Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-13T02:03:05.302Z Has data issue: false hasContentIssue false

9 - Some aspects of amino-acid and peptide drug design

Published online by Cambridge University Press:  05 June 2012

G. C. Barrett
Affiliation:
Oxford Brookes University
D. T. Elmore
Affiliation:
University of Oxford
Get access

Summary

Amino-acid antimetabolites

Amino acids are not suitable in most cases as a basis for developing antibiotics, since they occur in all naturally occurring proteins. Consequently, any attempt to deprive pathological micro-organisms of coded amino acids would cause serious damage to the human host. An exception to this general rule is found with 4-aminobenzoic acid, which is not a coded amino acid but which is present in folic acid (9.1). Humans do not require free 4-aminobenzoic acid because they cannot synthesise folic acid. Folic acid is obtained from dietary sources and from the biosynthetic activity of intestinal bacteria. Since bacteria synthesise folic acid from 4-aminobenzoic acid, an antimetabolite of this offers a possible weapon against attack by pathological micro-organisms. 4-Aminobenzenesulphonic acid structurally resembles 4-aminobenzoic acid closely (they are mutually isosteric) and inhibits the synthesis of folic acid by pathogenic organisms, not by competitive inhibition but rather by behaving as an alternative substrate for the enzyme dihydropteroate synthetase, which catalyses the reaction between 2-amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropterin pyrophosphate and 4-aminobenzoic acid. The products of the alternative reaction involving sulphonamides are the expected analogues of dihydropteroate. Crucial to the efficacy of sulphonamides is the failure of folic acid to enter the bacterial cell. All the folic acid required by the bacteria must be syn-thesised inside the cell. In contrast, sulphonamides like 4-aminobenzoic acid readily enter the bacterial cell.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×