitts, J.N. Jr., 2000. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications, Academic Press, New York.Google Scholar
Fountoukis, C. and Nenes, A., 2007. ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-NH4+-Na+-SO42−-NO3-Cl-H2O aerosols, Atmos. Chem. Phys., 7, 46394659.CrossRefGoogle Scholar
Friedlander, S.K., 2000. Smoke, Dust, and Haze – Fundamentals of Aerosol Dynamics, Oxford University Press, Oxford.Google Scholar
Fritz, A., Dugay, F., Honoré, C., Sanchez, O., Ghersi, V., Songeur, C., Pernot, P., Mahé, F., Moukhtar, S., and Sciare, J., 2015. Bilan de l’épisode de pollution de mars 2014 et évaluation de la mise en place de la circulation alternée le 17 mars 2014 en Île-de-France, Pollution Atmosphérique, Special issue, March 2015, 2534.Google Scholar
Fuchs, N.A., 1964. Mechanics of Aerosols, Pergamon, New York.Google Scholar
Fuchs, N.A. and Sutugin, A.G., 1971. High dispersed aerosol, in Topics in Current Aerosol Research, Hidy, G.M. and Broch, J.R., eds., 2, 160, Pergamon Press, Oxford, UK.Google Scholar
Gelbard, F. and Seinfeld, J.H., 1980. Simulation of multicomponent aerosol dynamics, J. Colloid Interface Sci., 78, 485501.Google Scholar
Hering, S.V. and Friedlander, S.K., 1982. Origins of aerosol sulphur size distributions in the Los Angeles basin, Atmos. Environ., 16, 26472656.Google Scholar
Hughes, L.S., Allen, J.O., Bhave, P., Kleeman, M.J., Cass, G.R., Liu, D.-Y., Fergenson, D.P., Morrical, B.D., and Prather, K.A., 2000. Evolution of atmospheric particles along trajectories crossing the Los Angeles basin, Environ. Sci. Technol., 34, 30583068.CrossRefGoogle Scholar
Jacobson, M.Z. and Turco, R.P., 1995. Simulating condensational growth, evaporation, and coagulation of aerosols using a combined moving and stationary size grid, Aerosol Sci. Technol., 22, 7392.Google Scholar
Jacobson, M.Z., 2005a. Fundamentals of Atmospheric Modeling, Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Jacobson, M.Z., 2005b. A solution to the problem of nonequilibirum acid/base gas-particle transfer at long time step, Aerosol Sci. Technol., 39, 92103.Google Scholar
Jaoui, M., Kleindienst, T.E., Offenberg, J.H., Lewandowski, M., and Lonneman, W.A., 2012. SOA formation from the atmospheric oxidation of 2-methyl-3-buten-2-ol and its implications for PM2.5, Atmos. Chem. Phys., 12, 21732188.Google Scholar
Kroll, J.H., Ng, N.L., Murphy, S.M., Flagan, R.C., and Seinfeld, J.H., 2006. Secondary organic aerosol formation from isoprene photooxidation, Environ. Sci. Technol., 40, 18691977.Google Scholar
Kuang, C., McMurry, P.H., McCormick, A.V., and Eisele, F.L., 2008. Dependence of nucleation rates on sulfuric acid vapor concentration in diverse atmospheric locations, J. Geophys. Res., 113, D10209.CrossRefGoogle Scholar
Lee, A., Goldstein, A.H., Kroll, J.H., Ng, N.L., Varutbangkut, V., Flagan, R.C., and Seinfeld, J.H., 2006. Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes, J. Geophys. Res., 111, D17305.Google Scholar
Loza, C.L., Craven, J.S., Yee, L.D., Coggon, M.M., Schwantes, R.H., Shiraiwa, M., Zhang, X., Schilling, K.A., Ng, N.L., Canagaratna, M.R., Ziemann, P.J., Flagan, R.C., and Seinfeld, J.H., 2014. Secondary organic aerosol yields of 12-carbon alkanes, Atmos. Chem. Phys., 14, 14231439.Google Scholar
Matsunaga, A., Docherty, K.S., Lim, Y.B., and Ziemann, P.J., 2009. Composition and yields of secondary organic aerosol formed from OH radical-initiated reactions of linear alkenes in the presence of NOx: modeling and measurements, Atmos. Environ., 43, 13491357.Google Scholar
Mozurkewich, M., 1993. The dissociation constant of ammonium nitrate and its dependence on temperature, relative humidity and particle size, Atmos. Environ. Part A, 27, 261270.Google Scholar
Ng, N.L., Kroll, J.H., Chan, A.W.H., Chhabra, P.S., Flagan, R.C., and Seinfeld, J.H., 2007a. Secondary organic aerosol formation from m-xylene, toluene, and benzene, Atmos. Chem. Phys., 7, 39093922.CrossRefGoogle Scholar
Ng, N.L., Chhabra, P.S., Chan, A.W.H., Surratt, J.D., Kroll, J.H., Kwan, A.J., McCabe, D.C., Wennberg, P.O., Sorooshian, A., Murphy, S.M., Dalleska, N.F., Flagan, R.C., and Seinfeld, J.H., 2007b. Effect of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes, Atmos. Chem. Phys., 7, 51595174.Google Scholar
Ng, N.L., Brown, S.S., Archibald, A.T., Atlas, E., Cohen, R.C., Crowley, J.N., Day, D.A., Donahue, N.M., Fry, J.L., Fuchs, H., Griffin, R.J., Guzman, M.I., Herrmann, H., Hodzic, A., Iinuma, Y., Jimenez, J.L., Kiendler-Scharr, A., Lee, B.H., Luecken, D.J., Mao, J., McLaren, R., Mutzel, A., Osthoff, H.D., Ouyang, B., Picquet-Varrault, B., Platt, U., Pye, H.O.T., Rudich, Y., Schwantes, R.H., Shiraiwa, M., Stutz, J., Thornton, J.A., Tilgner, A., Williams, B.J., and Zaveri, R.A., 2017. Nitrate radicals and biogenic volatile organic compounds: Oxidation, mechanisms, and organic aerosol, Atmos. Chem. Phys., 17, 21032162.Google Scholar
Odum, J.R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R.C., and Seinfeld, J.H., 1996. Gas/particle partitioning and secondary organic aerosol yields, Environ. Sci. Technol., 30, 25802585.CrossRefGoogle Scholar
Pankow, J.F., 1994 An absorption model of gas/particle partitioning of organic compounds in the atmosphere, Atmos. Environ., 28, 185188.Google Scholar
Perry’s Chemical Engineers’ Handbook, Green, D.W. and Perry, R.H., eds., 2008. McGraw Hill, New York.Google Scholar
Petzold, A., Schloesser, H., Sheridan, P.J., Arnott, W.P., Ogren, J.A., and Virkkula, A., 2005. Evaluation of multiangle absorption photometry for measuring aerosol light absorption, Aerosol Sci. Technol., 39, 4051.CrossRefGoogle Scholar
Pun, B., Seigneur, C., and Lohman, K., 2006. Modeling secondary organic aerosol via multiphase partitioning with molecular data, Environ. Sci. Technol., 40, 47224731.Google Scholar
Sartelet, K., Hayami, H., Albriet, B., and Sportisse, B., 2006. Development and preliminary validation of a modal aerosol model for tropospheric chemistry: MAM, Aerosol Sci. Technol., 40, 118127.Google Scholar
Saxena, P., Hildemann, L.M., McMurry, P.H., and Seinfeld, J.H., 1995. Organics alter hygroscopic behavior of atmospheric particles, J. Geophys. Res., 100, 1875518770.Google Scholar
Schwarzenbach, R.P., Gschwend, P.M., and Imboden, D.M., 2003. Environmental Organic Chemistry, Wiley-Interscience, Hoboken, NJ.Google Scholar
Seinfeld, J.H. and Pandis, S.N., 2016. Atmospheric Chemistry and Physics – From Air Pollution to Climate Change, Wiley, New York.Google Scholar
Stelson, A.W., Friedlander, S.K., and Seinfeld, J.H., 1979. A note on the equilibrium relationship between ammonia and nitric acid and particulate ammonium nitrate, Atmos. Environ., 13, 369371.Google Scholar
Stelson, A.W. and Seinfeld, J.H., 1982. Relative humidity and temperature dependence of the ammonium nitrate dissociation constant, Atmos. Environ., 16, 983992.Google Scholar
Wang, H., Tian, M., Li, X., Chang, Q., Cao, J., Yang, F., Ma, Y., and He, K., 2015. Chemical composition and light extinction contribution of PM2.5 in urban Beijing for a 1-year period, Aerosol Air Quality Res., 15, 22002211.Google Scholar
Weschler, C.J. and Nazaroff, W.W., 2008. Semivolatile organic compounds in indoor environments, Atmos. Environ., 42, 90189040.Google Scholar
Whitby, K.T., 1978. The physical characteristics of sulphur aerosols, Atmos. Environ., 12, 135159.Google Scholar
Zhang, Y., Seigneur, C., Seinfeld, J.H., Jacobson, M.Z., and Binkowski, F., 1999. Simulation of aerosol dynamics: A comparative review of algorithms used in air quality models, Aerosol Sci. Technol., 31, 487514.CrossRefGoogle Scholar
Zhang, Y., Seigneur, C., Seinfeld, J.H., Jacobson, M., Clegg, S.L., and Binkowski, F.S., 2000. A comparative review of inorganic aerosol thermodynamic equilibrium modules: Similarities, differences, and their likely causes, Atmos. Environ., 34, 117137.Google Scholar
Zhang, Y., McMurry, P.H., Yu, F., and Jacobson, M.Z., 2010. A comparative study of nucleation parameterizations: 1. Examination and evaluation of the formulations, J. Geophys. Res., 115, D20212, doi: 10.1029/2010JD014150.Google Scholar
Zhu, S., Sartelet, K., and Seigneur, C., 2015. A size-composition resolved aerosol model for simulating the dynamics of externally mixed particles: SCRAM (v 1.0), Geosci. Model Dev., 8, 15951612.Google Scholar
Ziemann, P.J. and Atkinson., R., 2012. Kinetics, products, and mechanisms of secondary organic aerosol formation, Chem. Soc. Rev., 41, 65826605.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×