Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-04T00:08:46.884Z Has data issue: false hasContentIssue false
Coming soon

6 - The stability of stars

Dina Prialnik
Affiliation:
Tel-Aviv University
Get access

Summary

In the previous chapter we have dealt with models of the stellar structure under conditions of thermal and hydrostatic equilibrium. But in order to accomplish our first task toward understanding the process of stellar evolution – the investigation of equilibrium configurations – we must test the equilibrium configurations for stability. The difference between stable and unstable equilibrium is illustrated in Figure 6.1 by two balls: one on top of a dome and the other at the bottom of a bowl. Obviously, the former is in an unstable equilibrium state, while the latter is in a stable one. The way to prove (or test) this statement is also obvious and it is generally applicable; it involves a small perturbation of the equilibrium state. Imagine the ball to be slightly perturbed from its position, resulting in a slight imbalance of the forces acting on it. In the first case, this would cause the ball to slide down, running away from its original position. In the second case, on the other hand, the perturbation will lead to small oscillations around the equilibrium position, which friction will eventually dampen, the ball thus returning to its original point. The small imbalance led to the restoration of equilibrium by opposing the tendency of the perturbation. Thus a stable equilibrium may be maintained indefinitely, while an unstable one must end in a runaway, for random small perturbations are always to be expected in realistic physical systems.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • The stability of stars
  • Dina Prialnik, Tel-Aviv University
  • Book: An Introduction to the Theory of Stellar Structure and Evolution
  • Chapter DOI: https://doi.org/10.1017/CBO9780511801549.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • The stability of stars
  • Dina Prialnik, Tel-Aviv University
  • Book: An Introduction to the Theory of Stellar Structure and Evolution
  • Chapter DOI: https://doi.org/10.1017/CBO9780511801549.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • The stability of stars
  • Dina Prialnik, Tel-Aviv University
  • Book: An Introduction to the Theory of Stellar Structure and Evolution
  • Chapter DOI: https://doi.org/10.1017/CBO9780511801549.009
Available formats
×