Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-16T08:55:29.285Z Has data issue: false hasContentIssue false

Chapter 7 - Transfer equation in moving media: the observer frame

Published online by Cambridge University Press:  05 June 2012

Annamaneni Peraiah
Affiliation:
Indian Institute of Astrophysics, India
Get access

Summary

Introduction

Rapid expansion in nova, stellar atmospheres of supernovae and similar objects is established through several spectroscopic observations. In spectra of these objects, the absorption lines shift towards the violet side from the rest position indicating matter outflow in their atmospheres. These lines are accompanied by red shifted emission characteristics of P Cygni type as seen in figure 7.1 (see Beals (1950), Kuan and Kuhi (1975)). Beals (1929, 1931) interpreted the large widths in the lines of WR spectra to be due to the velocities of expansion of the order of 3000 km s-1 indicative of a rapid outflow of the matter in the outer layers of these stars. He suggested that this outflow of matter is influenced by the radiation pressure in the medium.

It is difficult to obtain the solution of the transfer equation in such spherical media. Beals (1929, 1930, 1931, 1934), Chandrasekhar (1934), Gerasimovič (1934) and Wilson (1934) investigated this problem assuming the medium to be optically thin, neglecting the transfer effects. Struve and Elvey (1934) found that the Doppler widths derived from the flat part of the growth curve were much larger than the thermal value, which they attributed to the ‘turbulent’ motion in the atmosphere which is non-thermal. Struve's observations (1946) showed large scale velocities through the fact that the line profile widths in certain stars were larger than the Doppler widths obtained from curve of growth analysis of their spectra.

Type
Chapter
Information
An Introduction to Radiative Transfer
Methods and Applications in Astrophysics
, pp. 193 - 216
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×