Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-15T08:58:22.516Z Has data issue: false hasContentIssue false

Chapter 10 - Operator perturbation methods

Published online by Cambridge University Press:  05 June 2012

Annamaneni Peraiah
Affiliation:
Indian Institute of Astrophysics, India
Get access

Summary

Introduction

The complete linearization method of Auer and Mihalas (1969) was a significant advance in solving complex problems of radiative transfer and was followed by the work of Rybicki (1971), Kalkofen (1974) and others. These are basically Newton–Raphson linearization methods which are highly efficient but are not favourably oriented towards computer time and storage. Certain problems such as those which involve radiation hydrodynamics require faster methods with sometimes a little loss of accuracy. Operator perturbation techniques were developed to meet the needs of these problems. An excellent survey of these methods is given in Kalkofen (1987).

Wu (1992) developed a method that can deal with complex models with a high rate of convergence in multi-level non-LTE line formation calculations. It essentially consists of linearization of the transfer equation and constraints, then solving them separately. It overcomes the disadvantage of requiring the simultaneous solution of the corresponding equations by the complete linearization method and the poor convergence rate. Hubený and Lanz (1992) suggested two approaches to accelerate the method of complete linearization. The first one is the so called Kantorovich variant of the Newton–Raphson method by which the Jacobi matrix of the system is fixed. This reduces the calculation of the number of matrix inversions considerably and retains them fixed during the subsequent computations. The second approach is the application of Ng acceleration. These approaches reduce the computer time by about 2–5 times.

Type
Chapter
Information
An Introduction to Radiative Transfer
Methods and Applications in Astrophysics
, pp. 330 - 361
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×