Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-02T22:13:21.602Z Has data issue: false hasContentIssue false

6 - Codes Based on the Fourier Transform

Published online by Cambridge University Press:  05 June 2012

Richard E. Blahut
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

Applications of the discrete Fourier transform in the complex field occur throughout the subject of signal processing. Fourier transforms also exist in the Galois field GF(q) and can play an important role in the study and processing of GF(q)-valued signals, that is, of codewords. By using the Fourier transform, the ideas of coding theory can be described in a setting that is much closer to the methods of signal processing. Cyclic codes can be defined as codes whose codewords have certain specified spectral components equal to zero.

In this chapter we shall study cyclic codes in the setting of the Fourier transform. In the next chapter, we shall study decoding algorithms for cyclic codes. The most important classes of cyclic codes studied in this chapter are the Reed–Solomon codes and their subcodes, the Bose–Chaudhuri–Hocquenghem (BCH) codes.

The BCH codes form a large class of multiple-error-correcting codes that occupy a prominent place in the theory and practice of error correction. This prominence is due to at least four reasons. (1) Provided the blocklength is not excessive, there are good codes in this class (but generally, not the best of known codes). (2) Relatively simple and implementable encoding and decoding techniques are known (although, if simplicity were the only consideration, other codes may be preferable). (3) The popular and powerful class of nonbinary BCH codes known as Reed–Solomon codes has a certain strong optimality property, and these codes have a well-understood distance structure.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×