Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-16T17:07:57.422Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  03 May 2010

A. M. Pollard
Affiliation:
University of Oxford
C. M Batt
Affiliation:
University of Bradford
B. Stern
Affiliation:
University of Bradford
S. M. M. Young
Affiliation:
Tufts University, Massachusetts
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, M. H., Grime, G. W., Marsh, M. A. and Northover, J. P. (2001). The study of thick corrosion layers on archaeological metals using controlled laser ablation in conjunction with an external beam microprobe. Nuclear Instruments and Methods in Physics Research B 181 688–692.CrossRefGoogle Scholar
Ahuja, S. (2003). Chromatography and Separation Science. Amsterdam, Academic Press.Google Scholar
Aitchison, J. (1986). The Statistical Analysis of Compositional Data. London, Chapman and Hall.CrossRefGoogle Scholar
Aitken, M. J. (1990). Scientific Dating Techniques in Archaeology. London, Longman.Google Scholar
Akesson, K., Grynpas, M. D., Hancock, R. G. V., Odselius, R., and Obrant, K. J. (1994). Energy-dispersive X-ray-microanalysis of the bone mineral content in human trabecular bone – a comparison with ICP-ES and neutron-activation analysis. Calcified Tissue International 55 236–239.CrossRefGoogle Scholar
Alfassi, Z. B. (ed.) (1990). Activation Analysis. 2 vols. Boca Raton, CRC Press.Google Scholar
Allen, R. O. (ed.) (1989). Archaeological Chemistry IV. Advances in Chemistry Series 220, Washington, DC, American Chemical Society.CrossRefGoogle Scholar
Allen, R. O., Rogers, M. S., Mitchell, R. S., and Hoffman, M. A. (1982). A geochemical approach to the understanding of ceramic technology in Predynastic Egypt. Archaeometry 24 199–212.CrossRefGoogle Scholar
Allred, A. L. and Rochow, E. G. (1958). A scale of electronegativity based on electrostatic force. Journal of Inorganic and Nuclear Chemistry 5 264–268.CrossRefGoogle Scholar
Al-Saad, Z. (2000). Technology and provenance of a collection of Islamic copper-based objects as found by chemical and lead isotope analysis. Archaeometry 42 385–397.CrossRefGoogle Scholar
Al-Saad, Z. (2002) Chemical composition and manufacturing technology of a collection of various types of Islamic glazes excavated from Jordan. Journal of Archaeological Science 29 803–810.CrossRefGoogle Scholar
Ambrose, S. H. (1990). Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science 17 431–451.CrossRefGoogle Scholar
Ambrose, S. H. (1993). Isotopic analysis of paleodiets: methodological and interpretative considerations. In Investigations of Ancient Human Tissue, ed. Sandford, M. K., Langhorne, Pennsylvania, Gordon and Breach, pp. 59–130.Google Scholar
Ambrose, S. H. and DeNiro, M. J. (1986). Reconstruction of African human diet using bone collagen carbon and nitrogen isotope ratios. Nature 319 321–324.CrossRefGoogle Scholar
Ambrose, S. H. and Katzenberg, A. M. (eds.) (2000). Biogeochemical Approaches in Paleodietary Analysis. London, Plenum.Google Scholar
Ambrose, S. H. and Norr, L. (1993). Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In Prehistoric Human Bone: archaeology at the molecular level, eds. Lambert, J. B. and Grupe, G., Berlin, Springer Verlag, pp. 1–37.CrossRefGoogle Scholar
Andrade, E., Pineda, J. C., Zavala, E. P., et al. (1998). IBA analysis of a possible therapeutic ancient tooth inlay. Nuclear Instruments and Methods in Physics Research B 136–138 908–912.CrossRefGoogle Scholar
Appoloni, C. R., Quinones, F. R. E., Aragao, P. H. A., et al. (2001). EDXRF study of Tupi-Guarani archaeological ceramics. Radiation Physics and Chemistry 61 711–712.CrossRefGoogle Scholar
Ardika, I. W. and Bellwood, P. (1991). Sembiran: the beginnings of Indian contact with Bali. Antiquity 65 221–232.CrossRefGoogle Scholar
Asaro, F. and Perlman, I. (1973). Provenience studies of Mycenean pottery employing neutron activation analysis. In Acts of the International Archaeological Symposium “The Myceneans in the Eastern Mediterranean”, Nicosia 27th March–2nd April 1972, Cyprus, Nicosia, Department of Antiquities, pp. 213–224.Google Scholar
Aspinall, A. and Feather, S. W. (1972). Neutron activation analysis of prehistoric flint mine products. Archaeometry 14 41–53.CrossRefGoogle Scholar
Aspinall, A., Warren, S. E., Crummett, J. G., and Newton, R. G. (1972). Neutron activation analysis of faience beads. Archaeometry 14 27–40.CrossRefGoogle Scholar
Aston, F. W. (1920). Isotopes and atomic weights. Nature 105 617–619.CrossRefGoogle Scholar
Atkins, P. W. (2001). The Elements of Physical Chemistry. Oxford, Oxford University Press (3rd edn.).Google Scholar
Atkins, P. W. and Beren, J. A. (1992). General Chemistry. New York, Scientific American Books (2nd edn.).Google Scholar
Atkins, P. W. and Jones, L. (2002). Chemical Principles: the quest for insight. New York, Freeman (2nd edn.).Google Scholar
Autumn, K., Liang, Y. A., Hsieh, S. T., et al. (2000). Adhesive force of a single gecko foot-hair. Nature 405 681–685.CrossRefGoogle ScholarPubMed
Aveling, E. M. and Heron, C. (1998). Identification of birch bark tar at the Mesolithic site of Star Carr. Ancient Biomolecules 2 69–80.Google Scholar
Aveling, E. M. and Heron, C. (1999). Chewing tar in the early Holocene: an archaeological and ethnographic evaluation. Antiquity 73 579–584.CrossRefGoogle Scholar
Avogadro, A. (1811). D'une manière de déterminer les masses relatives de molécules élémentaires des corps, et les proportions selon lesquelles elles entrent dans ces combinaisons. Journal de Physique LXXIII 58–76.Google Scholar
Badler, V. R., McGovern, P. E., and Michel, R. H. (1990). Drink and be merry! Infrared spectroscopy and ancient near eastern wine. MASCA Research Papers in Science and Archaeology, Philadelphia, University of Pennsylvania7 25–36.Google Scholar
Baffier, D., Girard, M., Menu, M., and Vignaud, C. (1999). Color at the Grande Grotte, Arcy-Sur-Cure (Yonne, France). Anthropologie 103 1–21.Google Scholar
Bakraji, E. H., Othman, I., Sarhil, A., and Al-Somel, N. (2002). Application of instrumental neutron activation analysis and multivariate statistical methods to archaeological Syrian ceramics. Journal of Trace and Microprobe Techniques 20 57–68.CrossRefGoogle Scholar
Balaram, V. (1996). Recent trends in the instrumental analysis of rare earth elements in geological and industrial materials. Trends in Analytical Chemistry 15 475–486.CrossRefGoogle Scholar
Baldwin, S., Deaker, M., and Maher, W. (1994). Low volume microwave digestion of marine biological tissues for the measurement of trace-elements. Analyst 119 1701–1704.CrossRefGoogle ScholarPubMed
Balmer, J. J. (1885). Notiz über die Spectrallinien des Wasserstoffs. Annalen der Physik und Chemie (Neue Folge) 25 80–87.CrossRefGoogle Scholar
Barakat, A. O., Qian, Y., Kim, M., and Kennicutt, M. C. (2001). Chemical characterization of naturally weathered oil residues in arid terrestrial environment in Al-Alamein, Egypt. Environmental International 27 291–310.CrossRefGoogle ScholarPubMed
Barber, D. J. and Freestone, I. C. (1990). An investigation of the origin of the colour of the Lycurgus Cup by analytical transmission electron microscopy. Archaeometry 32 33–45.CrossRefGoogle Scholar
Barford, N. C. (1985). Experimental Measurements: precision, error and truth. London, Addison-Wesley.Google Scholar
Barnard, T. W., Crockett, M. I., Ivaldi, J. C., et al. (1993). Solid-state detector for ICP-OES. Analytical Chemistry 65 1231–1239.CrossRefGoogle Scholar
Barnes, I. L., Shields, W. R. S., Murphy, T. J., and Brill, R. H. (1974). Isotopic analysis of Laurion lead ores. In Archaeological Chemistry, ed. Beck, C. W., Advances in Chemistry Series 138, Washington, DC, American Chemical Society, pp. 1–10.CrossRefGoogle Scholar
Baugh, P. J. (ed.) (1993). Gas Chromatography: a practical approach. Oxford, Oxford University Press.Google Scholar
Baxter, M. J. (1994). Exploratory Multivariate Analysis in Archaeology. Edinburgh, Edinburgh University Press.Google Scholar
Baxter, M. J. (2003). Statistics in Archaeology. London, Arnold.Google Scholar
Baxter, M. J. and Buck, C. E. (2000). Data handling and statistical analysis. In Modern Analytical Methods in Art and Archaeology, eds. Ciliberto, E. and Spoto, G., Chemical Analysis Series 155, New York, Wiley, pp. 681–746.Google Scholar
Baxter, M. J. and Gale, N. H. (1998). Testing for multivariate normality via univariate tests: a case study using lead isotope ratio data. Journal of Applied Statistics 25 671–683.CrossRefGoogle Scholar
Bayman, J. M. (1995). Rethinking redistribution in the archaeological record – obsidian exchange at the Marana Platform Mound. Journal of Anthropological Research 51 37–63.CrossRefGoogle Scholar
Beardsley, F. R., Goles, G. G., and Ayres, W. S. (1996). Provenance studies on Easter Island obsidian: an archaeological application. In Archaeological Chemistry: organic, inorganic and biochemical analysis, ed. Orna, M. V., ACS Symposium Series 625, Washington, DC, American Chemical Society, pp. 47–63.CrossRefGoogle Scholar
Beck, C. W. (ed.) (1974). Archaeological Chemistry. Advances in Chemistry Series 138, Washington, DC, American Chemical Society.CrossRefGoogle Scholar
Beck, C. W. (1986). Spectroscopic investigations of amber. Applied Spectroscopy Reviews 22 57–110.CrossRefGoogle Scholar
Beck, C. W. (1995). The provenience analysis of amber. American Journal of Archaeology 99 125–127.Google Scholar
Beck, C. W. and Shennan, S. (1991). Amber in Prehistoric Britain. Oxford, Oxbow.Google Scholar
Beck, C. W., Wilbur, E., and Meret, S. (1964). Infrared spectra and the origins of amber. Nature 201 256–257.CrossRefGoogle Scholar
Beck, C. W., Wilbur, E., Meret, S., Kossove, D., and Kermani, K. (1965). The infrared spectra of amber and the identification of Baltic amber. Archaeometry 8 96–109.CrossRefGoogle Scholar
Becquerel, A. H. (1896). Sur les radiations émises par phosphorescence. Comptes Rendus hebdomadaires des Séances de l'Académie des Sciences 122 420–421.Google Scholar
Becquerel, A. H. (1900). Déviation du rayonnement du radium dans un champ électrique. Comptes Rendus hebdomadaires des Séances de l'Académie des Sciences 130 809–815.Google Scholar
Beer, A. (1852). Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten. Annalen der Physik und Chemie (Poggendorff) 86 78–88.CrossRefGoogle Scholar
Behrens, H. and Stuke, A. (2003). Quantification of H2O contents in silicate glasses using IR spectroscopy – a calibration based on hydrous glasses analysed by Karl-Fischer titration. Glass Science and Technology 76 176–189.Google Scholar
Bentley, R. A., Price, T. D., Lüning, J., et al. (2002). Prehistoric migration in Europe: strontium isotope analysis of early Neolithic skeletons. Current Anthropology 43 799–804.CrossRefGoogle Scholar
Bertoncello, R., Milanese, L., Russo, U., et al. (2002). Chemistry of cultural glasses: the early medieval glasses of Monselice's hill (Padova, Italy). Journal of Non-Crystalline Solids 306 249–262.CrossRefGoogle Scholar
Berzelius, J. (1813, 1814). Essay on the cause of chemical proportions, and on some circumstances relating to them: together with a short and easy method of expressing them. Annals of Philosophy 2 443–454 (1813), 3 51–2, 93–106, 244–225, 353–364 (1814).Google Scholar
Berzelius, J. (1814, 1815). Experiments to determine the definite proportions in which the elements of organic nature are combined. Annals of Philosophy 4 409–510, 5 93–101, 174–184, 260–275.Google Scholar
Bethell, P. and Máté, I. (1989). The use of soil phosphate analysis in archaeology: a critique. In Scientific Analysis in Archaeology, ed. Henderson, J., Monograph 19, Oxford, Oxford University Committee for Archaeology, pp. 1–29.Google Scholar
Bethell, P. H. and Smith, J. U. (1989). Trace-element analysis of an inhumation from Sutton Hoo, using inductively coupled plasma emission-spectrometry – an evaluation of the technique applied to analysis of organic residues. Journal of Archaeological Science 16 47–55.CrossRefGoogle Scholar
Bethke, C. (2003). The Geochemist's Workbench™ Version 6. Urbana-Champaign, University of Illinois (www.rockware.com).Google Scholar
Beynon, J. H. and Brenton, A. G. (1982). An Introduction to Mass Spectrometry. Cardiff, University of Wales Press.Google Scholar
Beynon, J. D. E. and Lamb, D. R. (eds.) (1980). Charge-coupled Devices and their Applications. London, McGraw-Hill.Google Scholar
Bichler, M., Egger, H., Preisinger, A., Ritter, D., and Strastny, P. (1997). NAA of the “Minoan pumice” at Thera and comparison to alluvial pumice deposits in the Eastern Mediterranean region. Journal of Radioanalytical and Nuclear Chemistry 224 7–14.CrossRefGoogle Scholar
Bieber, A. M. Jr., Brooks, W. D., Harbottle, G., and Sayre, E. V. (1976). Application of multivariate techniques to analytical data on Aegean ceramics. Archaeometry 18 59–74.CrossRefGoogle Scholar
Bigazzi, G., Meloni, S., Oddone, M., and Radi, G. (1986). Provenance studies of obsidian artifacts: trace elements analysis and data reduction. Journal of Radioanalytical and Nuclear Chemistry 98 353–363.CrossRefGoogle Scholar
Binder, D., Bourgeois, G., Benoit, F., and Vitry, C. (1990). Identification de brai de bouleau (Betula) dans le Néolithique de Giribaldi (Nice, France) par la spectrométrie de masse. Revue d'Archéométrie 14 37–42.CrossRefGoogle Scholar
Bishop, R. L. and Blackman, M. J. (2002). Instrumental neutron activation analysis of archaeological ceramics: scale and interpretation. Accounts of Chemical Research 35 603–610.CrossRefGoogle ScholarPubMed
Blau, K. and Halket, J. M. (eds.) (1993). Handbook of Derivatives for Chromatography. Chichester, Wiley.Google Scholar
Blau, S., Kennedy, B. J., and Kim, J. Y. (2002). An investigation of possible fluorosis in human dentition using synchrotron radiation. Journal of Archaeological Science 29 811–817.CrossRefGoogle Scholar
Bohr, N. (1913). On the constitution of atoms and molecules. Philosophical Magazine Series 6 26 1–25.CrossRefGoogle Scholar
Bonfield, K. M. (1997). The Analysis and Interpretation of Lipid Residues Associated with Prehistoric Pottery: pitfalls and potential. Unpublished Ph.D. thesis, University of Bradford, UK.Google Scholar
Boss, C. B. and Fredeen, K. J. (1999). Concepts, Instrumentation and Techniques in Inductively Coupled Plasma Optical Emission Spectrometry. Norwalk, CO, Perkin Elmer (2nd edn.).Google Scholar
Bothe, B. and Becker, H. (1930). Künstliche Erregung von Kern-γ-Strahlen. Zeitschrift für Physik 66 289–306.CrossRefGoogle Scholar
Bowman, S. (ed.) (1991). Science and the Past. London, British Museum Press.CrossRefGoogle Scholar
Brady, J. E. and Hollum, J. R. (1993). Chemistry: the study of matter and its changes. New York, Wiley.Google Scholar
Brenna, J. T., Corso, T. N., Tobias, H. J., and Caimi, R. J. (1997). High-precision continuous-flow isotope ratio mass spectrometry. Mass Spectrometry Reviews 16 227–258.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Brenner, I. B. and Zander, A. T. (2000). Axially and radially viewed inductively coupled plasmas – a critical review. Spectrochimica Acta B 55 1195–1240.CrossRefGoogle Scholar
Brill, R. H. and Wampler, J. M. (1967). Isotope studies of ancient lead. American Journal of Archaeology 71 63–77.CrossRefGoogle Scholar
Brody, R. H. (2000). Applications of FT-Raman Spectroscopy to Biomaterials. Unpublished Ph.D. Thesis, UK, University of Bradford.Google Scholar
Brody, R. H., Edwards, H. G. M., and Pollard, A. M. (2001). Chemometric methods applied to the differentiation of Fourier-transform Raman spectra of ivories. Analytica Chimica Acta 427 223–232.CrossRefGoogle Scholar
Ramsey, Bronk C., Pettitt, P. B., Hedges, R. E. M., Hodgins, G. W. L., and Owen, D. C. (2000). Radiocarbon dates from the Oxford AMS system, Archaeometry datelist 30. Archaeometry 42 459–479.CrossRefGoogle Scholar
Bronk, H., Rohrs, S., Bjeoumikhov, , N., et al. (2001). ArtTAX- a new mobile spectrometer for energy-dispersive micro X-ray fluorescence spectrometry on art and archaeological objects. Fresenius Journal of Analytical Chemistry 371 307–316.CrossRefGoogle ScholarPubMed
Brønsted, J. N. (1923). Some remarks on the concept of acids and bases. Recueil des Travaux Chimiques des Pays-Bas 42 718–728.Google Scholar
Brothwell, D. and Higgs, E. (eds.) (1963). Science in Archaeology: a survey of progress and research.London, Thames and Hudson (2nd edn. 1969).Google Scholar
Brothwell, D. and Pollard, A. M. (eds.) (2001). Handbook of Archaeological Sciences.Chichester, Wiley.Google Scholar
Brown, M. A. and Blin-Stoyle, A. E. (1959). Spectrographic analysis of British Middle and Late Bronze Age finds (including reprint of “A sample analysis of British Middle and Late Bronze Age material, using optical spectrometry”, from Proceedings of the Prehistoric Society.)Supplement to Archaeometry 2.Google Scholar
Brown, R. (1827). A Brief Account of Microscopical Observations. (Reprinted in Edinburgh New Philosophical Journal 358–837 (July–September 1828)).
Brown, W. H. (2000). Introduction to Organic Chemistry. Fort Worth, Saunders College (2nd edn.).Google Scholar
Bryant, J. D. and Froelich, P. N. (1996). Oxygen-isotope composition of human tooth enamel from medieval Greenland – linking climate and society – comment. Geology 24 477–478.2.3.CO;2>CrossRefGoogle Scholar
Budd, P., Pollard, A. M., Scaife, B., and Thomas, R. G. (1995a). The possible fractionation of lead isotopes in ancient metallurgical processes. Archaeometry 37 143–150.CrossRefGoogle Scholar
Budd, P., Haggerty, R., Pollard, A. M., Scaife, B., and Thomas, R. G. (1995b). New heavy isotope studies in archaeology. Israel Journal of Chemistry 35 125–130.CrossRefGoogle Scholar
Budd, P., Haggerty, R., Pollard, A. M., Scaife, B., and Thomas, R. G. (1996). Rethinking the quest for provenance. Antiquity 70 168–174.CrossRefGoogle Scholar
Budd, P. D., Lythgoe, P., McGill, R. A. R., Pollard, A. M., and Scaife, B. (1999). Zinc isotope fractionation in liquid brass (Cu-Zn) alloy: potential environmental and archaeological applications. In Geoarchaeology: exploration, environments, resources, ed. Pollard, A. M., London, Geological Society Special Publication, pp. 147–153.Google Scholar
Budd, P., Montgomery, J., Barreiro, B., and Thomas, R. G. (2000). Differential diagenesis of strontium in archaeological human dental tissues. Applied Geochemistry 15 687–694.CrossRefGoogle Scholar
Budd, P., Millard, A., Chenery, C., Lucy, S., and Roberts, C. (2003). Investigating population movement by stable isotope analysis: a report from Britain. Antiquity 78 127–141.CrossRefGoogle Scholar
Buikstra, J. E. and Milner, G. R. (1991). Isotopic and archaeological interpretations of diet in the central Mississippi valley. Journal of Archaeological Science 18 319–329.CrossRefGoogle Scholar
Bull, I. D., Simpson, I. A., Bergen, P. F., and Evershed, R. P. (1999). Muck ‘n’ molecules: organic geochemical methods for detecting ancient manuring. Antiquity 73 86–96.CrossRefGoogle Scholar
Buoso, M. C., Fazinic, S., Haque, A. M. I., et al. (1992). Heavy element distribution profiles in archaeological samples of human tooth enamel and dentin using the proton-induced X-ray-emission technique. Nuclear Instruments and Methods in Physics Research B 68 269–272.CrossRefGoogle Scholar
Burton, J. H. and Price, T. D., (2000). The use and abuse of trace elements for palaeodietary research. In Biogeochemical Approaches to Palaeodietary Analysis, eds. Ambrose, S. and Katzenberg, M. A., New York, Kluwer Academic/Plenum, pp. 159–171.Google Scholar
Burton, J. H., Price, T. D., and Middleton, W. D. (1999). Correlation of bone Ba/Ca and Sr/Ca due to biological purification of calcium. Journal of Archaeological Science 26 609–616.CrossRefGoogle Scholar
Bussell, G. D., Pollard, A. M., and Baird, D. C. (1981). The characterisation of Early Bronze Age jet and jet-like material by X-ray fluorescence. Wiltshire Archaeological Magazine 76 27–32.Google Scholar
Butcher, D. J. and Sneddon, J. (1998). A Practical Guide to Graphite Furnace Atomic Absorption Spectrometry. Chichester, Wiley.Google Scholar
Buxeda i Garrigos, J., Kilikoglou, V., and Day, P. M. (2001). Chemical and mineralogical alteration of ceramics from a Late Bronze Age kiln at Kommos, Crete: the effect on the formation of a reference group. Archaeometry 43 349–371.CrossRefGoogle Scholar
Cahill, T. A., Kusko, B. H., Eldred, R. A., and Schwab, R. N. (1984). Gutenberg's inks and papers: non-destructive compositional analyses by proton milliprobe. Archaeometry 26 3–14.CrossRefGoogle Scholar
Caley, E. R. (1949). Klaproth as a pioneer in the chemical investigation of antiquities. Journal of Chemical Education 26 242–247; 268.CrossRefGoogle Scholar
Caley, E. R. (1951). Early history and literature of archaeological chemistry. Journal of Chemical Education 28 64–66.CrossRefGoogle Scholar
Caley, E. R. (1964). Analysis of Ancient Metals. Oxford, Pergamon.Google Scholar
Caley, E. R. (1967). The early history of chemistry in the service of archaeology. Journal of Chemical Education 44 120–123.CrossRefGoogle Scholar
Calligaro, T., Colinart, S., Poirot, J. P., and Sudres, C. (2002). Combined external-beam PIXE and mu-Raman characterisation of garnets used in Merovingian jewelry. Nuclear Instruments and Methods in Physics Research B 189 320–327.CrossRefGoogle Scholar
Cannizzaro, S. (1858). Sunto di un corso de filosofia chimica. Nuovo Cimento VII 321–366.Google Scholar
Canti, M. G. and Davis, M. (1999). Tests and guidelines for the suitability of sands to be used in archaeological site reburial. Journal of Archaeological Science 26 775–781.CrossRefGoogle Scholar
Capasso, D. J. T., Capasso, L., Di Tota, G., Jones, K. W., and Tuniz, C. (1995). Synchrotron radiation microprobe analysis of human dental calculi from an archaeological site: new possible perspective on paleonutrition studies. International Journal of Osteoarchaeology 5 282–288.CrossRefGoogle Scholar
Carnot, A. (1892a). Recherche du fluor dans les os modernes et les os fossils. Comptes Rendus hebdomadaires des Séances de l'Académie des Sciences 114 1189–1192.Google Scholar
Carnot, A. (1892b). Sur la composition des ossements fossils et la variation de leur teneur fluor dans les différents étages géologiques. Comptes Rendus hebdomadaires des Séances de l'Académie des Sciences 115 243–246.Google Scholar
Carnot, A. (1892c). Sur une application de l'analyse chimique pour fixer l'âge d'ossements humains préhistoriques. Comptes Rendus hebdomadaires des Séances de l'Académie des Sciences 115 337–339.Google Scholar
Carter, G. F. (ed.) (1978). Archaeological Chemistry II. Advances in Chemistry Series 171, Washington, DC, American Chemical Society.Google Scholar
Casetta, B., Giaretta, A., and Mezzacasa, G. (1990). Determination of rare earth and other trace elements in rock samples by ICP-mass spectrometry: comparison with other techniques. Atomic Spectroscopy 11 222–228.Google Scholar
Chabas, A. and Lefevre, R. A. (2000). Chemistry and microscopy of atmospheric particulates at Delos (Cyclades-Greece). Atmospheric Environment 34 225–238.CrossRefGoogle Scholar
Chadwick, J. (1932). Possible existence of a neutron. Nature 129 312.CrossRefGoogle Scholar
Chang, S. C. and Jackson, M. L. (1957). Fractionation of soil phosphorus. Soil Science 84 133–144.CrossRefGoogle Scholar
Charters, S., Evershed, R. P., Goad, L. J., et al. (1993). Quantification and distribution of lipid in archaeological ceramics: implications for sampling potsherds for organic residue analysis and the classification of vessel use. Archaeometry 35 211–223.CrossRefGoogle Scholar
Charters, S., Evershed, R. P., Blinkhorn, P. W., and Denham, V. (1995). Evidence for the mixing of fats and waxes in archaeological ceramics. Archaeometry 37 113–127.CrossRefGoogle Scholar
Cherry, J. F. and Knapp, A. B. (1991). Quantitative provenance studies and Bronze Age trade in the Mediterranean: some preliminary reflections. In Bronze Age Trade in the Mediterranean, ed. Gale, N. H., Studies in Mediterranean Archaeology XC, Jonsered, Åströms, pp. 92–119.Google Scholar
Chippindale, C. (1991). Editorial. Antiquity 65 6–9.CrossRefGoogle Scholar
Christensen, M., Calligaro, T., Consigny, S., et al. (1998). Insight into the usewear mechanism of archaeological flints by implantation of a marker ion and PIXE analysis of experimental tools. Nuclear Instruments and Methods in Physics Research B 136 869–874.CrossRefGoogle Scholar
Christian, G. D. (1994). Analytical Chemistry. New York, Wiley (5th edn.).Google Scholar
Christie, W. W., Dobson, G., and Shepherd, T. (1999). Laboratory accreditation in a lipid analysis context. Lipid Technology 11 118–119.Google Scholar
Ciliberto, E. and Spoto, G. (eds.) (2000). Modern Analytical Methods in Art and Archaeology. New York, Wiley.Google Scholar
Clark, R. J. H., Curri, L., Henshaw, G. S., and Laganara, C. (1997). Characterization of brown-black and blue pigments in glazed pottery fragments from Castel Fiorentino (Foggia, Italy) by Raman microscopy, X-ray powder diffractometry and X-ray photoelectron spectroscopy. Journal of Raman Spectroscopy 28 105–109.3.0.CO;2-Z>CrossRefGoogle Scholar
Clayton, R., Andersson, P., Gale, N. H., Gillis, C., and Whitehouse, M. J. (2002). Precise determination of the isotopic composition of Sn using MC-ICP-MS. Journal of Analytical Atomic Spectrometry 17 1248–1256.CrossRefGoogle Scholar
Climent-Font, A., Demortier, G., Palacio, C., et al. (1998). Characterisation of archaeological bronzes using PIXE, PIGE, RBS and AES spectrometries. Nuclear Instruments and Methods in Physics Research B 134 229–236.CrossRefGoogle Scholar
Clydesdale, A. (1990). Chemicals in Conservation: a guide to possible hazards and safe use. Edinburgh, Scottish Society for Conservation and Restoration (2nd edn.).Google Scholar
Coghlan, H. H. and Case, H. J. (1957). Early metallurgy of copper in Ireland and Britain. Proceedings of the Prehistoric Society 23 91–123.CrossRefGoogle Scholar
Cole, B. J. W., Bentley, M. D., and Hua, Y. (1991). Triterpenoid extractives in the outer bark of Betula lenta black birch. Holzforschung 45 265–268.CrossRefGoogle Scholar
Coles, J. M. (1979). Experimental Archaeology. London, Academic Press.Google Scholar
Collins, M. J., Neilsen-Marsh, C. M., Hiller, J., et al. (2002). The survival of organic matter in bone: a review. Archaeometry 44 383–394.CrossRefGoogle Scholar
Condamin, J., Formenti, F., Metais, M. O., Michel, M., and Blond, P. (1976). The application of gas chromatography to the tracing of oil in ancient amphorae. Archaeometry 10 195–201.CrossRefGoogle Scholar
Connan, J. (1999). Use and trade of bitumen in antiquity and prehistory: molecular archaeology reveals the secrets of past civilizations. Philosophical Transactions of the Royal Society B 354 33–50.CrossRefGoogle Scholar
Connan, J. and Deschesne, O. (1996). Le Bitume à Suse: collection du Musée du Louvre. Paris, Réunion des Musées Nationaux.Google Scholar
Connan, J. and Dessort, D. (1989). Dead sea asphalt in the balms of an Egyptian mummy: identification by molecular criteria. Comptes Rendus de l'Académie des Sciences Serie II 309 1665–1672.Google Scholar
Connan, J., Nissenbaum, A., and Dessort, D. (1992). Molecular archaeology: export of Dead Sea asphalt to Canaan and Egypt in the Chalcolithic-Early Bronze Age (4th-3rd Millennium BC). Geochimica et Cosmochimica Acta 56 2743–2759.CrossRefGoogle Scholar
Connan, J., Lombard, P., Killick, R., et al. (1998). The archaeological bitumens of Bahrain from the Early Dilmun period (c. 2200 BC) to the sixteenth century AD: a problem of sources and trade. Arabian Archaeology and Epigraphy 9 141–181.CrossRefGoogle Scholar
Constantinescu, B. and Bugoi, R. (2000). Archaeometrical studies on silver coins and ancient glassy materials using the Bucharest cyclotron. Acta Physica Hungarica New Series-Heavy Ion Physics 11 451–461.Google Scholar
Cook, J. P. (1995). Characterization and distribution of obsidian in Alaska. Arctic Anthropology 32 92–100.Google Scholar
Copley, M. S., Rose, P. J., Clapham, A., et al. (2001). Processing palm fruits in the Nile valley – biomolecular evidence from Qasr Ibrim. Antiquity 75 538–542.CrossRefGoogle Scholar
Copley, M. S., Berstan, R., Dudd, S. N., et al. (2005a). Dairying in antiquity. I. Evidence from absorbed lipid residues dating to the British Iron Age. Journal of Archaeological Science 32 485–503.CrossRefGoogle Scholar
Copley, M. S., Berstan, R., Straker, V., Payne, S., and Evershed, R. P. (2005b). Dairying in antiquity. II. Evidence from absorbed lipid residues dating to the British Bronze Age. Journal of Archaeological Science 32 505–521.CrossRefGoogle Scholar
Copley, M. S., Berstan, R., Mukherjee, A. J., et al. (2005c). Dairying in antiquity. III. Evidence from absorbed lipid residues dating to the British Neolithic. Journal of Archaeological Science 32 523–546.CrossRefGoogle Scholar
Corbridge, D. E. C. (1995). Phosphorus: an outline of its chemistry, biochemistry and uses. Amsterdam, Elsevier (5th edn.).Google Scholar
Cotton, F. A., Wilkinson, G., and Gaus, P. L. (1995). Basic Inorganic Chemistry. Chichester, Wiley (3rd edn.).Google Scholar
Cousin, H. and Magyar, B. (1994). Precision and accuracy of laser ablation-ICP-MS analysis of rare earth elements with external calibration. Mikrochimica Acta 113 313–323.CrossRefGoogle Scholar
Cox, M. and Mays, S. (eds.) (2000). Human Osteology in Archaeology and Forensic Science. London, Greenwich Medical Media.Google Scholar
Craig, H. (1961). Standards for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133 1833–1834.CrossRefGoogle ScholarPubMed
Craig, O., Mulville, J., Parker Pearson, M., et al. (2000). Detecting milk proteins in ancient pots. Nature 408 312.CrossRefGoogle ScholarPubMed
Cristoni, S. and Bernardi, L. R. (2003). Development of new methodologies for the mass spectrometry study of bioorganic macromolecules. Mass Spectrometry Reviews 22 369–406.CrossRefGoogle ScholarPubMed
Cronyn, J. M. (1990). The Elements of Archaeological Conservation. London, Routledge.CrossRefGoogle Scholar
Cronyn, J. M. (2001). The deterioration of organic materials. In Handbook of Archaeological Sciences, eds. Brothwell, D. R. and Pollard, A. M., Chichester, Wiley, pp. 627–636.
Crowther, J. (1997). Soil phosphate surveys: critical approaches to sampling, analysis and interpretation. Archaeological Prospection 4 93–102.3.0.CO;2-D>CrossRefGoogle Scholar
Cullity, B. D. (1978). Elements of X-ray Diffraction.Reading, Mass., Addison-Wesley (2nd edn.).Google Scholar
Curie, I. and Joliot, F. (1932). Émission de protons de grande vitesse par les substances hydrogénées sous l'influence des rayons γ très pénétrants. Comptes Rendus hebdomadaires des Séances de l'Académie des Sciences 194 273–275.Google Scholar
Curie, P. and Curie, S. (1898). Sur une substance nouvelle radio-active, continue dans la pechblende. Comptes Rendus hebdomadaires des Séances de l'Académie des Sciences 127 175–178.Google Scholar
Dalton, J. (1808, 1810, 1827). A New System of Chemical Philosophy. 3 vols. Manchester, Bickerstaffe, Manchester, Wilson (Vol I Republished 1965, London, Owen).Google Scholar
Damon, P. E., Donahue, D. J., Gore, B. H., et al. (1989). Radiocarbon dating of the Shroud of Turin. Nature 337 611–615.CrossRefGoogle Scholar
Damour, M. A. (1865). Sur la composition des haches en Pierre trouvées dans les monuments celtiques et chez les tribus sauvages. Comptes Rendus hebdomadaires des Séances de l'Académie des Sciences 61 313–321, 357–368.Google Scholar
Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus 16 436–468.CrossRefGoogle Scholar
Darling, J. A. and Hayashida, F. M. (1995). Compositional analysis of the Huitzila and La Lobera obsidian sources in the southern Sierra-Madre Occidental, Mexico. Journal of Radioanalytical and Nuclear Chemistry 196 245–254.CrossRefGoogle Scholar
Das, H. A. and Zonderhuis, J. (1964). The analysis of electrum coins. Archaeometry 7 90–97.CrossRefGoogle Scholar
Date, A. R. and Gray, A. L. (1989). Applications of Inductively Coupled Plasma Mass Spectrometry. London, Blackie.Google Scholar
Davidson, D. A. and Simpson, I. A. (2001). Archaeology and soil micromorphology. In Handbook of Archaeological Sciences, eds. Brothwell, D. and Pollard, A. M., Chichester, Wiley, pp. 167–177.Google Scholar
Davy, H. (1815). Some experiments and observations on the colours used in painting by the ancients. Philosophical Transactions of the Royal Society 105 97–124.CrossRefGoogle Scholar
Benedetto, G. E., Catalano, F., Sabbatini, L., and Zambonin, P. G. (1998). Analytical characterisation of pigments on pre-Roman pottery by means of spectroscopic techniques part I: white coloured shards. Fresenius Journal of Analytical Chemistry 362 170–175.CrossRefGoogle Scholar
Cruz Baltazar, V. (2001). Studies on the State of Preservation of Archaeological Bone. Unpublished Ph.D. Thesis, UK, University of Bradford.Google Scholar
DeAtley, S. P. and Bishop, R. L. (1991). Toward an integrated interface for archaeology and archeometry. In The Ceramic Legacy of Anna O. Shepard, eds. Bishop, R. L. and Lange, R. W., Boulder, CO, University Press of Colorado, pp. 358–380.Google Scholar
Dedina, J. and Tsalev, D. L. (1995). Hydride Generation Atomic Absorption Spectrometry. Chichester, Wiley.Google Scholar
Demortier, G. (1997). Accelerator-based analysis of gold jewelry items and experimental archaeology. Annali Di Chimica 87 103–112.Google Scholar
Demortier, G., Fernandez-Gomez, F., Salamanca, M. A. O., and Coquay, P. (1999). PIXE in an external microbeam arrangement for the study of finely decorated Tartesic gold jewellery items. Nuclear Instruments and Methods in Physics Research B 158 275–280.CrossRefGoogle Scholar
Dempster, A. J. (1918). A new method of positive ray analysis. Physical Review 11 316–325.CrossRefGoogle Scholar
DeNiro, M. J. (1985). Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to paleodietary reconstruction. Nature 317 806–809.CrossRefGoogle Scholar
DeNiro, M. J. (1987). Stable isotopy and archaeology. American Scientist 75 182–191.Google Scholar
Descantes, C., Neff, H., Glascock, M. D., and Dickinson, W. R. (2001). Chemical characterization of Micronesian ceramics through instrumental neutron activation analysis: a preliminary provenance study. Journal of Archaeological Science 28 1185–1190.CrossRefGoogle Scholar
Dillmann, P., Populus, P., Fluzin, P., et al. (1997). Microdiffraction of synchrotron radiation – identification of non-metallic phases in ancient iron products. Revue De Metallurgie-Cahiers d'Informations Techniques 94 267–268.Google Scholar
Dillmann, P., Neff, D., Mazaudier, F., et al. (2002). Characterisation of iron archaeological analogues using micro diffraction under synchrotron radiation. Application to the study of long term corrosion behaviour of low alloy steels. Journal de Physique IV 12 393–408.CrossRefGoogle Scholar
Dobb, F. P. (2004). ISO 9001:2000 Quality Registration Step-by-Step. Amsterdam, Elsevier.Google Scholar
Döbereiner, J. W. (1829). An attempt to group elementary substances according to their analogies. Annalen der Physik und Chemie 15 301–307.CrossRefGoogle Scholar
Drozd, J. (1981). Chemical Derivatization in Gas Chromatography. Amsterdam, Elsevier.Google Scholar
Druc, I. C., Burger, R. L., Zamojska, R., and Magny, P. (2001). Ancón and Garagay ceramic production at the time of Chavín de Huántar. Journal of Archaeological Science 28 29–43.CrossRefGoogle Scholar
Dudd, S. N. and Evershed, R. P. (1998). Direct demonstration of milk as an element of archaeological economies. Science 282 1478–1481.CrossRefGoogle ScholarPubMed
Dudd, S. N. and Evershed, R. P. (1999). Unusual triterpenoid fatty acyl ester components of archaeological birch bark tars. Tetrahedron Letters 40 359–362.CrossRefGoogle Scholar
Dudd, S. N., Regert, M., and Evershed, R. P. (1998). Assessing microbial lipid contributions during laboratory degradations of fats and oils and pure triacylglycerols absorbed in ceramic potsherds. Organic Geochemistry 29 1345–1354.CrossRefGoogle Scholar
Duffy, K. I., Carlson, J. H., and Swann, C. P. (2002). A study of green-glazed ware from England and South Carolina, USA (1760–1780). Nuclear Instruments and Methods in Physics Research B 189 369–372.CrossRefGoogle Scholar
Dulski, P. (1994). Interferences of oxide, hydroxide and chloride analyte species in the determination of rare earth elements in geological samples by inductively coupled plasma-mass spectrometry. Fresenius Journal of Analytical Chemistry 350 194–203.CrossRefGoogle Scholar
Dupras, T. L. and Schwarcz, H. P. (2001). Strangers in a strange land: stable isotope evidence for human migration in the Dakhleh Oasis, Egypt. Journal of Archaeological Science 28 1199–1208.CrossRefGoogle Scholar
Durrant, S. F. (1992). Multi-element analysis of environmental matrices by laser ablation inductively coupled plasma mass spectrometry. Analyst 117 1585–1592.CrossRefGoogle Scholar
Durrant, S. F. and Ward, N. I. (1993). Rapid multielemental analysis of Chinese reference soils by laser ablation inductively coupled plasma mass spectrometry. Fresenius Journal of Analytical Chemistry 345 512–517.CrossRefGoogle Scholar
Durrant, S. F. and Ward, N. I. (1994). Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) for the multielemental analysis of biological materials: a feasibility study. Food Chemistry 49 317–323.CrossRefGoogle Scholar
Eastwood, W. J., Pearce, N. J. G., Westgate, J. A., and Perkins, W. T. (1998). Recognition of Santorini (Minoan) tephra in lake sediments from Gölhisar Gölü, southwest Turkey by laser ablation ICP-MS. Journal of Archaeological Science 25 677–687.CrossRefGoogle Scholar
Edwards, H. G. M. (2000). Art works studied using IR and Raman spectroscopy. In Encyclopaedia of Spectroscopy and Spectrometry, eds. Lindon, J. C., Tranter, G. E., and Holmes, J. L., London, Academic Press, pp. 2–17.Google Scholar
Edwards, H. G. M., Farwell, D. W., Holder, J. M., and Lawson, E. E. (1997). Fourier transform Raman spectra of ivory III: identification of mammalian specimens. Spectrochimica Acta Part A 53 2403–2409.CrossRefGoogle Scholar
Edwards, R. (1996). The effects of changes in groundwater geochemistry on the survival of buried metal artifacts. In Preserving Archaeological Remains In-Situ, eds. Corfield, M., Hinton, P., Nixon, T., and Pollard, A. M., London, Museum of London Archaeology Service, pp. 86–92.Google Scholar
Efremov, I. A. (1940). Taphonomy: new branch of palaeontology. Pan-American Geologist 74 81–94.Google Scholar
Eglinton, G. and Logan, G. A. (1991). Molecular preservation. Philosophical Transactions of the Royal Society of London B 333 315–328.CrossRefGoogle ScholarPubMed
Ehleringer J. R. and Rundel P. W. (1988). Stable isotopes: history, units and instrumentation. In Stable Isotopes in Ecological Research, eds. Rundel, P. W., Ehleringer, J. R., and Nagy, K. A., New York, Springer-Verlag, pp. 1–15.Google Scholar
Eiland, M. L. and Williams, Q. (2001). Investigation of Islamic ceramics from Tell Tuneinir using X-ray diffraction. Geoarchaeology 16 875–903.CrossRefGoogle Scholar
Einstein, A. (1905). Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesischtspunkt. Annalen der Physik (Vierte Folge) 17 132–148.CrossRefGoogle Scholar
Ekman, R. (1983). The suberin monomers and triterpenoids from the outer bark of Betula verrucosa Ehrh. Holzforschung 37 205–211.CrossRefGoogle Scholar
Elder, E. R., Gurewitsch, A. M., Langmuir, R. V., and Pollock, H. C. (1947). Radiation from electrons in a synchrotron. Physical Review 71 829–830.CrossRefGoogle Scholar
Elekes, Z., Biro, K. T., Uzonyi, I., Rajta, I., and Kiss, A. Z. (2000). Geochemical analysis of radiolarite samples from the Carpathian basin. Nuclear Instruments and Methods in Physics Research B 170 501–514.CrossRefGoogle Scholar
Emeleus, V. M. (1958). The technique of neutron activation analysis as applied to trace element determination in pottery and coins. Archaeometry 1 6–15.Google Scholar
Emeleus, V. M. and Simpson, G. (1960). Neutron activation analysis of ancient Roman potsherds. Nature 185 196.CrossRefGoogle Scholar
Emerson, T. E. and Hughes, R. E. (2000). Figurines, flint clay sourcing, the Ozark Highlands, and Cahokian acquisition. American Antiquity 65 79–101.CrossRefGoogle Scholar
Emiliani, C. (1969). The significance of deep-sea cores. In Science in Archaeology, eds. Brothwell, D. and Higgs, E., London, Thames and Hudson, pp. 109–117 (2nd edn.).Google Scholar
Engel, M. H. and Macko, S. A. (1993). Organic Geochemistry: principles and applications. New York, Plenum.CrossRefGoogle Scholar
English, N. B., Betancourt, J. L., Dean, J. S., and Quade, J. (2001). Strontium isotopes reveal distant sources of architectural timber in Chaco Canyon, New Mexico. Proceedings of the National Academy of Sciences of the United States of America 98 11891–11896.CrossRefGoogle ScholarPubMed
Entwistle, J. A. and Abrahams, P. W., (1997). Multi-element analysis of soils and sediments from Scottish historical sites. The potential of inductively coupled plasma-mass spectrometry for rapid site investigation. Journal of Archaeological Science 24 407–416.CrossRefGoogle Scholar
Entwhistle, J. A., Abrahams, P. W., and Dodgshon, R. A. (1998). Multi-element analysis of soils from Scottish historical sites. Interpreting land-use history through physical and geochemical analysis of soil. Journal of Archaeological Science 25 53–68.CrossRefGoogle Scholar
Ericson, J. E. (1985). Strontium isotope characterization in the study of prehistoric human ecology. Journal of Human Evolution 14 503–514.CrossRefGoogle Scholar
Erlandson, J. M., Robertson, J. D., and Descantes, C. (1999). Geochemical analysis of eight red ochres from western North America. American Antiquity 64 517–526.CrossRefGoogle Scholar
Evans, J. (1989). Neutron activation analysis and Romano-British pottery studies. In Scientific Analysis in Archaeology, ed. Henderson, J., Monograph No. 19, Oxford, Oxford University Committee for Archaeology, pp. 136–162.Google Scholar
Evans, R. D. and Outridge, P. M. (1994). Applications of laser ablation inductively coupled plasma mass spectrometry to the determination of environmental contaminants in calcified biological structures. Journal of Analytical Atomic Spectroscopy 9 985–989.CrossRefGoogle Scholar
Evans, R. D., Richner, P., and Outridge, P. M. (1995). Micro-spatial variations of heavy metals in the teeth of Walrus as determined by laser ablation ICP-MS: The potential for reconstructing a history of metal exposure. Archives of Environmental Contamination and Toxicology 28 55–60.CrossRefGoogle ScholarPubMed
Evershed, R. P. (1990). Lipids from samples of skin from seven Dutch bog bodies: preliminary report. Archaeometry 32 139–153.CrossRefGoogle Scholar
Evershed, R. P. (1993). Advances in silylation. In Handbook of Derivatives for Chromatography, eds. Blau, K. and Halket, J. M., New York, Wiley, pp. 51–108 (2nd edn.).Google Scholar
Evershed, R. P. and Connolly, R. C. (1988). Lipid preservation in Lindow man. Naturwissenschaften 75 143–145.CrossRefGoogle ScholarPubMed
Evershed, R. P., Jerman, K., and Eglinton, G. (1985). Pine wood origin for pitch from the Mary Rose. Nature 314 528–530.CrossRefGoogle Scholar
Evershed, R. P., Heron, C., and Goad, L. J. (1990). Analysis of organic residues of archaeological origin by high-temperature gas chromatography and gas chromatography-mass spectrometry. Analyst 115 1339–1342.CrossRefGoogle Scholar
Evershed, R. P., Heron, C., and Goad, L. J. (1991). Epicuticular wax components preserved in pot sherds as chemical indicators of leafy vegetables in ancient diets. Antiquity 65 540–544.CrossRefGoogle Scholar
Evershed, R. P., Turner-Walker, G., Hedges, R. E. M., Tuross, N., and Leyden, A. (1995). Preliminary results for the analysis of lipids in ancient bone. Journal of Archaeological Science 22 277–290.CrossRefGoogle Scholar
Evershed, R. P., Mottram, H. R., Dudd, S. N., et al. (1997a). New criteria for the identification of animal fats preserved in archaeological pottery. Naturwissenschaften 84 402–406.CrossRefGoogle Scholar
Evershed, R. P., Vaughan, S. J., Dudd, S. N., and Soles, J. S. (1997b). Fuel for thought? Beeswax in lamps and conical cups from Late Minoan Crete. Antiquity 71 979–985.CrossRefGoogle Scholar
Ewing, G. W. (1985). Instrumental Methods of Chemical Analysis. New York, McGraw-Hill (5th edn).Google Scholar
Ewing, G. W. (ed.) (1997). Analytical Instrumentation Handbook. New York, Marcel Dekker (2nd edn.).Google Scholar
Fales, H. M., Jaouni, T. M., and Babashak, J. F. (1973). Simple device for preparing ethereal diazomethane without resorting to codistillation. Analytical Chemistry 45 2302–2303.CrossRefGoogle Scholar
Fang, Z. (1995). Flow Injection Atomic Absorption Spectrometry. Chichester, Wiley.Google Scholar
Faraday, M. (1834). Experimental research in electricity. 7th series. Philosophical Transactions of the Royal Society 124 77–122.CrossRefGoogle Scholar
Farnum, J. F., Glascock, M. D., Sandford, M. K., and Gerritsen, S. (1995). Trace-elements in ancient human bone and associated soil using NAA. Journal of Radioanalytical and Nuclear Chemistry 196 267–274.CrossRefGoogle Scholar
Farquhar, G. D., O'Leary, M. H., and Berry, J. A. (1982). On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology 9 121–137.CrossRefGoogle Scholar
Faure, G. (1986). Principles of Isotope Geology. Chichester, Wiley (2nd edn.).Google Scholar
Fazeli, H., Coningham, R. A. E., and Pollard, A. M. (2001). Chemical characterization of Late Neolithic and Chalcolithic pottery from the Tehran Plain, Iran. Iran XXXIX 1–17.Google Scholar
Feigl, F. (1954). Spot Tests. Amsterdam, Elsevier (4th edn.).Google Scholar
Ferranti, P. (2004). Mass spectrometric approach for the analysis of food proteins. European Journal of Mass Spectrometry 10 349–358.CrossRefGoogle ScholarPubMed
Ferrence, S. C., Betancourt, P. P., and Swann, C. P. (2002). Analysis of Minoan white pigments used on pottery from Kommos, Palaikastro, Mochlos and Knossos. Nuclear Instruments and Methods in Physics Research B 189 364–368.CrossRefGoogle Scholar
Fifield, F. W. and Kealey, D. (2000). Principles and Practice of Analytical Chemistry. Oxford, Blackwell Science (5th edn.).Google Scholar
Figg, D. J., Cross, J. B., and Brink, C. (1998). More investigations into elemental fractionation resulting from laser ablation inductively coupled plasma mass spectrometry on glass samples. Applied Surface Science 129 287–291.CrossRefGoogle Scholar
Fiorini, C. and Longoni, A. (1998). Application of a new noncryogenic X-ray detector in portable instruments for archaeometric analyses. Review of Scientific Instruments 69 1523–1528.CrossRefGoogle Scholar
Fleming, S. J. (1975). Authenticity in Art: the scientific detection of forgery. London, Institute of Physics.Google Scholar
Fleming, S. J. and Swann, C. P. (1992). Recent applications of PIXE spectrometry in archaeology 2. Characterization of Chinese pottery exported to the Islamic world. Nuclear Instruments and Methods in Physics Research B 64 528–537.CrossRefGoogle Scholar
Fleming, S. J. and Swann, C. P. (1993). Recent applications of PIXE spectrometry in archaeology. 1. Observations on the early development of copper metallurgy in the Old-World. Nuclear Instruments and Methods in Physics Research B 75 440–444.CrossRefGoogle Scholar
Fleming, S. J. and Swann, C. P. (1994). Roman onyx glass – a study of production recipes and colorants, using PIXE spectrometry. Nuclear Instruments and Methods in Physics Research B 85 864–868.CrossRefGoogle Scholar
Fleming, S. J. and Swann, C. P. (1999). Roman mosaic glass: a study of production processes, using PIXE spectrometry. Nuclear Instruments and Methods in Physics Research B 150 622–627.CrossRefGoogle Scholar
Ford, L. A., Coningham, R. A. E., Pollard, A. M., and Stern, B. (2005). A geochemical investigation of the origin of Rouletted and other related South Asian fine wares. Antiquity 79 909–20.CrossRefGoogle Scholar
Formenti, F. and Duthel, J. M. (1996). The analysis of wine and other organics inside amphoras of the Roman period. In The Origins and Ancient History of Wine, eds. McGovern, P. E., Fleming, S. J., and Katz, S. H., Langhorne, PA, Gordon and Breach, pp. 79–85.CrossRefGoogle Scholar
Freestone, I. C. (2001). Post-depositional changes in archaeological ceramics and glasses. In Handbook of Archaeological Sciences, eds. Brothwell, D. R. and Pollard, A. M., Chichester, Wiley, pp. 615–625.Google Scholar
Frenzel, B. (ed.) (1995). Problems of Stable Isotopes in Tree-rings, Lake Sediments and Peat-bogs as Climatic Evidence for the Holocene. Strasbourg, European Science Foundation.Google Scholar
Fresenius, C. R. (1841). Anleitung zur qualitativen chemischen Analyse. Bonn (2nd–17th edns., Brunswick 1842–1896).Google Scholar
Fresenius, C. R. (1843). Elementary Instruction in Chemical Analysis (trans. Bullock, J. Lloyd). London, Churchill.Google Scholar
Fresenius, C. R. (1845). Anleitung zur quantitativen chemischen Analyse. Brunswick (2nd–6th edns. 1847–1887).Google Scholar
Fricke, H. C., O'Neil, J., and Lynnerup, N. (1995). Oxygen isotope composition of human tooth enamel from medieval Greenland – linking climate and society. Geology 23 869–872.2.3.CO;2>CrossRefGoogle Scholar
Fricke, H. C., Clyde, W. C., and O'Neil, J. R. (1998). Intra-tooth variations in δ18O (PO4) of mammalian tooth enamel as a record of seasonal variations in continental climate variables. Geochimica et Cosmochimica Acta 62 1839–1850.CrossRefGoogle Scholar
Furuta, N. (1991). Interlaboratory comparison study on lead isotope ratios determined by inductively coupled plasma mass spectrometry. Analytical Sciences 7 823–826.CrossRefGoogle Scholar
Gale, N. H. (1991). Copper oxide ingots: their origin and their place in the Bronze Age metals trade in the Mediterranean. In Bronze Age Trade in the Mediterranean, ed. Gale, N. H., Studies in Mediterranean Archaeology 90, Aströms, Jönsered, pp. 197–239.
Gale, N. H. (1997). The isotopic composition of tin in some ancient metals and the recycling problem in metal provenancing. Archaeometry 39 71–82.CrossRefGoogle Scholar
Gale, N. H. and Stos-Gale, Z. A. (1982). Bronze Age copper sources in the Mediterranean: a new approach. Science 216 11–19.CrossRefGoogle ScholarPubMed
Gale, N. H. and Stos-Gale, Z. A. (1992). Lead isotope studies in the Aegean (The British Academy Project). In New Developments in Archaeological Science, ed. Pollard, A. M., Proceedings of the British Academy 77, Oxford, Oxford University Press, pp. 63–108.Google Scholar
Gale, N. H. and Stos-Gale, Z. A. (2000). Lead isotope analysis applied to provenance studies. In Modern Analytical Methods in Art and Archaeology, eds. Ciliberto, E. and Spoto, G., Chemical Analysis Series 155, New York, Wiley, pp. 503–584.Google Scholar
Gale, N. H., Stos-Gale, Z. A., Maliotis, G., and Annetts, N. (1997). Lead isotope data from the Isotrace Laboratory, Oxford: Archaeometry data base 4, ores from Cyprus. Archaeometry 39 237–246.CrossRefGoogle Scholar
Gale, N. H., Woodhead, A. P., Stos-Gale, Z. A., Walder, A., and Bowen, I. (1999). Natural variations detected in the isotopic composition of copper: possible applications to archaeology and geochemistry. International Journal of Mass Spectrometry 184 1–9.CrossRefGoogle Scholar
Garbe-Schonberg, C. D., Reimann, C., and Pavlov, V. A. (1997). Laser ablation ICP-MS analyses of tree-ring profiles in pine and birch from N Norway and NW Russia – a reliable record of the pollution history of the area?Environmental Geology 32 9–16.CrossRefGoogle Scholar
Garcia-Heras, M., Blackman, M. J., Fernandez-Ruiz, R., and Bishop, R. L. (2001). Assessing ceramic compositional data: a comparison of total reflection X-ray fluorescence and instrumental neutron activation analysis on Late Iron Age Spanish Celtiberian ceramics. Archaeometry 43 323–347.CrossRefGoogle Scholar
Garnier, N., Cren-Olivé, C., Rolando, C., and Regert, M. (2002). Characterization of archaeological beeswax by electron ionization and electrospray ionization mass spectrometry. Analytical Chemistry 74 4868–4877.CrossRefGoogle ScholarPubMed
Garrels, R. M. and Christ, C. L. (1965). Solutions, Minerals, and Equilibria.New York, Harper and Row.Google Scholar
Gausch-Jané, M. R., Ibern-Gómez, M., Andrés-Lacueva, C., Jáuregui, O., and Lamuela-Raventós, R. M. (2004). Liquid chromatography with mass spectrometry in tandem mode applied for the identification of wine markers in residues from ancient Egyptian vessels. Analytical Chemistry 76 1672–1677.CrossRefGoogle Scholar
Gay-Lussac, J. L. (1808). Memoir on the combination of gaseous substances with each other. Mémoires de la Société d'Arçeuil II 207.Google Scholar
Geiger, H. and Marsden, E. (1909). On a diffuse reflection of the α-particles. Proceedings of the Royal Society of London A 82 495–500.CrossRefGoogle Scholar
Gernaey, A. M., Minnikin, D. E., Copley, M. S., et al. (1999). Correlation of the occurrence of mycolic acids with tuberculosis prevalence in an archaeological population. In Tuberculosis Past and Present, eds. Pälfi, G., Dutour, O., Deák, J., and Hutás, I., Szeged, Hungary, Golden Book Publisher Ltd. and Tuberculosis Foundation, pp. 275–282.Google Scholar
Gersch, H. K., Robertson, J. D., Henderson, A. G., Pollack, D., and Munson, C. A. (1998). PIXE analysis of prehistoric and protohistoric Caborn-Welborn phase copper artifacts from the lower Ohio River Valley. Journal of Radioanalytical and Nuclear Chemistry 234 85–90.CrossRefGoogle Scholar
Ghazi, A. M. (1994). Lead in archaeological samples: an isotopic study by ICP-MS. Applied Geochemistry 9 627–636.CrossRefGoogle Scholar
Giauque, R. D., Asaro, F., Stross, F. H., and Hester, T. R. (1993). High-precision nondestructive X-ray-fluorescence method applicable to establishing the provenance of obsidian artifacts. X-Ray Spectrometry 22 44–53.CrossRefGoogle Scholar
Gillard, R. D., Hardman, S. M., Thomas, R. G., and Watkinson, D. E. (1994). The mineralization of fibres in burial environments. Studies in Conservation 39 132–140.CrossRefGoogle Scholar
Giumlia-Mair, A., Keall, E. J., Shugar, A. N., and Stock, S. (2002). Investigation of a copper-based hoard from the Megalithic site of al-Midamman, Yemen: an interdisciplinary approach. Journal of Archaeological Science 29 195–209.CrossRefGoogle Scholar
Glascock, M. D. (1991). Tables for Neutron Activation Analysis.Colombia, University of Missouri.Google Scholar
Glascock, M. D. (1994). Nuclear reaction chemical analysis: prompt and delayed measurements. In Chemical Analysis by Nuclear Methods, ed. Alfassi, Z. B., Chichester, Wiley, pp. 75–99.Google Scholar
Glascock, M. D. (1998). Activation analysis. In Instrumental Multi-element Chemical Analysis, ed. Alfassi, Z. B., Dordrecht, Kluwer Academic, pp. 93–150.CrossRefGoogle Scholar
Glascock, M. D. (2000). The status of activation analysis in archaeology and geochemistry. Journal of Radioanalytical and Nuclear Chemistry 244 537–541.CrossRefGoogle Scholar
Glascock, M. D. and Neff, H. (2003). Neutron activation analysis and provenance research in archaeology. Measurement Science and Technology 14 1516–1526.CrossRefGoogle Scholar
Glascock, M. D., Spalding, T. G., Biers, J. C., and Corman, M. F. (1984). Analysis of copper-based metallic artefacts by prompt gamma-ray neutron activation analysis. Archaeometry 26 96–103.CrossRefGoogle Scholar
Glegg, G. A. and Rowland, S. J. (1996). The Braer oil spill: hydrocarbon concentrations in intertidal organisms. Marine Pollution Bulletin 32 486–492.CrossRefGoogle Scholar
Godfrey, I. M., Ghisalberti, E. L., Beng, E. W., Byrne, L. T., and Richardson, G. W. (2002). The analysis of ivory from a marine environment. Studies in Conservation 47 29–45.Google Scholar
Goffer, Z. (1980). Archaeological Chemistry: a sourcebook on the applications of chemistry to archaeology. New York, Wiley-Interscience.Google Scholar
Goldschmidt, V. M. (1954). Geochemistry. London, Oxford University Press.Google Scholar
Golightly, D. W. and Montaser, A. (1992). Inductively Coupled Plasmas in Analytical Atomic Spectrometry,New York, VCH Publishers (2nd edn.).Google Scholar
Gomez, B., Neff, H., Rautman, M. L., Vaughan, S. J., and Glascock, M. D. (2002). The source provenance of Bronze Age and Roman pottery from Cyprus. Archaeometry 44 23–36.CrossRefGoogle Scholar
Gordus, A. A. (1967). Quantitative non-destructive neutron activation analysis of silver in coins. Archaeometry 10 78–86.CrossRefGoogle Scholar
Gosser, D. C., Ohnersorgen, M. A., Simon, A. W., and Mayer, J. W. (1998). PIXE analysis of Salado polychrome ceramics of the American Southwest. Nuclear Instruments and Methods in Physics Research B 136–138 880–887.CrossRefGoogle Scholar
Gratuze, B. (1999). Obsidian characterization by laser ablation ICP-MS and its application to prehistoric trade in the Mediterranean and the Near East: sources and distribution of obsidian within the Aegean and Anatolia. Journal of Archaeological Science 26 869–881.CrossRefGoogle Scholar
Gratuze, B., Blet-Lemarquand, M., and Barrandon, J. N. (2001). Mass spectrometry with laser sampling: a new tool to characterize archaeological materials. Journal of Radioanalytical and Nuclear Chemistry 247 645–656.CrossRefGoogle Scholar
Greenwood, N. N. and Earnshaw, A. (1997). Chemistry of the Elements.Oxford, Butterworth-Heinemann (2nd edn.).Google Scholar
Griffiths, H. (ed.) (1998). Stable Isotopes: integration of biological, ecological and geochemical processes. Oxford, Bios.Google Scholar
Grootes, P. M. and Stuiver, M. (1986). Ross Ice Shelf oxygen isotopes and west Antarctic climate history. Quaternary Research 26 49–67.CrossRefGoogle Scholar
Grünberg, J. M., Graetsch, H., Baumer, U., and Koller, J. (1999). Untersuchung der mittelpalaolithischen Harzreste von Königsaue, Ldkr. Aschersleben-Stafurt. Jahresschrift für mitteldeutsche Vorgeschichte 81 7–38.Google Scholar
Grupe, G., Price, T. D., Schröter, F., et al. (1997). Mobility of Bell Beaker people revealed by strontium isotope ratios of tooth and bone: a study of southern Bavarian skeletal remains. Applied Geochemistry 12 517–525.CrossRefGoogle Scholar
Guerra, M. F., Sarthe, C-O., Gondonneau, A., and Barrandon, J-N. (1999). Precious metals and provenance enquiries using LA-ICP-MS. Journal of Archaeological Science 26 1101–1110.CrossRefGoogle Scholar
Gunstone, F. D., Harwood, J. L., and Padley, F. B. (1994). The Lipid Handbook. London, Chapman and Hall.Google Scholar
Hahn, O. and Strassmann, F., (1939). Über den Nachweis und das Verhalten der bei der Bestrahlung des Urans mittels Neutronen entstehenden Erdalkalimetalle. Die Naturwissenschaften 27 11–15.CrossRefGoogle Scholar
Hairfield, H. H.. and Hairfield, E. M. (1990). Identification of a Late Bronze Age resin. Analytical Chemistry 62 41–45.CrossRefGoogle Scholar
Hall, E. T. (1960). X-ray fluorescent analysis applied to archaeology. Archaeometry 3 29–35.CrossRefGoogle Scholar
Hall, E. T., Schweizer, F., and Toller, P. A. (1973). X-ray fluorescence analysis of museum objects: a new instrument. Archaeometry 15 53–78.CrossRefGoogle Scholar
Hall, M. E., Brimmer, S. P., Li, F. H., and Yablonsky, L. (1998). ICP-MS and ICP-OES studies of gold from a Late Sarmatian burial. Journal of Archaeological Science 25 545–552.CrossRefGoogle Scholar
Halliday, A., Lee, D. -C., Christensen, J. N., et al. (1998). Applications of multiple collector-ICPMS to cosmochemistry, geochemistry and palaeoceanography. Geochimica et Cosmochimica Acta 62 919–940.CrossRefGoogle Scholar
Hamilton, D. L. and Hopkins, T. C. (1995). Preparation of glasses for use as chemical standards involving the coprecipitated gel technique. Analyst 120 1373–1377.CrossRefGoogle Scholar
Hancock, R. G. V., Millet, N. B. and Mills, A. J. (1986). A rapid INAA method to characterize Egyptian ceramics. Journal of Archaeological Science 13 107–117.CrossRefGoogle Scholar
Hancock, R. G. V., Grynpas, M. D., and Pritzker, K. P. H. (1989). The abuse of bone analysis for archaeological dietary studies. Archaeometry 31 169–179.CrossRefGoogle Scholar
Hancock, R. G. V., Aufreiter, S., Moreau, J. -F., and Kenyon, I. (1996). Chemical chronology of turquoise blue glass trade beads from the Lac-Saint-Jean region of Quebec. In Archaeological Chemistry: organic, inorganic and biochemical analysis, ed. Orna, M. V., ACS Symposium Series 625, Washington, DC, American Chemical Society, pp. 23–36.CrossRefGoogle Scholar
Hancock, R. G. V., Pavlish, L. A., Farquhar R. M., and Knight, D. (1999a). The analysis of brass samples from the Ball and Warminster sites in southern Ontario, Canada. In Metals in Antiquity, eds. Young, S. M. M., Pollard, A. M., Budd, P., and Ixer, R. A., BAR International Series 792, Oxford, Archaeopress, pp. 341–347.Google Scholar
Hancock, R. G. V., Aufreiter, S., Kenyon, I., and Latta, M. (1999b). White glass beads from the Auger site, southern Ontario, Canada. Journal of Archaeological Science 26 907–912.CrossRefGoogle Scholar
Harbottle, G. (1970). Neutron activation analysis of potsherds from Knossos and Mycenae. Archaeometry 12 23–34.CrossRefGoogle Scholar
Harbottle, G. (1976). Activation analysis in archaeology. In Radiochemistry Vol. 3, ed. Newton, G. W. A., London, Chemical Society, pp. 33–72.CrossRefGoogle Scholar
Harbottle, G. (1982). Chemical characterization in archaeology. In Contexts for Prehistoric Exchange, eds. Ericson, J. E. and Earle, T. K., New York, Academic Press, pp. 13–51.Google Scholar
Harbottle, G. (1986). 25 years of research in the analysis of archaeological artifacts and works of art. Nuclear Instruments and Methods in Physics Research B 14 10–15.CrossRefGoogle Scholar
Harbottle, G. (1990). Neutron activation analysis in archaeological chemistry. Topics in Current Chemistry 157 57–91.CrossRefGoogle Scholar
Harbottle, G., Gordon, B. M., and Jones, K. W. (1986). Use of synchrotron radiation in archaeometry. Nuclear Instruments and Methods in Physics Research B 14 116–122.CrossRefGoogle Scholar
Harris, D. C. (1997). Quantitative Chemical Analysis. New York, Freeman.Google Scholar
Hart, F. A. and Adams, S. J. (1983). The chemical-analysis of Romano-British pottery from the Alice Holt forest, Hampshire, by means of inductively-coupled plasma emission-spectrometry. Archaeometry 25 179–185.CrossRefGoogle Scholar
Hart, F. A., Storey, J. M. V., Adams, S. J., Symonds, R. P., and Walsh, J. N. (1987). An analytical study, using inductively coupled plasma (ICP) spectrometry, of Samian and colour-coated wares from the roman town at Colchester together with related continental Samian wares. Journal of Archaeological Science 14 577–598.CrossRefGoogle Scholar
Hartmann, G., Kappel, I., Grote, K., and Arndt, B. (1997). Chemistry and technology of prehistoric glass from Lower Saxony and Hesse. Journal of Archaeological Science 24 547–559.CrossRefGoogle Scholar
Haswell, S. J. (ed.) (1991). Atomic Absorption Spectrometry: theory, design and applications. Amsterdam, Elsevier.Google Scholar
Hatcher, H., Hedges, R. E. M., Pollard, A. M., and Kenrick, P. M. (1980). Analysis of Hellenistic and Roman fine pottery from Benghazi. Archaeometry 22 133–151.CrossRefGoogle Scholar
Hatcher, H., Tite, M. S., and Walsh, J. N. (1995). A comparison of inductively-coupled plasma emission spectrometry and atomic absorption spectrometry analysis on standard reference silicate materials and ceramics. Archaeometry 37 83–94.CrossRefGoogle Scholar
Hayek, E. W. H., Krenmayr, P., Lohninger, H., et al. (1990). Identification of archaeological and recent wood tar pitches using gas chromatography/mass spectrometry and pattern recognition. Analytical Chemistry 62 2038–2043.CrossRefGoogle Scholar
Health and Safety Executive (2002). Control of Substances Hazardous to Health. Sudbury, HSE Books (4th edn.).
Health and Safety Executive (2004). A Step by Step Guide to COSHH Assessment. Sudbury, HSE Books (2nd edn.).
Hedges, R. E. M. (1979). Analysis of the Drake Plate: comparison with the composition of Elizabethan brass. Archaeometry 21 21–26.CrossRefGoogle Scholar
Hedges, R. E. M. (2003). Isotopes and red herrings: comments on Milner et al. and Lidén et al. Antiquity 78 34–37.CrossRefGoogle Scholar
Hedges, R. E. M. and Millard, A. R. (1995). Bones and groundwater: towards the modelling of diagenetic processes. Journal of Archaeological Science 22 155–164.CrossRefGoogle Scholar
Hedges, R. E. M., Millard, A., and Pike, A. W. G. (1995). Measurements and relationships of diagenetic alteration of bone from three archaeological sites. Journal of Archaeological Science 22 201–209.CrossRefGoogle Scholar
Hedges, R. E. M., Stevens, R. E., and Richards, M. P. (2004). Bone as a stable isotope archive for local climatic information. Quaternary Science Reviews 23 959–965.CrossRefGoogle Scholar
Heimann, R. B., Kreher, U., Spazier, I., and Wetzel, G. (2001). Mineralogical and chemical investigations of bloomery slags from prehistoric (8th century BC to 4th century AD) iron production sites in upper and lower Lusatia, Germany. Archaeometry 42 227–252.CrossRefGoogle Scholar
Hein, A., Mommsen, H., and Maran, J. (1999). Element concentration distributions and most discriminating elements for provenancing by neutron activation analyses of ceramics from Bronze Age sites in Greece. Journal of Archaeological Science 26 1053–1058.CrossRefGoogle Scholar
Hein, A., Tsolakidou, A., Iliopoulos, I., et al. (2002). Standardisation of elemental analytical techniques applied to provenance studies of archaeological ceramics: an inter laboratory calibration study. Analyst 127 542–553.CrossRefGoogle ScholarPubMed
Henderson, J. (2000). The Science and Archaeology of Materials: an investigation of inorganic materials. London, Routledge.Google Scholar
Henderson, P. (1984). Rare earth element geochemistry. In Developments in Geochemistry, ed. Henderson, P., Amsterdam, Elsevier, pp. 1–29.Google Scholar
Heron, C. (1996). Archaeological science as forensic science. In Studies in Crime: an introduction to forensic archaeology, eds. Hunter, J., Roberts, C., and Martin, A., London, Batsford, pp. 156–170.Google Scholar
Heron, C. (2001). Geochemical prospecting. In Handbook of Archaeological Sciences, eds. Brothwell, D. R. and Pollard, A. M., Chichester, Wiley, pp. 565–573.Google Scholar
Heron, C. and Evershed, R. P. (1993). The analysis of organic residues and the study of pottery use. In Archaeological Method and Theory, ed. Schiffer, M. B., Tucson, AZ, University of Arizona Press, pp. 247–286.Google Scholar
Heron, C. and Pollard, A. M. (1988). The analysis of natural resinous materials from Roman amphoras, In Science and Archaeology, Glasgow 1987, eds. Slater, E. A. and Tate, J. O., British Series 196, Oxford, British Archaeological Reports, pp. 429–447.Google Scholar
Heron, C., Evershed, R. P., and Goad, L. J. (1991). Effects of migration of soil lipids on organic residues associated with buried potsherds. Journal of Archaeological Science 18 641–659.CrossRefGoogle Scholar
Heron, C., Nemcek, N., Bonfield, K. M., Dixon, D., and Ottaway, B. S. (1994). The chemistry of Neolithic beeswax. Naturwissenschaften 81 266–269.CrossRefGoogle Scholar
Hertz, H. (1887). Ueber einen Einfluss des ultrvioletten Lichtes auf die electrische Entladung. Annalen der Physik und Chemie 31 983–1003.CrossRefGoogle Scholar
Hertz, H. (1893). Electric Waves. London, Macmillan and Co. (trans. Jones, D. E.).Google Scholar
Herz, N. and Garrison, E. G. (1998). Geological Methods for Archaeology. Oxford, Oxford University Press.Google Scholar
Hocart, C. H., Fankhauser, B., and Buckle, D. W. (1993). Chemical archaeology of kava, a potent brew. Rapid Communications in Mass Spectrometry 7 219–224.CrossRefGoogle ScholarPubMed
Hoefs, J. (1997). Stable Isotope Geochemistry. Berlin, Springer.
Hollocher, K. and Ruiz, J. (1995). Major and trace-element determinations on NIST glass standard reference material-611, material-612, material-614, and material-1834 by inductively-coupled plasma-mass spectrometry. Geostandards Newsletter 19 27–34.CrossRefGoogle Scholar
Holmes, L. J., Robinson, V. J., Makinson, P. R. and Livens, F. R. (1995). Multi-element determination in complex matrices by inductively coupled plasma-mass spectrometry (ICP-MS). Science of the Total Environment 173 345–350.CrossRefGoogle Scholar
Hosetter, E., Beck, C. W., and Stewart, D. R. (1994). A bronze stitula from tomb 128, Valle Trebba: chemical evidence of resinated wine at Spina. Studi Etruschi Bretschneider LIX 211–225.Google Scholar
Hudson, J. (1992). The History of Chemistry. Basingstoke, Macmillan.Google Scholar
Hughes, M. J., Cowell, M. R., and Craddock, P. T. (1976). Atomic absorption techniques in archaeology. Archaeometry 18 19–37.CrossRefGoogle Scholar
Hughes, M. J., Northover, J. P., and Staniaszek, B. E. P. (1982). Problems in the analysis of leaded bronze alloys in ancient artefacts. Oxford Journal of Archaeology 1 359–363.CrossRefGoogle Scholar
Hughes, M. J., Cowell, M. R., and Hook, D. R. (1991). Neutron Activation and Plasma Emission Spectrometric Analysis in Archaeology. Occasional Paper 82, London, British Museum.Google Scholar
Hult, M. and Fessler, A. (1998). Sr/Ca mass ratio determination in bones using fast neutron activation analysis. Applied Radiation and Isotopes 49 1319–1323.CrossRefGoogle ScholarPubMed
Hunter, F. J., McDonnell, J. G., Pollard, A. M., Morris, C. R., and Rowlands, C. C. (1993). The scientific identification of archaeological jet-like artifacts. Archaeometry 35 69–89.CrossRefGoogle Scholar
Hunter, J. R., Roberts, C. A., and Martin, A. (eds.) (1997). Studies in Crime: an introduction to forensic archaeology. London, Routledge.Google Scholar
IAEA (1995). Reference and Intercomparison Materials for Stable Isotopes of Light Elements. IAEA TECDOC Series No. 825. Vienna, International Atomic Energy Agency. [http://www-pub.iaea.org/MTCD/publications/PDF/te_825_prn.pdf].
Jackson, K. W. (1999). Electrothermal Atomization for Analytical Atomic Spectrometry. Chichester, Wiley.Google Scholar
Jakes, K. A. (ed.) (2002). Archaeological Chemistry: materials, methods, and meaning. ACS symposium series no. 831, Washington, DC, American Chemical Society.CrossRefGoogle Scholar
James, W. D., Dahlin, E. S., and Carlson, D. L. (2005). Chemical compositional studies of archaeological artifacts: comparison of LA-ICP-MS to INAA measurements. Journal of Radioanalytical and Nuclear Chemistry 263 697–702.CrossRefGoogle Scholar
Janssens, K., Aerts, A., Vincze, L., et al. (1996). Corrosion phenomena in electron, proton and synchrotron X-ray microprobe analysis of Roman glass from Qumran, Jordan. Nuclear Instruments and Methods B 109–110 690–695.CrossRefGoogle Scholar
Janssens, K. H., Deraedt, I., Schalm, O., and Veeckman, J. (1998a). Composition of 15th–17th century archaeological glass vessels excavated in Antwerp, Belgium. Mikrochimica ActaSuppl. 15 253–267.Google Scholar
Janssens, K., Vincze, L., Vekemans, B., et al. (1998b). The non-destructive determination of REE in fossilized bone using synchrotron radiation induced K-line X-ray microfluorescence analysis. Fresenius Journal of Analytical Chemistry 363 413–420.CrossRefGoogle Scholar
Janssens, K., Vittiglio, G., Deraedt, I., et al. (2000). Use of microscopic XRF for non-destructive analysis in art and archaeometry. X-Ray Spectrometry 29 73–91.3.0.CO;2-M>CrossRefGoogle Scholar
Jarvis, K. E. (1988). Inductively coupled plasma mass spectrometry: a new technique for the rapid or ultra-trace level determination of the rare-earth elements in geological materials. Chemical Geology 68 31–39.CrossRefGoogle Scholar
Jarvis, K. E. and Williams, J. G. (1993). Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): a rapid technique for the direct, quantitative determination of major, trace and rare-earth elements in geological samples. Chemical Geology 106 251–262.CrossRefGoogle Scholar
Jeffrey, G. H. (ed) (1989). Vogel's Textbook of Quantitative Chemical Analysis. Harlow, Longman Scientific and Technical (5th edn.).Google Scholar
Jeffries, T. E., Pearce, N. J. G., Perkins, W. T., and Raith, A. (1996). Chemical fractionation during infrared and ultraviolet laser ablation inductively coupled plasma mass spectrometry – implications for mineral microanalysis. Analytical Communications 33 35–39.CrossRefGoogle Scholar
Jenkins, R. (1974). An Introduction to X-ray Spectrometry. Chichester, Wiley.Google Scholar
Jenkins, R. (1988). X-ray Fluorescence Spectrometry. Chichester, Wiley-Interscience.Google Scholar
Jenkins, R. (2002). X-ray powder methods. In McGraw-Hill Encyclopedia of Science and Technology 19, New York, McGraw-Hill, pp. 668–673.Google Scholar
Jenne, E. A. (ed.) (1979). Chemical Modeling in Aqueous Systems. Washington, DC, American Chemical Society Symposium Series.CrossRefGoogle Scholar
Johansson, S. A. E. and Campbell, J. L. (1988). PIXE: a novel technique for elemental analysis. Chichester, Wiley.Google Scholar
Johnsen, S. J., Clausen, H. B., Dansgaard, W., et al. (1997). The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability. Journal of Geophysical Research – Oceans 102 26397–26410.CrossRefGoogle Scholar
Jones, A. M., Iacumin, P., and Young, E. D. (1999). High-resolution delta O-18 analysis of tooth enamel phosphate by isotope ratio monitoring gas chromatography mass spectrometry and ultraviolet laser fluorination. Chemical Geology 153 241–248.CrossRefGoogle Scholar
Jones, M. (2001). The Molecule Hunt: archaeology and the hunt for ancient DNA. London, Allen Lane.Google Scholar
Jones, R. E. (1986). Greek and Cypriot Pottery: a review of scientific studies. Fitch Laboratory Occasional Paper 1, Athens, British School at Athens.Google Scholar
Junghans, S., Sangmeister, E., and Schröder, M. (1960). Metallanalysen kupferzeitlicher und frühbronzezeitlicher Bodenfunde aus Europa. Berlin, Verlag Gebr. Mann.Google Scholar
Junghans, S., Sangmeister, E., and Schröder, M. (1968–1974). Kupfer und Bronze in der Fruhen Metallzeit Europas. Vol. 1. Die Materialgruppen beim Stand von 12.000 Analysen. Vol. 2. Tafeln, Tabellen und Diagramme, Karten (in 3 vols). Vol 3. Katalog der Analysen Nr. 985–10 040. Vol. 4. Katalog der Analysen Nr. 10 041–22 000 (mit Nachuntersuchungen der Analysen Nr. 1–10 040). Berlin, Verlag Gebr. Mann.
Katzenberg, M. A., Schwarcz, H. P., Knyf, M., and Melbye, F. J. (1995). Stable isotope evidence for maize horticulture and paleodiet in southern Ontario, Canada. American Antiquity 60 335–350.CrossRefGoogle Scholar
Kelly, J. F. (2000). Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Canadian Journal of Zoology 78 1–27.CrossRefGoogle Scholar
Kempfert, K. D., Coel, B., Troost, P., and Lavery, D. S. (2001). Advancements in FTIR microscope design for faster and easier microanalysis. American Laboratory 33 (Nov) 22–27.Google Scholar
Kennett, D. J., Neff, H., Glascock, M. D., and Mason, A. Z. (2001). Interface – archaeology and technology. A geochemical revolution: inductively coupled plasma mass spectrometry. SAA Archaeological Record 1 22–26.Google Scholar
Kilikoglou, V., Bassiakos, Y., Doonan, R. C., and Stratis, J. (1997) NAA and ICP analysis of obsidian from Central Europe and the Aegean: source characterisation and provenance determination. Journal of Radioanalytical and Nuclear Chemistry 216 87–93.CrossRefGoogle Scholar
Killops, S. D. and Killops, V. J. (2005). Introduction to Organic Geochemistry. Harlow, Longman Scientific and Technical (2nd edn.).Google Scholar
Kim, Y. S. and Singh, A. P. (1999). Micromorphological characteristics of compression wood degradation in waterlogged archaeological pine wood. Holzforschung 53 381–385.CrossRefGoogle Scholar
King, A., Hatch, J. W., and Scheetz, B. E. (1997). The chemical composition of jasper artefacts from New England and the middle Atlantic: implications for the prehistoric exchange of “Pennsylvania jasper”. Journal of Archaeological Science 24 793–812.CrossRefGoogle Scholar
Kingston, H. M. and Walter, P. J. (1992). Comparison of microwave versus conventional dissolution for environmental applications. Spectroscopy 7 20–25.Google Scholar
Kirchhoff, G. and Bunsen, R. (1860). Chemical analysis by observation of spectra. Annalen der Physik und der Chemie (Poggendorff) 110 161–189.CrossRefGoogle Scholar
Kirchner, M. T., Edwards, H. G. M., Lucy, D., and Pollard, A. M. (1997). Ancient and modern specimens of human teeth: a Fourier transform Raman spectroscopic study. Journal of Raman Spectroscopy 28 171–178.3.0.CO;2-V>CrossRefGoogle Scholar
Klaproth, M. H. (1795–1815). Beiträge zur chemischen Kenntniss der Mineralkörpe. 6 vols. Berlin und Stettin.Google Scholar
Klaproth, M. H. (1798). Mémoire de numismatique docimastique. Mémoires de l'académie royale des sciences et belles-lettres, Berlin, Classe de philosophie expérimentale97–113.Google Scholar
Knapp, A. B. and Cherry, J. F. (1994). Provenance Studies and Bronze Age Cyprus: production, exchange and politico-economic change. Monographs in World Archaeology 21, Madison, Prehistory Press.Google Scholar
Knight, D. M. (ed.) (1968). Classical Scientific Papers: chemistry. London, Mills and Boon.Google Scholar
Knight, D. M. (ed.) (1970). Classical Scientific Papers: chemistry. Second series: papers on the nature and arrangement of the chemical elements. London, Mills and Boon.Google Scholar
Koch, P. L., Heisinger, J., Moss, C., et al. (1995). Isotopic tracking of change in diet and habitat use in African elephants. Science 267 1340–1343.CrossRefGoogle ScholarPubMed
Krause, R. and Pernicka, E. (1996). SMAP – The Stuttgart Metal Analysis Project. Archaologisches Nachrichtenblatt 1 274–291.Google Scholar
Kuczumow, A., Chevallier, P., Dillmann, P., Wajnberg, P., and Rudas, M. (2000). Investigation of petrified wood by synchrotron X-ray fluorescence and diffraction methods. Spectrochimica Acta B 55 1623–1633.CrossRefGoogle Scholar
Kuhn, R. D. and Sempowski, M. L. (2001). A new approach to dating the League of the Iroquois. American Antiquity 66 301–314.CrossRefGoogle Scholar
Kuleff, I. and Pernicka, E. (1995). Instrumental neutron activation analysis of native copper – some methodological considerations. Journal of Radioanalytical and Nuclear Chemistry 191 145–161.CrossRefGoogle Scholar
Kuleff, I., Djingova, R., Alexandrova, A., Vakova, V., and Amov, B. (1995). INAA, AAS and lead isotope analysis of ancient lead anchors from the Black Sea. Journal of Radioanalytical and Nuclear Chemistry 196 65–76.CrossRefGoogle Scholar
Kuzmin, Y. V., Popov, V. K., Glascock, M. D., and Shackley, M. S. (2002). Sources of archaeological volcanic glass in the Primorye (Maritime) province, Russian Far East. Archaeometry 44 505–515.CrossRefGoogle Scholar
Lajtha, K. and Michener, R. H. (1994). Stable Isotopes in Ecology and Environmental Science. London, Blackwell Scientific.Google Scholar
Lambert, J. B. (ed.) (1984). Archaeological Chemistry III. Advances in Chemistry Series 205, Washington, DC, American Chemical Society.CrossRefGoogle Scholar
Lambert, J. B. (1997). Traces of the Past: unraveling the secrets of archaeology through chemistry. Reading, Mass., Addison-Wesley.Google Scholar
Lambert, J. B. and Grupe, G. (1993). Prehistoric Human Bone: archaeology at the molecular level. Berlin, Springer-Verlag.CrossRefGoogle Scholar
Lambert, J. B., Simpson, S. V., Szpunar, C. B., and Buikstra, J. E. (1984a). Copper and barium as dietary discriminants – the effects of diagenesis. Archaeometry 26 131–138.CrossRefGoogle Scholar
Lambert, J. B., Simpson, S. V., Szpunar, C. B., and Buikstra, J. E. (1984b). Ancient human diet from inorganic analysis of bone. Accounts of Chemical Research 17 298–305.CrossRefGoogle Scholar
Lampadius, W. A. (1801). Handbuch zur chemischen Analyse der Mineralkörper. Freyberg.Google Scholar
Lampert, C. D., Glover, I. C., Heron, C. P., et al. (2002). Characterization and radiocarbon dating of archaeological resins from Southeast Asia. In Archaeological Chemistry: materials, methods and meaning, ed. Jakes, K. A., ACS Symposium Series 831, Washington, DC, American Chemical Society, pp. 84–109.CrossRefGoogle Scholar
Langenheim, J. L. (1990). Plant resins. American Scientist 78 16–24.Google Scholar
Larsen, C. S., Schoeninger, M. J., van der Merwe, N. J., Moore, K. M., and Lee-Thorp, J. A. (1992). Carbon and nitrogen stable isotopic signatures of human dietary change in the Georgia Bight. American Journal of Physical Anthropology 89 197–214.CrossRefGoogle ScholarPubMed
Lavoisier, A. -L. (1789). Traité élémentaire de chimie, présenté dans un ordre nouveau et d'après les découvertes modernes. Paris. (Translated (R. Kerr, Edinburgh, 1790) and reprinted New York, Dover, 1965).Google Scholar
Layard, A. H. (1853). Discoveries in the ruins of Nineveh and Babylon: with travels in Armenia, Kurdistan and the desert, being the result of a second expedition undertaken for the Trustees of the British Museum. London, J. Murray.Google Scholar
Leach, F. (1996). New Zealand and Oceanic obsidians: an archaeological perspective using neutron activation analysis. Journal of the Royal Society of New Zealand 26 79–105.CrossRefGoogle Scholar
Lee, K. M., Appleton, J., Cooke, M., Keenan, F., and Sawicka-Kapusta, K. (1999). Use of laser ablation inductively coupled plasma mass spectrometry to provide element versus time profiles in teeth. Analytica Chimica Acta 395 179–185.CrossRefGoogle Scholar
Lee-Thorp, J. A. and Merwe, N. J. (1991). Aspects of the chemistry of modern and fossil biological apatites. Journal of Archaeological Science 18 343–354.CrossRefGoogle Scholar
Lee-Thorp, J. A., Sealy, J. C., and Merwe, N. J. (1989). Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. Journal of Archaeological Science 16 585–599.CrossRefGoogle Scholar
Lee-Thorp, J. A., Merwe, N. J., and Brain, C. K. (1994). Diet of Australopithecus-Robustus at Swartkrans from stable carbon isotopic analysis. Journal of Human Evolution 27 361–372.CrossRefGoogle Scholar
Leigh, G. J., Favre, H. A., and Metanomski, W. V. (1998). Principles of Chemical Nomenclature: a guide to IUPAC recommendations. Oxford, Blackwell Science.Google Scholar
Lenard, P. (1903). Über die absorption von kathoden-strahlen verscheidener Geschwindigkeit. Annalen der Physik (Vierte Folge) 12 714–744.CrossRefGoogle Scholar
Leung, P. L., Stokes, M. J., Li, M. T. W., Peng, Z. C., and Wu, S. C. (1998). EDXRF studies on the chemical composition of ancient porcelain bodies from Linjiang, Jiangxi, China. X-Ray Spectrometry 27 11–16.3.0.CO;2-R>CrossRefGoogle Scholar
Levinson, A. A., Luz, B., and Kolodny, Y. (1987). Variations in oxygen isotope compositions of human teeth and urinary stones. Applied Geochemistry 2 367–371.CrossRefGoogle Scholar
Lichte, F. E., Meier, A. L., and Crock, J. G. (1987). Determination of the rare-earth elements in geological materials by inductively coupled plasma mass spectrometry. Analytical Chemistry 59 1150–1157.CrossRefGoogle Scholar
Lidén, K., Eriksson, G., Nordqvist, B., Götherström, A., and Bendixen, E. (2003). The wet and the wild followed by the dry and the tame – or did they occur at the same time? Diet in Mesolithic – Neolithic southern Sweden. Antiquity 78 23–33.CrossRefGoogle Scholar
Linderholm, J. and Lundberg, E. (1994). Chemical characterization of various archaeological soil samples using main and trace-elements determined by inductively-coupled plasma-atomic emission-spectrometry. Journal of Archaeological Science 21 303–314.CrossRefGoogle Scholar
Lindsay, W. L. (1979). Chemical Equilibria in Soils.New York, Wiley.Google Scholar
Linke, R. and Schreiner, M. (2000). Energy dispersive X-ray fluorescence analysis and X-ray microanalysis of medieval silver coins – an analytical approach for non-destructive investigation of corroded metallic artifacts. Mikrochimica Acta 133 165–170.CrossRefGoogle Scholar
Little, B., Wagner, P., and Mansfeld, F. (1991). Microbiologically influenced corrosion of metals and alloys. International Materials Review 36 253–272.CrossRefGoogle Scholar
Littlefield, T. A. and Thorley, N. (1979). Atomic and Nuclear Physics: an introduction. New York, Van Nostrand Reinhold (3rd edn.).CrossRefGoogle Scholar
Lochner, F., Appleton, J., Keenan, F., and Cooke, M. (1999). Multi-element profiling of human deciduous teeth by laser ablation-inductively coupled plasma-mass spectrometry. Analytica Chimica Acta 401 299–306.CrossRefGoogle Scholar
Longinelli, A. (1984). Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatic research?Geochimica et Cosmochimica Acta 48 385–390.CrossRefGoogle Scholar
Longinelli, A. (1995). Stable isotope ratios in phosphate from mammal bone and tooth as climatic indicators. In Problems of Stable Isotopes in Tree-rings, Lake Sediments and Peat-bogs as Climatic Evidence for the Holocene, ed. Frenzel, B., Strasbourg, European Science Foundation, pp. 57–70.Google Scholar
Lowenstam, H. A. and Weiner, S. (1989). On Biomineralization. New York, Oxford University Press.Google Scholar
Lowry, T. M. (1923). Uniqueness of hydrogen. Chemical Industry – London 42 43–47.CrossRefGoogle Scholar
Loy, T. H. (1983). Prehistoric blood residues: detection on stone tool surfaces and identification of species of interest. Science 220 1269–1271.CrossRefGoogle Scholar
Loy, T. H. and Dixon, E. J. (1998). Blood residues on fluted points from Eastern Beringia. American Antiquity 63 21–46.CrossRefGoogle Scholar
Lubell, D., Jackes, M., Schwarcz, H., Knyf, M., and Meiklejohn, C. (1994). The Mesolithic Neolithic transition in Portugal – isotopic and dental evidence of diet. Journal of Archaeological Science 21 201–216.CrossRefGoogle Scholar
Mallory-Greenough, L. M. and Greenough, J. D. D. (1998). New data for old pots: trace element characterization of ancient Egyptian pottery using ICP-MS. Journal of Archaeological Science 25 85–97.CrossRefGoogle Scholar
Mandal, S., Cooney, G., Meighan, I. G., and Jamison, D. D. (1997). Using geochemistry to interpret porcellanite stone axe production in Ireland. Journal of Archaeological Science 24 757–763.CrossRefGoogle Scholar
Mando, P. A. (1994). Advantages and limitations of external beams in applications to arts and archaeology, geology and environmental-problems. Nuclear Instruments and Methods in Physics Research B 85 815–823.CrossRefGoogle Scholar
Mano, N. and Goto, J. (2003). Biomedical and biological mass spectrometry. Analytical Sciences 19 3–14.CrossRefGoogle ScholarPubMed
Mansilla, J., Solis, C., Chavez-Lomeli, M. E., and Gama, J. E. (2003). Analysis of colored teeth from Precolumbian Tlatelolco: postmortem transformation or intravitam processes?American Journal of Physical Anthropology 120 73–82.CrossRefGoogle ScholarPubMed
Martinetto, P., Anne, M., Dooryhée, E., et al. (2001). Synchrotron X-ray micro-beam studies of ancient Egyptian make-up. Nuclear Instruments and Methods in Physics Research B 181 744–748.CrossRefGoogle Scholar
Matson, R. G. and Chisholm, B. (1991). Basketmaker II subsistence – carbon isotopes and other dietary indicators from Cedar-Mesa, Utah. American Antiquity 56 444–459.CrossRefGoogle Scholar
Mauk, J. L. and Hancock, R. G. V. (1998). Trace element geochemistry of native copper from the White Pine mine, Michigan (USA): implications for sourcing artefacts. Archaeometry 40 97–107.CrossRefGoogle Scholar
Maxwell, J. C. (1864). A dynamical theory of the electromagnetic field. Proceedings of the Royal Society of London 13 531–536.CrossRefGoogle Scholar
May, T. W. and Wiedmeyer, R. H. (1998). A table of polyatomic interferences in ICP-MS. Atomic Spectroscopy 19 150–154.Google Scholar
McEvoy, J. P. and Zarate, O. (1999). Introducing Quantum Theory. Cambridge, Icon Books.Google Scholar
McGovern, P. E. (1997). Wine of Egypt's golden age: an archaeochemical perspective. Journal of Egyptian Archaeology 83 69–108.CrossRefGoogle Scholar
McGovern, P. E. and Michel, R. H. (1996). The analytical and archaeological challenge of detecting ancient wine: two case studies from the ancient Near East. In The Origins and Ancient History of Wine, eds. McGovern, P. E., Fleming, S. J., and Katz, S. H., Langhorne, PA, Gordon and Breach, pp. 57–65.CrossRef
McGovern, P. E., Glusker, D. L., Exner, L. J., and Voigt, M. M. (1996). Neolithic resinated wine. Nature 381 480–481.CrossRefGoogle Scholar
McNeil, M. and Selwyn, L. S. (2001). Electrochemical processes in metal corrosion. In Handbook of Archaeological Sciences, eds. Brothwell, D. R. and Pollard, A. M., Chichester, Wiley, pp. 605–614.Google Scholar
Mendelejeff, D. (1869). Ueber die Beziehungen der Eigenschaften zu den Atomgewichten der Elemente. Zeitschrift für Chemie 12 405–406.Google Scholar
Mendeleef, D. (1879, 1880). The Periodic Law of the chemical elements. Chemical News 40 (1879) 231–232, 243–244, 255–256, 267–268, 279–280, 291–292, 303–304. 41 (1880) 27–28.Google Scholar
Mester, Z. and Sturgeon, R. (eds.) (2003). Sample Preparation for Trace Element Analysis. Amsterdam, Elsevier.Google Scholar
Metcalf, D. M. and Schweizer, F. (1971). The metal contents of the silver pennies of William II and Henry I (1087–1135). Archaeometry 13 177–190.CrossRefGoogle Scholar
Michel, V., Ildefonse, Ph., and Morin, G. (1996). Assessment of archaeological bone and dentine preservation from Lazaret Cave (Middle Pleistocene) in France. Palaeogeography, Palaeoclimatology, Palaeoecology 126 109–119.CrossRefGoogle Scholar
Middleditch, B. S. (1989). Analytical Artefacts: GC, MS, HPLC and PC. Amsterdam, Elsevier.Google Scholar
Middleton, W. D. and Price, T. D. (1996). Identification of activity areas by multi-element characterization of sediments from modern and archaeological house floors using inductively coupled plasma-atomic emission spectroscopy. Journal of Archaeological Science 23 673–687.CrossRefGoogle Scholar
Miksic, J. N., Yap, C. T., and Younan, H. (1994). Archaeology and early Chinese glass trade in southeast-Asia. Journal of Southeast Asian Studies 25 31–46.CrossRefGoogle Scholar
Millard, A. R. and Hedges, R. E. M. (1996). A diffusion-adsorption model of uranium uptake by archaeological bone. Geochimica et Cosmochimica Acta 60 2139–2152.CrossRefGoogle Scholar
Miller, J. C. and Miller, J. N. (1993). Statistics for Analytical Chemistry. London, Ellis Horwood (3rd edn.).Google Scholar
Mills, J. S. and White, R. (1989). The identity of the resins from the Late Bronze Age shipwreck at Ulu Burun (Kaş). Archaeometry 31 37–44.CrossRefGoogle Scholar
Mills, J. S. and White, R. (1994). The Organic Chemistry of Museum Objects. Oxford, Butterworth Heinemann (2nd edn.).Google Scholar
Milner, N., Craig, O. E., Bailey, G. N., Pedersen, K., and Andersen, S. H. (2003). Something fishy in the Neolithic? A re-evaluation of stable isotope analysis of Mesolithic and Neolithic coastal populations. Antiquity 78 9–22.CrossRefGoogle Scholar
Mirti, P., Aruga, R., Zelano, V., Appolonia, L., and Aceto, M. (1990). Investigation of Roman terra-sigillata by atomic-absorption and emission-spectroscopy and multivariate-analysis of data. Fresenius Journal of Analytical Chemistry 336 215–221.CrossRefGoogle Scholar
Mirti, P., Lepora, A., and Sagui, L. (2000). Scientific analysis of seventh-century glass fragments from the Crypta Balbi in Rome. Archaeometry 42 359–374.CrossRefGoogle Scholar
Moenke-Blankenburg, L., Schumann, T., Gunther, D., Kuss, H., and Paul, M. (1992). Quantitative analysis of glass using inductively coupled plasma atomic emission and mass spectrometry, laser micro-analysis inductively coupled plasma atomic emission spectrometry and laser ablation inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectroscopy 7 251–254.CrossRefGoogle Scholar
Mommsen, H. (1981). Filters to sort out pottery samples of the same provenance from a data-bank of neutron activation analyses. Archaeometry 23 209–215.CrossRefGoogle Scholar
Mommsen, H., Beier, Th., Dittmann, H., et al. (1996). X-ray fluorescence analysis on inks and papers of incunabula with synchrotron radiation. Archaeometry 38 347–357.CrossRefGoogle Scholar
Mommsen, H., Bier, T., and Hein, A. (2002). A complete chemical grouping of the Berkeley neutron activation analysis data on Mycenaean pottery. Journal of Archaeological Science 29 613–637.CrossRefGoogle Scholar
Montaser, A. (1998). Inductively Coupled Plasma Mass Spectrometry. New York, Wiley-VCH.Google Scholar
Montelius, G. O. A. (1899). Der Orient und Europa. Stockholm.Google Scholar
Moreau, J. -F. and Hancock, R. G. V. (1996). Chrono-cultural technique based on the instrumental neutron activation analysis of copper-based artifacts from the “contact” period of northeastern North America. In Archaeological Chemistry: organic, inorganic and biochemical analysis, ed. Orna, M. V., ACS Symposium Series 625, Washington, DC, American Chemical Society, pp. 64–82.CrossRefGoogle Scholar
Morgan, M. E., Kingston, J. D., and Marino, B. D. (1994). Carbon isotopic evidence for the emergence of C4 plants in the Neogene from Pakistan and Kenya. Nature 367 162–165.CrossRefGoogle Scholar
Moropoulou, A., Bisbikou, K., Grieken, R., Torfs, K., and Polikreti, K. (2001). Correlation between aerosols, deposits and weathering crusts on ancient marbles. Environmental Technology 22 607–618.CrossRefGoogle ScholarPubMed
Morrison, C. A., Lambert, D. D., Morrison, R. J. S., Ahlers, W. W., and Nicholls, I. A. (1995). Laser ablation-inductively coupled plasma-mass spectrometry: an investigation of elemental responses and matrix effects in the analysis of geostandard materials. Chemical Geology 119 13–29.CrossRefGoogle Scholar
Mortimer, C. (1989). X-ray fluorescence analysis of early scientific instruments. In Archaeometry: proceedings of the 25th International Symposium, ed. Maniatis, Y., Amsterdam, Elsevier, pp. 311–317.Google Scholar
Moseley, H. G. J., (1913, 1914). The high frequency spectra of the elements. Philosophical Magazine 26 1024–1034 (1913), 27 703–713 (1914).Google Scholar
Mottram, H. R., Dudd, S. N., Lawrence, G. J., Stott, A. W., and Evershed, R. P. (1999). New chromatographic, mass spectrometric and stable isotope approaches to the classification of degraded animal fats preserved in archaeological pottery. Journal of Chromatography A 833 209–221.CrossRefGoogle Scholar
Mountjoy, P. -A., Jones, R. E., and Cherry, J. F. (1978). Provenance studies of LM1B/LHIIA marine style. Annual of the British School at Athens 73 143–171.CrossRefGoogle Scholar
Murphy, J. and Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27 31–36.CrossRefGoogle Scholar
Murray, M. A., Boulton, N., and Heron, C. (2000). Viticulture and wine production. In Ancient Egyptian Materials and Technology, eds. Nicholson, P. T. and Shaw, I., Cambridge, Cambridge University Press, pp. 577–608.Google Scholar
Murrell, J. N. (2001). Avogadro and his constant. Helvetica Chimica Acta 84 1314–1327.3.0.CO;2-Q>CrossRefGoogle Scholar
Needham, J. (1954–2004). Science and Civilisation in China. 7 vols. Cambridge, Cambridge University Press.Google Scholar
Neff, H. (ed.) (1992). Chemical Characterization of Ceramic Pastes in Archaeology. Monographs in World Archaeology, Madison, Wisconsin, Prehistory Press.Google Scholar
Neff, H. (2000). Neutron activation analysis for provenance determination in archaeology. In Modern Analytical Methods in Art and Archaeology, eds. Ciliberto, E. and Spoto, G., Chemical Analysis Series 155, New York, Wiley, pp. 81–134.Google Scholar
Nelson, B. K., DeNiro, M. J., Schoeninger, M. J., Paolo, D. J., and Hare, P. E. (1986). Effects of diagenesis on strontium, carbon, nitrogen and oxygen concentrations and isotopic composition of bone. Geochimica et Cosmochimica Acta 50 1941–1949.CrossRefGoogle Scholar
Newlands, J. A. R. (1865). On the Law of Octaves. Chemical News 12 83.Google Scholar
Newton, I. (1671–2). New theory about light and colors. Philosophical Transactions of the Royal Society 6(80) 3075–3087.CrossRefGoogle Scholar
Newton, R. G. and Renfrew, C. (1970). British faience beads reconsidered. Antiquity 44 199–206.CrossRefGoogle Scholar
Nissenbaum, A. (1992). Molecular archaeology: organic geochemistry of Egyptian mummies. Journal of Archaeological Science 19 1–6.CrossRefGoogle Scholar
Nissenbaum, A. (1993). The Dead Sea – an economic resource for 10, 000 years, Hydrobiologia 267 127–141.CrossRefGoogle Scholar
Nölte, J. (2003). ICP Emission Spectrometry: a practical guide. Weinheim, Wiley-VCH.Google Scholar
Norman, M. D., Pearson, N. J., Sharma, A., and Griffin, W. L. (1996). Quantitative analysis of trace elements in geological materials by laser ablation ICPMS: instrumental operating conditions and calibration values of NIST glasses. Geostandards Newsletter 20 247–261.CrossRefGoogle Scholar
Oakberg, K., Levy, T., and Smith, P. (2000). A method for skeletal arsenic analysis, applied to the chalcolithic copper smelting site of Shiqmim, Israel. Journal of Archaeological Science 27 859–901.CrossRefGoogle Scholar
Oakley, K. P. (1963). Fluorine, uranium and nitrogen dating of bones. In The Scientist and Archaeology, ed. Pyddoke, E., New York, Roy Publishers, pp. 111–119.Google Scholar
Oakley, K. P. (1969). Analytical methods of dating bones. In Science in Archaeology, eds. Brothwell, D. and Higgs, E., London, Thames and Hudson, pp. 35–45 (2nd edn.).Google Scholar
O'Connell, M. M., Bentley, M. D., Campbell, C. S., and Cole, B. J. W. (1988). Betulin and lupeol in bark from four white-barked birches. Phytochemistry 27 2175–2176.CrossRefGoogle Scholar
Oddy, A. (1983). Assaying in antiquity. Gold Bulletin 16 52–59.CrossRefGoogle Scholar
Oddy, A. (1986). The touchstone: the oldest colorimetric method of analysis. Endeavour 10 164–166.CrossRefGoogle Scholar
Olariu, A., Constantinescu, M., Constantinescu, O., et al. (1999). Trace analysis of ancient gold objects using radiochemical neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry 240 261–267.CrossRefGoogle Scholar
Olsen, S. L. (1988). Scanning Electron Microscopy in Archaeology. International Series 452, Oxford, British Archaeological Reports.
Orna, M. V. (ed.) (1996). Archaeological Chemistry: organic, inorganic, and biochemical analysis. ACS symposium series no. 625, Washington, DC, American Chemical Society.CrossRefGoogle Scholar
Otto, H. and Witter, W. (1952). Handbuch der ältesten vorgeschichtlichen Metallurgie in Mitteleuropa. Leipzig, J. A. Barth.Google Scholar
Outridge, P. M., Hughes, R. J., and Evans, R. D. (1996). Determination of trace metals in teeth and bones by solution nebulization ICP-MS. Atomic Spectroscopy 17 1–8.Google Scholar
Parr, J. F. and Boyd, W. E. (2002). The probable industrial origin of archaeological daub at an Iron Age site in northeast Thailand. Geoarchaeology 17 285–303.CrossRefGoogle Scholar
Parry, S. J. (1991). Activation Spectrometry in Chemical Analysis.New York, Wiley.Google Scholar
Parsons, M. L. (1997). X-ray methods. In Analytical Instrumentation Handbook, ed. Ewing, G. W., New York, Marcel Dekker, pp. 557–586 (2nd edn.).Google Scholar
Parsons, P. J. and Slavin, W. (1999). Electrothermal atomization atomic absorption spectrometry for the determination of lead in urine: results of an interlaboratory study. Spectrochimica Acta B 54 853–864.CrossRefGoogle Scholar
Partington, J. R. (1961–1970). A History of Chemistry. 4 vols. London, Macmillan.Google Scholar
Passi, S., Rothschild-Boros, M. C., Fasella, P., Nazzaro-Porro, M., and Whitehouse, D. (1981). An application of high performance liquid chromatography to analysis of lipids in archaeological samples. Journal of Lipid Research 22 778–784.Google ScholarPubMed
Passi, S., Picardo, M., Deluca, A., et al. (1993). Saturated dicarboxylic-acids as products of unsaturated fatty-acid oxidation. Biochimica et Biophysica Acta 1168 190–198.CrossRefGoogle ScholarPubMed
Pate, F. D. (1994). Bone chemistry and paleodiet. Journal of Archaeological Method and Theory 1 161–209.CrossRefGoogle Scholar
Pauli, W. (1925). Über den Zusammenhang des Abschlusses der Elekronengruppen im Atom mit der Komplexstruktur des Spektren. Zeitschrift für Physik 31 765–783.CrossRefGoogle Scholar
Pearce, N. J. G., Perkins, W. T., Westgate, J. A., et al. (1996). A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards Newsletter 21 115–144.CrossRefGoogle Scholar
Peltz, C., Schmid, P., and Bichler, M. (1999). INAA of Aegaean pumices for the classification of archaeological findings. Journal of Radioanalytical and Nuclear Chemistry 242 361–377.CrossRefGoogle Scholar
Percy, J. (1861). Metallurgy. Volume I: Fuel; Fire-clays; Copper; Zinc; Brass. London, Murray. Reprinted Eindhoven, Archeologische Pers Nederland (1984).Google Scholar
Percy, J. (1864). Metallurgy. Volume II: Iron; Steel. London, Murray. Reprinted Eindhoven, Archeologische Pers Nederland (1984).Google Scholar
Percy, J. (1870). Metallurgy. Volume III: Lead. London, Murray. Reprinted Eindhoven, Archeologische Pers Nederland (1984).Google Scholar
Percy, J. (1875). Metallurgy. Volume IV: Silver; Gold. London, Murray. Reprinted Eindhoven, Archeologische Pers Nederland (1984).Google Scholar
Perey, M. (1939). Sur un element 87, derive de l'actinium. Comptes Rendus hebdomadaires des Séances de l'Académie des Sciences 208 97–99.Google Scholar
Perezarantegui, J., Querre, G., and Castillo, J. R. (1994). Particle-induced X-ray-emission – thick-target analysis of inorganic materials in the determination of light-elements. Journal of Analytical Atomic Spectrometry 9 311–314.CrossRefGoogle Scholar
Perkins, W. T., Pearce, N. J. G., and Jeffries, T. E. (1993). Laser ablation inductively coupled plasma mass-spectrometry – a new technique for the determination of trace and ultra-trace elements in silicates. Geochimica et Cosmochimica Acta 57 475–482.CrossRefGoogle Scholar
Perkins, W. T., Pearce, N. J. G., and Westgate, J. A. (1997). The development of laser ablation ICP-MS and calibration strategies: examples from the analysis of trace elements in volcanic glass shards and sulfide minerals. Geostandards Newsletter 21 175–190.CrossRefGoogle Scholar
Perlman, I. and Asaro, F. (1969). Pottery analysis by neutron activation analysis. Archaeometry 11 21–52.CrossRefGoogle Scholar
Perrin, J. (1909). Mouvement Brownien et réalité moléculaire. Annales de Chimie et de Physique 8me Series 17 5–114.Google Scholar
Person, A., Bocherens, H., Saliege, J. F., et al. (1995). Early diagenetic evolution of bone phosphate – an X-ray diffractometry analysis. Journal of Archaeological Science 22 211–221.CrossRefGoogle Scholar
Petit-Dominguez, M. D., Garcia-Gimenez, R., and Rucandio, M. I. (2003). Chemical characterization of Iberian amphorae and tannin determination as indicative of amphora contents. Mikrochimica Acta 141 63–68.CrossRefGoogle Scholar
Pettenkoffer, M. (1850). Ueber die regemässigen Abstände der Aeguivalentzahlen der sogennanten ein fachen Radicale. Akademie der Wissenschaften 30 261–272.Google Scholar
Pike, A. W. G., Hedges, R. E. M., and Calsteren, P. (2002). U-series dating of bone using the diffusion-adsorption model. Geochimica et Cosmochimica Acta 66 4273–4286.CrossRefGoogle Scholar
Pillay, A. E. and Punyadeera, C. (2001). An enhanced procedure for the rapid digestion of high silicate archeological specimens followed by ICP-MS determination of traces of rare earth elements (REEs). Journal of Trace and Microprobe Techniques 19 225–241.CrossRefGoogle Scholar
Platzner, I. T. (1997). Modern Isotope Ratio Mass Spectrometry. Chichester, Wiley.Google Scholar
Plücker, J. (1858). Ueber die Einworkung des Magneten auf die elektrischen Entladungen in verdünnten Gasen. Annalen der Physik und Chemie 103 88–106, 151–157.CrossRefGoogle Scholar
Polette, L. A., Meitzner, G., Yacaman, M. J., and Chianelli, R. R. (2002). Maya blue: application of XAS and HRTEM to materials science in art and archaeology. Microchemical Journal 71 167–174.CrossRefGoogle Scholar
Pollard, A. M. (1995). Groundwater modelling in archaeology – the need and the potential. In Science and Site: evaluation and conservation, eds. Beavis, J. and Barker, K., Occasional Paper 1, Bournemouth, Bournemouth University, pp. 93–98.Google Scholar
Pollard, A. M. (1998a). The chemical nature of the burial environment. In Preserving Archaeological Remains in Situ, eds. Corfield, M., Hinton, P., Nixon, T., and Pollard, A. M., London, Museum of London Archaeology Service.Google Scholar
Pollard, A. M. (1998b). Archaeological reconstruction using stable isotopes. In Stable Isotopes: integration of biological, ecological and geochemical processes, ed. Griffiths, H., Oxford, Bios, pp. 285–301.Google Scholar
Pollard, A. M. (in press a). What a long strange trip it's been: lead isotopes in archaeology. In From Mine to Microscope – analysing ancient technology, eds. Shortland, A., Freestone, I., and Rehren, T.
Pollard, A. M. (in press b). Measuring the passage of time: achievements and challenges in archaeological dating. In Oxford Handbook of Archaeology, eds. Cunliffe, B., Gosden, C., and Joyce, R.
Pollard, A. M. and Hatcher, H. (1986). The chemical analysis of Oriental ceramic body compositions: part 2 – greenwares. Journal of Archaeological Science 13 261–287.CrossRefGoogle Scholar
Pollard, A. M. and Heron, C. (1996). Archaeological Chemistry. Cambridge, Royal Society of Chemistry.Google Scholar
Pollard, A. M. and Wilson, L. (2001). Global biogeochemical cycles and isotope systematics – how the world works. In Handbook of Archaeological Sciences, eds. Brothwell, D. R. and Pollard, A. M., Chichester, Wiley, pp. 191–201.Google Scholar
Pollard, A. M., Bussell, G. D., and Baird, D. C. (1981). The analytical investigation of Early Bronze Age jet and jet-like material from the Devizes Museum. Archaeometry 23 139–167.CrossRefGoogle Scholar
Pomies, M. P., Barbaza, M., Menu, M., and Vignaud, C. (1999a). Preparation of red prehistoric pigments by heating. Anthropologie 103 503–518.Google Scholar
Pomies, M. P., Menu, M., and Vignaud, C. (1999b). TEM observations of goethite dehydration: application to archaeological samples. Journal of the European Ceramic Society 19 1605–1614.CrossRefGoogle Scholar
Ponting, M. and Segal, I. (1998). Inductively coupled plasma-atomic emission spectroscopy analyses of Roman military copper-alloy artefacts from the excavations at Masada, Israel. Archaeometry 40 109–122.CrossRefGoogle Scholar
Ponting, M., Evans, J. A., and Pashley, V. (2003). Fingerprinting of Roman mints using laser-ablation MC-ICP-MS lead isotope analysis. Archaeometry 45 591–597.CrossRefGoogle Scholar
Poole, C. F. (2003). The Essence of Chromatography. Amsterdam, Elsevier.Google Scholar
Potts, P. J., Webb, P. C., and Watson, J. S. (1985). Energy-dispersive X-ray fluorescence analysis of silicate rocks: comparisons with wavelength-dispersive performance. Analyst 110 507–513.CrossRefGoogle Scholar
Price, T. D. (ed.) (1989a). The Chemistry of Prehistoric Human Bone. Cambridge, Cambridge University Press.Google Scholar
Price, T. D. (1989b). Multi-element studies of diagenesis in prehistoric bone. In The Chemistry of Prehistoric Human Bone, ed. Price, T. D., Cambridge, Cambridge University Press, pp. 126–154.Google Scholar
Price, T. D., Blitz, J., Burton, J., and Ezzo, J. A. (1992). Diagenesis in prehistoric bone: problems and solutions. Journal of Archaeological Science 19 513–529.CrossRefGoogle Scholar
Price, T. D., Grupe, G., and Schrotter, P. (1994). Reconstruction of migration patterns in the Bell Beaker period by stable strontium isotope analysis. Applied Geochemistry 9 413–417.CrossRefGoogle Scholar
Price, W. J. (1972). Analytical Atomic Absorption Spectrometry. London, Heyden.Google Scholar
Prohaska, T., Stadlbauer, C., Wimmer, R., et al. (1998). Investigation of element variability in tree rings of young Norway spruce by laser-ablation-ICPMS. Science of the Total Environment 219 29–39.CrossRefGoogle Scholar
Pulfer, M. and Murphy, R. C. (2003). Electrospray mass spectrometry of phospholipids. Mass Spectrometry Reviews 22 332–364.CrossRefGoogle ScholarPubMed
Radosevich, S. C. (1993). The six deadly sins of trace element analysis: a case of wishful thinking in science. In Investigations of Ancient Human Tissue: chemical analyses in anthropology, ed. Sandford, M. K., Langhorne, PA, Gordon and Breach, pp. 269–332.Google Scholar
Raith, A., Hutton, R. C., Abell, I. D., and Crighton, J. (1995). Non-destructive sampling method of metals and alloys for laser ablation–inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectroscopy 10 591–594.CrossRefGoogle Scholar
Ramsay, W. and Soddy, F. (1903). Experiments in radioactivity, and the production of helium from radium. Proceedings of the Royal Society of London B 72 204–207.CrossRefGoogle Scholar
Rapp, G. R. Jr. and Hill, C. L. (1998). Geoarchaeology: the Earth-science approach to archaeological interpretation. New Haven, Yale University Press.Google Scholar
Raven, A. M., Bergen, P. F., Stott, A. W., Dudd, S. N., and Evershed, R. P. (1997). Formation of long-chain ketones in archaeological pottery vessels by pyrolysis of acyl lipids. Journal of Analytical and Applied Pyrolysis 40 267–285.CrossRefGoogle Scholar
Reed, S. J. B. (1993). Electron Microprobe Analysis. Cambridge, Cambridge University Press (2nd edn.).Google Scholar
Regert, M. (1997). Les Composes Organiques en Prehistoire: nouvelles approaches analytiques. Unpublished Ph.D. Thesis, L'Universite de Paris X.
Regert, M., Bland, H. A., Dudd, S. N., Bergen, P. F., and Evershed, R. P. (1998). Free and bound fatty acid oxidation products in archaeological ceramic vessels. Proceedings of the Royal Society of London Series B-Biological Sciences 265 2027–2032.CrossRefGoogle Scholar
Rehman, I., Smith, R., Hench, L. L., and Bonfield, W. (1995). Structural evaluation of human and sheep bone and comparison with synthetic hydroxyapatite by FT-Raman spectroscopy. Journal of Biomedical Materials Research 29 1287–1294.CrossRefGoogle ScholarPubMed
Reiche, I., Favre-Quattropani, L., Calligaro, T., et al. (1999). Trace element composition of archaeological bones and postmortem alteration in the burial environment. Nuclear Instruments and Methods in Physics Research B 150 656–662.CrossRefGoogle Scholar
Reiche, I., Vignaud, C., and Menu, M. (2002a). The crystallinity of ancient bone and dentine: new insights by transmission electron microscopy. Archaeometry 44 447–459.CrossRefGoogle Scholar
Reiche, I., Vignaud, C., Favre-Quattropani, L., and Menu, M. (2002b). Fluorine analysis in biogenic and geological apatite by analytical transmission electron microscopy and nuclear reaction analysis. Journal of Trace and Microprobe Techniques 20 211–231.CrossRefGoogle Scholar
Renfrew, C. (1979). Problems in European Prehistory. Edinburgh, Edinburgh University Press.Google Scholar
Renfrew, C. and Bahn, P. (1996). Archaeology: theories, methods, practice. London, Thames and Hudson (2nd edn.).Google Scholar
Restelli, M., Batista, S., Bruno, M., Salceda, S., and Mendez, M. (1999). Ultrastructural study of fossil human tooth tissue. Biocell 23 197–202.Google ScholarPubMed
Reunanen, M., Holmborn, B., and Edgren, T. (1993). Analysis of archaeological birch bark pitches. Holzforschung 47 175–177.Google Scholar
Rice, P. M. (1987). Pottery Analysis: a sourcebook. Chicago, University of Chicago Press.Google Scholar
Richards, M. P., Schulting, R. J., and Hedges, R. E. M. (2003). Sharp shift in diet at onset of Neolithic. Nature 425 366.CrossRefGoogle ScholarPubMed
Richards, T. W. (1895). The composition of Athenian pottery. American Chemical Journal 17 152–154.Google Scholar
Ringnes, A. (1989). Origin of the names of the chemical elements. Journal of Chemical Education 66 731–738.CrossRefGoogle Scholar
Ritz, W. (1908). Über ein neues Gesetz der Serienspektren. Physikalische Zeitschrift 9 521–529.Google Scholar
Roberts, N. B., Walsh, H. P. J., Klenerman, L., Kelly, S. A., and Helliwell, T. R. (1996). Determination of elements in human femoral bone using inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectroscopy 11 133–138.CrossRefGoogle Scholar
Robinson, N., Evershed, R. P., Higgs, J., Jerman, K., and Eglinton, G. (1987). Proof of a pine wood origin for pitch from Tudor (Mary Rose) and Etruscan shipwrecks: application of analytical organic chemistry in archaeology. Analyst 112 637–644.CrossRefGoogle Scholar
Robinson, S., Nicholson, R. A., Pollard, A. M., and O'Connor, T. P. (2003). An evaluation of nitrogen porosimetry as a technique for predicting taphonomic durability in animal bone. Journal of Archaeological Science 30 391–403.CrossRefGoogle Scholar
Rodriguez-Lugo, V., Ortiz-Velazquez, L., Miranda, J., Ortiz-Rojas, M., and Castano, V. M. (1999). Study of prehispanic wall paintings from Xochicalco, Mexico, using PIXE, XRD, SEM and FTIR. Journal of Radioanalytical and Nuclear Chemistry 240 561–569.CrossRefGoogle Scholar
Rutherford, E. (1899). Uranium radiation and the electrical conduction produced by it. Philosophical Magazine 5 XLVII 109–163.Google Scholar
Rutherford, E. (1904). Radioactivity. Cambridge, Cambridge University Press.Google Scholar
Rutherford, E. (1911). The scattering of α and β particles by matter and the structure of the atom. Philosophical Magazine Series 6 21 669–688.CrossRefGoogle Scholar
Rutherford, E. and Andrade, E. (1914). The wavelength of the soft gamma rays from Radium B. Philosophical Magazine Series 6 27 854–868.CrossRefGoogle Scholar
Rutherford, E. and Geiger, H. (1908). An electrical method of counting the number of alpha particles from radioactive substances. Proceedings of the Royal Society A81 141–161.CrossRefGoogle Scholar
Rutherford, E. and Royds, T. (1909). The nature of the alpha particle from radioactive substances. Philosophical Magazine Series 6, 17 281–286.CrossRefGoogle Scholar
Rutherford, E. and Soddy, F. (1902). The cause and nature of radioactivity. Philosophical Magazine Series 6 4 370–396.CrossRefGoogle Scholar
Ruvalcaba-Sil, J. L., Salamanca, M. A. O., et al. (1999). Characterization of pre-Hispanic pottery from Teotihuacán, Mexico, by a combined PIXE-RBS and XRD analysis. Nuclear Instruments and Methods in Physics Research B 150 591–596.CrossRefGoogle Scholar
Rydberg, J. R. (1897). The new series in the spectrum of hydrogen. Astrophysical Journal 6 233–238.CrossRefGoogle Scholar
Sabbatini, L., Tarantino, M. G., Zambonin, P. G., and Benedetto, G. E. (2000). Analytical characterization of paintings on pre-Roman pottery by means of spectroscopic techniques. Part II: Red, brown and black colored shards. Fresenius Journal of Analytical Chemistry 366 116–124.CrossRefGoogle Scholar
Salamanca, M. A. O., Ruvalcaba-Sil, J. L., Bucio, L., Manzanilla, L., and Miranda, J. (2000). Ion beam analysis of pottery from Teotihuacán, Mexico. Nuclear Instruments and Methods in Physics Research B 161 762–768.CrossRefGoogle Scholar
Sandford, M. K. (ed.) (1993a). Investigations of Ancient Human Tissues: chemical analyses in anthropology. Langhorne, PA, Gordon and Breach.Google Scholar
Sandford, M. K. (1993b). Understanding the biogenic-diagenetic continuum: interpreting elemental concentrations of archaeological bone. In Investigations of Ancient Human Tissue, ed. Sandford, M. K., Langhorne, PA, Gordon and Breach, pp. 3–57.Google Scholar
Sayre, E. V. (1965). Refinement in methods of neutron activation analysis of ancient glass objects through the use of lithium drifted germanium diode counters. In Comptes Rendus VIIe Congrès International du Verre, Bruxelles, 28 Juin–3 Juillet 1965, Charleroi, Institut National du Verre.Google Scholar
Sayre, E. V. and Dodson, R. W. (1957). Neutron activation study of Mediterranean potsherds. American Journal of Archaeology 61 35–41.CrossRefGoogle Scholar
Scaife, B., Budd, P., McDonnell, J. G., and Pollard, A. M. (1999). Lead isotope analysis, oxide ingots and the presentation of scientific data in archaeology. In Metals in Antiquity, eds. Young, S. M. M., Pollard, A. M., Budd, P., and Ixer, R. A. F., BAR International Series 792, Oxford, Archaeopress, pp. 122–133.Google Scholar
Schliemann, H. (1878). Mykenae: Bericht über meine Forschungen und Entdeckungen in Mykenae und Tiryns. Leipzig, F. A. Brockhaus (English translation Mycenae: a narrative of researches and discoveries at Mycenae and Tiryns, London, J. Murray, 1878).Google Scholar
Schoeninger, M. J., DeNiro, M. J., and Tauber, H. (1983). Stable nitrogen isotope ratios of bone collagen reflect marine and terrestrial components of prehistoric human diet. Science 220 1381–1383.CrossRefGoogle ScholarPubMed
Schofield, P. F., Cressey, G., Howard, Wren P., and Henderson, C. M. B. (1995). Origin of colour in iron and manganese containing glasses investigated by synchrotron radiation. Glass Technology 36 89–94.Google Scholar
Schurr, M. R. (1992). Isotopic and mortuary variability in a Middle Mississippian population. American Antiquity 57 300–320.CrossRefGoogle Scholar
Schwarcz, H. and Schoeninger, M. (1991). Stable isotope analysis in human nutritional ecology. Yearbook of Physical Anthropology 34 283–321.CrossRefGoogle Scholar
Sealy, J. C. and Merwe, N. J. (1985). Isotope assessment of Holocene human diets in the southwestern Cape, South Africa. Nature 315 138–140.CrossRefGoogle ScholarPubMed
Sealy, J., Armstrong, R., and Schrire, C. (1995). Beyond lifetime averages: tracing life histories through isotopic analysis of different calcified tissues from archaeological human skeletons. Antiquity 69 290–300.CrossRefGoogle Scholar
Segal, I., Kloner, A., and Brenner, I. B. (1994). Multielement analysis of archaeological bronze objects using inductively coupled plasma-atomic emission spectrometry – aspects of sample preparation and spectral-line selection. Journal of Analytical Atomic Spectrometry 9 737–744.CrossRefGoogle Scholar
Serpico, M. and White, R. (2000). The botanical identity and transport of incense during the Egyptian New Kingdom. Antiquity 74 884–897.CrossRefGoogle Scholar
Shackleton, N. J. (1969). Marine mollusca in archaeology. In Science in Archaeology, eds. Brothwell, D. and Higgs, E., London, Thames and Hudson, pp. 407–414 (2nd edn.).Google Scholar
Shalev, S. (1995). Metals in ancient Israel – archaeological interpretation of chemical analysis. Israel Journal of Chemistry 35 109–116.CrossRefGoogle Scholar
Sheppard, B. S., Heitkemper, D. T., and Gaston, C. M. (1994). Microwave digestion for the determination of arsenic, cadmium and lead in seafood products by inductively coupled plasma-atomic emission and mass spectrometry. Analyst 119 1683–1686.CrossRefGoogle Scholar
Shimosaka, C. (1999). Relationship between chemical composition and crystalline structure in fish bone during cooking. Journal of Clinical Biochemistry and Nutrition 26 173–182.CrossRefGoogle Scholar
Sillen, A. and Parkington, J. (1996). Diagenesis of bones from Eland's bay cave. Journal of Archaeological Science 23 535–542 (with correction 24 287 1997).CrossRefGoogle Scholar
Sillen, A. and Sealy, J. C. (1995). Diagenesis of strontium in fossil bone – a reconsideration of Nelson et al. (1986). Journal of Archaeological Science 22 313–320.CrossRefGoogle Scholar
Sillen, A., Sealy, J. C., and van der Merwe, N. J. (1989). Chemistry and paleodietary research: no more easy answers. American Antiquity 54 504–512.CrossRefGoogle Scholar
Silva, F. V., Trevizan, L. C., Silva, C. S., Nogueira, A. R. A., and Nóbrega, J. A. (2002). Evaluation of inductively coupled plasma optical emission spectrometers with axially and radially viewed configurations. Spectrochimica Acta B 57 1905–1913.CrossRefGoogle Scholar
Simpson, I. A., van Bergen, P. F., Perret, V., et al. (1999). Lipid biomarkers of manuring practice in relict anthropogenic soils. Holocene 9 223–229.CrossRefGoogle Scholar
Singer, C. (ed.) (1954–1984). A History of Technology. 8 vols. Oxford, Clarendon Press.Google Scholar
Skoog, D. A., Holler, F. J., and. Nieman, T. A. (1998). Principles of Instrumental Analysis. Philadelphia, Saunders College (5th edn.).Google Scholar
Smith, C., Chamberlain, A. T., Riley, M. S., et al. (2001). Not just old but old and cold?Nature 410 771–772.CrossRefGoogle Scholar
Smith, G. D. and Clark, R. J. H. (2004). Raman microscopy in archaeological science. Journal of Archaeological Science 31 1137–1160.CrossRefGoogle Scholar
Smith, P. R. and Wilson, M. T. (2001). Blood residues in archaeology. In Handbook of Archaeological Sciences, eds. Brothwell, D. R. and Pollard, A. M., Chichester, Wiley, pp. 313–322.Google Scholar
Sponheimer, M., Lee-Thorp, J., Ruiter, D., et al. (2005). Hominins, sedges, and termites: new carbon isotope data from the Sterkfontein valley and Kruger National Park. Journal of Human Evolution 48 301–312.CrossRefGoogle ScholarPubMed
Spoto, G., Ciliberto, E., Allen, G. C., et al. (2000). Chemical and structural properties of ancient metallic artefacts: multitechnique approach to study of early bronzes. British Corrosion Journal 35 43–47.CrossRefGoogle Scholar
Stern, B., Heron, C., Serpico, M., and Bourriau, J. (2000). A comparison of methods for establishing fatty acid concentration gradients across potsherds: a case study using Late Bronze Age Canaanite amphorae. Archaeometry 42 399–414.CrossRefGoogle Scholar
Stern, B., Heron, C., Corr, L., Serpico, M., and Bourriau, J. (2003). Compositional variations in aged and heated Pistacia resin found in Late Bronze Age Canaanite amphorae and bowls from Amarna, Egypt. Archaeometry 45 457–469.CrossRefGoogle Scholar
Stevenson, C. M., Abdelrehim, I. M., and Novak, S. W. (2001). Infra-red photoacoustic and secondary ion mass spectrometry measurements of obsidian hydration rims. Journal of Archaeological Science 28 109–115.CrossRefGoogle Scholar
Stiner, M. C., Kuhn, S. L., Weiner, S., and Bar-Yosef, O. (1995). Differential burning, recrystallization, and fragmentation of archaeological bone. Journal of Archaeological Science 22 223–237.CrossRefGoogle Scholar
Stone, J. F. S. and Thomas, L. C. (1956). The use and distribution of faience in the Ancient East and Prehistoric Europe. Proceedings of the Prehistoric Society 22 37–84.CrossRefGoogle Scholar
Stoney, G. S. (1894). Of the “electron”, or atom of electricity. Philosophical Magazine Series 5 38 418–420.CrossRefGoogle Scholar
Stott, A. W., Evershed, R. P., Jim, S., et al. (1999). Cholesterol as a new source of palaeodietary information: experimental approaches and archaeological applications. Journal of Archaeological Science 26 705–716.CrossRefGoogle Scholar
Streitweiser, A. Jr. and Heathcock, C. H. (1985). Introduction to Organic Chemistry.New York, Macmillan.Google Scholar
Stuart-Williams, H. L. Q., Schwarcz, H. P., White, C. D., and Spence, M. W. (1996). The isotopic composition and diagenesis of human bone from Teotihuacán and Oaxaca, Mexico. Palaeogeography Palaeoclimatology Palaeoecology 126 1–14.CrossRefGoogle Scholar
Svehla G. (ed.) (1996). Vogel's Qualitative Inorganic Analysis. Harlow, Longman (7th edn.).
Swann, C. P. (1997). Recent applications of nuclear microprobes to the study of art objects and archaeological artifacts. Nuclear Instruments and Methods in Physics Research B 130 289–296.CrossRefGoogle Scholar
Swann, C. P., Fleming, S. J., and Jaksic, M. (1992). Recent applications of PIXE spectrometry in archaeology. 1. Characterization of bronzes with special consideration of the influence of corrosion processes on data reliability. Nuclear Instruments and Methods in Physics Research B 64 499–504.CrossRefGoogle Scholar
Swann, C. P., McGovern, P. E., and Fleming, S. J. (1993). Recent applications of PIXE spectrometry in archaeology. 2. Observations on early glassmaking in the Near-East. Nuclear Instruments and Methods in Physics Research B 75 445–449.CrossRefGoogle Scholar
Sykes, P. (1986). A Guidebook to Mechanism in Organic Chemistry. London, Longman (6th edn.).Google Scholar
Sylvester, P. (ed.) (2001). Laser-Ablation-ICPMS in the Earth Sciences: principles and applications. Ottawa, Ont, Mineralogical Association of Canada.Google Scholar
Szabadváry, F. (1966). History of Analytical Chemistry. Oxford, Pergamon Press.Google Scholar
Talbot, J. C. and Darling, W. G. (1997). Compilation of Stable Isotope Data for Rainfall in the United Kingdom. Technical Report (British Geological Survey) Hydrogeology series, Keyworth, British Geological Survey.Google Scholar
Tamba, M. G., Del, M., Falciani, R., López, T. D., and Coedo, A. G. (1994). One-step microwave digestion procedures for the determination of aluminium in steels and iron ores by inductively coupled plasma atomic emission spectrometry. Analyst 119 2081–2085.CrossRefGoogle Scholar
Tauber, H. (1981). 13C evidence for dietary habits of prehistoric man in Denmark. Nature 292 332–333.CrossRefGoogle ScholarPubMed
Taylor, H. P. Jr., O'Neil, J. R., and Kaplan, I. R. (eds.) (1991). Stable Isotope Geochemistry: a tribute to Samuel Epstein. Special Publication No. 3. San Antonio, TX, Geochemical Society.Google Scholar
Tennent, N. H. (ed.) (1993). Conservation Science in the U.K. London, James and James.Google Scholar
Termine, J. D. and Posner, A. S. (1966). Infrared analysis of rat bone: age dependency of amorphous and crystalline components. Science 153 1523–1525.CrossRefGoogle Scholar
Terry, R. E., Hardin, P. J., Houston, S. D., et al. (2000). Quantitative phosphorus measurement: a field test procedure for archaeological site analysis at Piedras Negras, Guatemala. Geoarchaeology 15 151–166.3.0.CO;2-T>CrossRefGoogle Scholar
Thiel, B. L. (2004). Imaging and analysis in materials science by low vacuum scanning electron microscopy. International Materials Reviews 49 109–122.CrossRefGoogle Scholar
Thomas, G. R. and Young, T. P. (1999). The determination of bloomery furnace mass balance and efficiency. In Geoarchaeology: exploration, environments, resources, ed. Pollard, A. M., London, Geological Society Special Publication, pp. 155–164.Google Scholar
Thomas, R. G. (1990). Studies of Archaeological Copper Corrosion Phenomena. Unpublished Ph.D. Thesis, University of Wales, College of Cardiff, Department of Chemistry.
Thompson, M. and Walsh, J. N. (2003). Handbook of Inductively Coupled Plasma Atomic Emission Spectrometry.Woking, Viridian Publishing.Google Scholar
Thomson, J. J. (1897). Cathode rays. Philosophical Magazine 44 293–316.Google Scholar
Thomson, J. J. (1904). On the structure of the atom: an investigation of the stability and periods of oscillation of a number of corpuscles arranged at equal intervals around the circumference of a circle; with application of the results to the theory of atomic structure. Philosophical Magazine Series 6 7 237–265.CrossRefGoogle Scholar
Thorpe, J. F. and Whiteley, M. A. (eds.) (1937–1956). Thorpe's Dictionary of Applied Chemistry. New York, Wiley (4th edn., 12 vols).Google Scholar
Thurlow, K. J. (ed) (1998). Chemical Nomenclature. Amsterdam, Kluwer Academic.CrossRefGoogle Scholar
Tissot, B. P. and Welte, D. H. (1984). Petroleum Formation and Occurrence. Berlin, Springer-Verlag.CrossRefGoogle Scholar
Tite, M. S. (1972). Methods of Physical Examination in Archaeology.London, Seminar Press.Google Scholar
Tite, M. S. (1991). Archaeological science – past achievements and future prospects. Archaeometry 31 139–151.CrossRefGoogle Scholar
Tiyapongpattana, W., Pongsakul, P., Shiowatana, J., and Nacapricha, D. (2004). Sequential extraction of phosphorus in soil and sediment using a continuous-flow system. Talanta 62 765–771.CrossRefGoogle ScholarPubMed
Topping, J. (1972). Errors of Observation and their Treatment. London, Chapman and Hall (4th edn.).CrossRefGoogle Scholar
Totland, M., Jarvis, I., and Jarvis, K. E. (1992). An assessment of dissolution techniques for the analysis of geological samples by plasma spectrometry. Chemical Geology 95 35–62.CrossRefGoogle Scholar
Trickett, M., Budd, P., Montgomery, J., and Evans, J. (2003). An assessment of solubility profiling as a decontamination procedure for the 87Sr/86Sr analysis of archaeological human tissue. Applied Geochemistry 18 653–658.CrossRefGoogle Scholar
Trigger, B. G. (1988). Archaeology's relations with the physical and biological sciences: a historical review. In Proceedings of the 26th International Archaeometry Symposium, eds. Farquhar, R. M., Hancock, R. G. V., and Pavlish, L. A., Toronto, University of Toronto, pp. 1–9.Google Scholar
Trigger, B. G. (1989). A History of Archaeological Thought. Cambridge, Cambridge University Press.Google Scholar
Trueman, C. N. (1999). Rare earth element geochemistry and taphonomy of terrestrial vertebrate assemblages. Palaios 14 555–568.CrossRefGoogle Scholar
Tsalev, D. L. (2000). Vapor generation or electrothermal atomic absorption – both!Spectrochimica Acta B 55 917–933.CrossRefGoogle Scholar
Tsolakidou, A. and Kilikoglou, V. (2002). Comparative analysis of ancient ceramics by neutron activation analysis, inductively coupled plasma-optical emission spectrometry, inductively coupled plasma-mass spectrometry, and X-ray fluorescence. Analytical and Bioanalytical Chemistry 374 566–572.CrossRefGoogle ScholarPubMed
Turner, N. H. (1997). X-ray photoelectron and Auger electron spectroscopy. In Analytical Instrumentation Handbook, ed. Ewing, G. W., New York, Marcel Dekker, pp. 863–914 (2nd edn.).Google Scholar
Tykot, R. H. (1998). Mediterranean islands and multiple flows: the sources and exploitation of Sardinian obsidian. In Archaeological Obsidian Studies: method and theory, ed. Shackley, M. S., New York, Plenum Press, pp. 67–82.CrossRefGoogle Scholar
Tykot, R. H. (2002). Contribution of stable isotope analysis to understanding dietary variation among the Maya. In Archaeological Chemistry: materials, methods and meaning, ed. Jakes, K. A., ACS Symposium Series 831, Washington, DC, American Chemical Society, pp. 214–230.CrossRefGoogle Scholar
Tykot, R. H. and Young, S. M. M. (1996). Archaeological applications of inductively coupled plasma-mass spectrometry. In Archaeological Chemistry: organic, inorganic and biochemical analysis, ed. Orna, M. V., ACS Symposium Series 625, Washington, DC, American Chemical Society, pp. 116–130.CrossRefGoogle Scholar
Ubelaker, D. H., Katzenberg, M. A., and Doyon, L. G. (1995). Status and diet in precontact highland Ecuador. American Journal of Physical Anthropology 97 403–411.CrossRefGoogle ScholarPubMed
Urem-Kotsou, D., Stern, B., Heron, C., and Kotsakis, K. (2002). Birch bark tar at Neolithic Makriyalos, Greece. Antiquity 76 962–967.CrossRefGoogle Scholar
Merwe, M. J. (1982). Carbon isotopes, photosynthesis and archaeology. American Scientist 70 596–606.Google Scholar
van der Merwe, M. J. (1992). Light stable isotopes and the reconstruction of prehistoric diets. In New Developments in Archaeological Science, ed. Pollard, A. M., Proceedings of the British Academy 77, Oxford, Oxford University Press, pp. 247–264.Google Scholar
Merwe, N. J. and Vogel, J. C. (1977). 13C content of human collagen as a measure of prehistoric diet in woodland North America. Nature 276 815–816.CrossRefGoogle Scholar
Merwe, N. J., Roosevelt, A. C., and Vogel, J. C. (1981). Isotopic evidence for prehistoric subsistence change at Parmana, Venezuela. Nature 292 536–538.CrossRefGoogle Scholar
Merwe, N. J., Lee-Thorp, J. A., Thackeray, J. F., et al. (1990). Source area determination of elephant ivory by isotopic analysis. Nature 346 744–746.CrossRefGoogle Scholar
Grieken, R. E. and Markowicz, A. A. (1993). Handbook of X-ray Spectrometry: methods and techniques. New York, Marcel Dekker.Google Scholar
Klinken, G. J., Plicht, H., and Hedges, R. E. M. (1994). Bone C-13/C-12 ratios reflect (palaeo-) climatic variations. Geophysical Research Letters 21 445–448.CrossRefGoogle Scholar
Varma, A. (1985). Handbook of Atomic Absorption Analysis. Boca Raton, FLA, CRC Press.Google Scholar
Villard, P. (1900). Sur la réflexion et la refraction des rayons cathodiques et des rayons déviable du radium. Comptes Rendus hebdomadaires des Séances de l'Académie des Sciences. 130 1010–1012.Google Scholar
Vogel, A. I. (1937). A Text-book of Qualitative Chemical Analysis. London, Longmans, Green and Co.Google Scholar
Vogel, A. I. (1939). A Text-Book of Quantitative Inorganic Analysis. London, Longmans, Green and Co.Google Scholar
Vogel, J. C., Eglington, B., and Auret, J. M. (1990). Isotope fingerprints in elephant bone and ivory. Nature 346 747–749.CrossRefGoogle Scholar
Wada, E., Mizutani, H., and Minagawa, M. (1991). The use of stable isotopes for food web analysis. Critical Reviews in Food Science and Nutrition 30 361–371.CrossRefGoogle ScholarPubMed
Wadsak, M., Constantinides, I., Vittiglio, G., et al. (2000). Multianalytical study of patina formed on archaeological metal objects from Bliesbruck-Reinheim. Mikrochimica Acta 133 159–164.CrossRefGoogle Scholar
Wagner, T., Boyce, A. J., and Fallick, A. E. (2002). Laser combustion analysis of δ34S of sulfosalt minerals: determination of the fractionation systematics and some crystal-chemical considerations. Geochimica et Cosmochimica Acta 66 2855–2863.CrossRefGoogle Scholar
Walder, A. J. and Furuta, N. (1993). High-precision lead isotope ratio measurements by inductively coupled plasma multiple collector mass spectrometry. Analytical Sciences 9 675–680.CrossRefGoogle Scholar
Walters, M. A., Leung, Y. C., Blumenthal, N. C., Legeros, R. Z., and Konsker, K. A. (1990). A Raman and infrared spectroscopic investigation of biological hydroxyapatite. Journal of Inorganic Biochemistry 39 193–200.CrossRefGoogle ScholarPubMed
Wang, J. A., Sun, S. Q., Zhou, Q., et al. (1999). Nondestructive identification of ballpoint writing inks with Fourier transform infrared microscope. Chinese Journal of Analytical Chemistry 27 697–700.Google Scholar
Warashina, T. (1992). Allocation of jasper archaeological implements by means of ESR and XRF. Journal of Archaeological Science 19 357–373.CrossRefGoogle Scholar
Ward, N. I., Abou-Shakra, F. R., and Durrant, S. F. (1990). Trace element content of biological-materials – a comparison of NAA and ICP-MS analysis. Biological Trace Element Research 26 177–187.CrossRefGoogle ScholarPubMed
Watling, R. J., Lynch, B. F., and Herring, D. (1997). Use of laser ablation inductively coupled plasma mass spectrometry for fingerprinting scene of crime evidence. Journal of Analytical Atomic Spectroscopy 12 195–203.CrossRefGoogle Scholar
Watmough, S. A., Hutchinson, T. C., and Evans, R. D. (1996). Application of laser ablation inductively coupled plasma – mass spectrometry in dendrochemical analysis. Environmental Science and Technology 31 114–118.CrossRefGoogle Scholar
Watmough, S. A., Hutchinson, T. C., and Evans, R. D. (1998). Development of solid calibration standards for trace elemental analyses of tree rings by laser ablation inductively coupled plasma-mass spectrometry. Environmental Science and Technology 32 2185–2190.CrossRefGoogle Scholar
Watts, S., Pollard, A. M. and Wolff, G. A. (1999). The organic geochemistry of jet: Pyrolosis-gas chromatography/mass spectrometry (Py-GCMS) applied to identifying jet and similar black lithic materials – preliminary results. Journal of Archaeological Science 26 923–933.CrossRefGoogle Scholar
Weiner, J. S., Oakley, K. P., and Clark, Gros W. E. (1953–6). The solution of the Piltdown problem. Bulletin of the British Museum (Natural History) Geology 2 139–146.Google Scholar
Weiner, S. and Bar-Yosef, O. (1990). States of preservation of bones from prehistoric sites in the Near East: a survey. Journal of Archaeological Science 17 187–196.CrossRefGoogle Scholar
Weiner, S. and Price, P. A. (1986). Disaggregation of bone into crystals. Calcified Tissue International 39 365–375.CrossRefGoogle ScholarPubMed
Weiss, G. (ed.) (1980). Hazardous Chemicals Data Book. New Jersey, Noyes Data Corporation.Google Scholar
Wess, T. J., Drakopoulos, M., Snigirev, A., et al. (2001). The use of small-angle X-ray diffraction studies for the analysis of structural features in archaeological samples. Archaeometry 43 117–129.CrossRefGoogle Scholar
Wess, T. J., Alberts, I., Cameron, G., et al. (2002). Small angle X-ray scattering reveals changes of bone mineral habit and size in archaeological samples. Fibre Diffraction Review36–43.Google Scholar
White, C. D. and Schwarcz, H. P. (1989). Ancient Maya diet – as inferred from isotopic and elemental analysis of human-bone. Journal of Archaeological Science 16 451–474.CrossRefGoogle Scholar
White, S. R. (1981). The Provenance of Bronze Age pottery from Central and Eastern Greece. Unpublished Ph.D. Thesis, University of Bradford, UK.
Willett, F. and Sayre, E. V. (2000). The elemental composition of Benin memorial heads. Archaeometry 42 159–188.CrossRefGoogle Scholar
Williams-Thorpe, O. (1995). Obsidian in the Mediterranean and the Near East: a provenance success story. Archaeometry 37 217–248.CrossRefGoogle Scholar
Williams-Thorpe, O. and Thorpe, R. S. (1992). Geochemistry, sources and transport of the Stonehenge bluestones. In New Developments in Archaeological Science, ed. Pollard, A. M., Proceedings of the British Academy 77, Oxford, Oxford University Press, pp. 133–161.Google Scholar
Williams-Thorpe, O., Potts, P. J., and Webb, P. C. (1999). Field-portable non-destructive analysis of lithic archaeological samples by X-ray fluorescence instrumentation using a mercury iodide detector: Comparison with wavelength-dispersive XRF and a case study in British stone axe provenancing. Journal of Archaeological Science 26 215–237.CrossRefGoogle Scholar
Wilson, A. S., Dixon, R. A., Dodson, H. I., et al. (2001). Yesterday's hair – human hair in archaeology. Biologist 48 213–217.Google ScholarPubMed
Wilson, L. (2004). Geochemical Approaches to Understanding In Situ Diagenesis. Unpublished Ph.D. thesis, University of Bradford, UK.
Wilson, L. and Pollard, A. M. (2001). The provenance hypothesis. In Handbook of Archaeological Sciences, eds. Brothwell, D. and Pollard, A. M., Chichester, Wiley, pp. 507–517.
Wilson, L. and Pollard, A. M. (2002). Here today, gone tomorrow? Integrated experimentation and geochemical modeling in studies of archaeological diagenetic change. Accounts of Chemical Research 35 644–651.CrossRefGoogle ScholarPubMed
Wilson, L., Pollard, A. M., Hall, A. J., and Wilson, A. S. (in press). Assessing the influence of agrochemicals on the nature of copper corrosion in the vadose zone of arable land – Part 3: Geochemical modelling. Conservation and Management of Archaeological Sites.
Winkler, C. (1886). Germanium, Ge, a new nonmetallic element. Berichte der Deutschen Chemischen Gesellschaft 19 210–211.CrossRefGoogle Scholar
Wöhler, F. (1828). Ueber künstliche Bildung des Harnstoffs. Annalen der Physik und Chemie 12 253–256.
Woldseth, R. (1973). X-ray Energy Spectrometry. Burlingame, CA, Kevex Corporation.Google Scholar
Wolff, S. R., Liddy, D. J., Newton, G. W. A., Robinson, V. J., and Smith, R. J. (1986). Classical and Hellenistic black glaze ware in the Mediterranean – a study by epithermal neutron-activation analysis. Journal of Archaeological Science 13 245–259.CrossRefGoogle Scholar
Wright, L. E. and Schwarcz, H. P. (1996). Infrared and isotopic evidence for diagenesis of bone apatite from Dos Pilas, Guatemala: paleodietary implications. Journal of Archaeological Science 23 993–944.CrossRefGoogle Scholar
Wright, S. (ed.) (1964). Classical Scientific Papers: physics. London, Mills and Boon.Google Scholar
Xu, A. W., Wang, C. S., Chi, J. Q., et al. (2001). Preliminary provenance research on Chinese Neolithic pottery: Huating (Xinyi County) and three Yellow River Valley sites. Archaeometry 43 35–47.CrossRefGoogle Scholar
Yamada, M., Tohno, S., Tohno, Y., et al. (1995). Accumulation of mercury in excavated bones of two natives in Japan. Science of the Total Environment 162 253–256.CrossRefGoogle ScholarPubMed
Yener, K. A. and Vandiver, P. B. (1993). Tin processing at Goltepe, an Early Bronze-Age site in Anatolia. American Journal of Archaeology 97 207–238.CrossRefGoogle Scholar
Yi, W., Budd, P., McGill, R. A. R., et al. (1999). Tin isotope studies of experimental and prehistoric bronzes. In The Beginnings of Metallurgy, eds. Hauptmann, A., Pernicka, E., Rehren, T., and Yalcin, U., Der Anschnitt Beiheft 9, Bochum, Deutschen berbau-Museum, pp. 285–290.
Yoshinaga, J., Suzuki, T., Morita, M., and Hayakawa, M. (1995). Trace-elements in ribs of elderly people and elemental variation in the presence of chronic diseases. Science of the Total Environment 162 239–252.CrossRefGoogle ScholarPubMed
Yoshinaga, J., Yoneda, M., Morita, M., and Suzuki, T. (1998). Lead in prehistoric, historic and contemporary Japanese: stable isotopic study by ICP mass spectrometry. Applied Geochemistry 13 403–413.CrossRefGoogle Scholar
Young, S. M. M., Budd, P., Haggerty, R., and Pollard, A. M. (1997). Inductively coupled plasma-mass spectrometry for the analysis of ancient metals. Archaeometry 39 379–392.CrossRefGoogle Scholar
Zhang, J. Z. and Chi, J. (2002). Automated analysis of nanomolar concentrations of phosphate in natural waters with liquid waveguide. Environmental Science and Technology 36 1048–1053.CrossRefGoogle ScholarPubMed
Zheng, J., Goessler, W., Geiszinger, A., et al. (1997). Multi-element determination in earthworms with instrumental neutron activation analysis and inductively coupled plasma mass spectrometry: a comparison. Journal of Radioanalytical and Nuclear Chemistry 223 149–155.CrossRefGoogle Scholar
Zhou, Y., Parsons, P. J., Aldous, K. M., Brockman, P., and Slavin, W. (2001). Atomization of lead from whole blood using novel tungsten filaments in electrothermal atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry 16 82–89.CrossRefGoogle Scholar
Zong, Y. Y., Parsons, P. J., and Slavin, W. (1998). Background correction errors for lead in the presence of phosphate with Zeeman graphite furnace atomic absorption spectrometry. Spectrochimica Acta B 53 1031–1039.CrossRefGoogle Scholar
Zoppi, A., Signorini, G. F., Lucarelli, F., and Bachechi, L. (2002). Characterisation of painting materials from Eritrea rock art sites with non-destructive spectroscopic techniques. Journal of Cultural Heritage 3 299–308.CrossRefGoogle Scholar
Abraham, M. H., Grime, G. W., Marsh, M. A. and Northover, J. P. (2001). The study of thick corrosion layers on archaeological metals using controlled laser ablation in conjunction with an external beam microprobe. Nuclear Instruments and Methods in Physics Research B 181 688–692.CrossRefGoogle Scholar
Ahuja, S. (2003). Chromatography and Separation Science. Amsterdam, Academic Press.Google Scholar
Aitchison, J. (1986). The Statistical Analysis of Compositional Data. London, Chapman and Hall.CrossRefGoogle Scholar
Aitken, M. J. (1990). Scientific Dating Techniques in Archaeology. London, Longman.Google Scholar
Akesson, K., Grynpas, M. D., Hancock, R. G. V., Odselius, R., and Obrant, K. J. (1994). Energy-dispersive X-ray-microanalysis of the bone mineral content in human trabecular bone – a comparison with ICP-ES and neutron-activation analysis. Calcified Tissue International 55 236–239.CrossRefGoogle Scholar
Alfassi, Z. B. (ed.) (1990). Activation Analysis. 2 vols. Boca Raton, CRC Press.Google Scholar
Allen, R. O. (ed.) (1989). Archaeological Chemistry IV. Advances in Chemistry Series 220, Washington, DC, American Chemical Society.CrossRefGoogle Scholar
Allen, R. O., Rogers, M. S., Mitchell, R. S., and Hoffman, M. A. (1982). A geochemical approach to the understanding of ceramic technology in Predynastic Egypt. Archaeometry 24 199–212.CrossRefGoogle Scholar
Allred, A. L. and Rochow, E. G. (1958). A scale of electronegativity based on electrostatic force. Journal of Inorganic and Nuclear Chemistry 5 264–268.CrossRefGoogle Scholar
Al-Saad, Z. (2000). Technology and provenance of a collection of Islamic copper-based objects as found by chemical and lead isotope analysis. Archaeometry 42 385–397.CrossRefGoogle Scholar
Al-Saad, Z. (2002) Chemical composition and manufacturing technology of a collection of various types of Islamic glazes excavated from Jordan. Journal of Archaeological Science 29 803–810.CrossRefGoogle Scholar
Ambrose, S. H. (1990). Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science 17 431–451.CrossRefGoogle Scholar
Ambrose, S. H. (1993). Isotopic analysis of paleodiets: methodological and interpretative considerations. In Investigations of Ancient Human Tissue, ed. Sandford, M. K., Langhorne, Pennsylvania, Gordon and Breach, pp. 59–130.Google Scholar
Ambrose, S. H. and DeNiro, M. J. (1986). Reconstruction of African human diet using bone collagen carbon and nitrogen isotope ratios. Nature 319 321–324.CrossRefGoogle Scholar
Ambrose, S. H. and Katzenberg, A. M. (eds.) (2000). Biogeochemical Approaches in Paleodietary Analysis. London, Plenum.Google Scholar
Ambrose, S. H. and Norr, L. (1993). Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In Prehistoric Human Bone: archaeology at the molecular level, eds. Lambert, J. B. and Grupe, G., Berlin, Springer Verlag, pp. 1–37.CrossRefGoogle Scholar
Andrade, E., Pineda, J. C., Zavala, E. P., et al. (1998). IBA analysis of a possible therapeutic ancient tooth inlay. Nuclear Instruments and Methods in Physics Research B 136–138 908–912.CrossRefGoogle Scholar
Appoloni, C. R., Quinones, F. R. E., Aragao, P. H. A., et al. (2001). EDXRF study of Tupi-Guarani archaeological ceramics. Radiation Physics and Chemistry 61 711–712.CrossRefGoogle Scholar
Ardika, I. W. and Bellwood, P. (1991). Sembiran: the beginnings of Indian contact with Bali. Antiquity 65 221–232.CrossRefGoogle Scholar
Asaro, F. and Perlman, I. (1973). Provenience studies of Mycenean pottery employing neutron activation analysis. In Acts of the International Archaeological Symposium “The Myceneans in the Eastern Mediterranean”, Nicosia 27th March–2nd April 1972, Cyprus, Nicosia, Department of Antiquities, pp. 213–224.Google Scholar
Aspinall, A. and Feather, S. W. (1972). Neutron activation analysis of prehistoric flint mine products. Archaeometry 14 41–53.CrossRefGoogle Scholar
Aspinall, A., Warren, S. E., Crummett, J. G., and Newton, R. G. (1972). Neutron activation analysis of faience beads. Archaeometry 14 27–40.CrossRefGoogle Scholar
Aston, F. W. (1920). Isotopes and atomic weights. Nature 105 617–619.CrossRefGoogle Scholar
Atkins, P. W. (2001). The Elements of Physical Chemistry. Oxford, Oxford University Press (3rd edn.).Google Scholar
Atkins, P. W. and Beren, J. A. (1992). General Chemistry. New York, Scientific American Books (2nd edn.).Google Scholar
Atkins, P. W. and Jones, L. (2002). Chemical Principles: the quest for insight. New York, Freeman (2nd edn.).Google Scholar
Autumn, K., Liang, Y. A., Hsieh, S. T., et al. (2000). Adhesive force of a single gecko foot-hair. Nature 405 681–685.CrossRefGoogle ScholarPubMed
Aveling, E. M. and Heron, C. (1998). Identification of birch bark tar at the Mesolithic site of Star Carr. Ancient Biomolecules 2 69–80.Google Scholar
Aveling, E. M. and Heron, C. (1999). Chewing tar in the early Holocene: an archaeological and ethnographic evaluation. Antiquity 73 579–584.CrossRefGoogle Scholar
Avogadro, A. (1811). D'une manière de déterminer les masses relatives de molécules élémentaires des corps, et les proportions selon lesquelles elles entrent dans ces combinaisons. Journal de Physique LXXIII 58–76.Google Scholar
Badler, V. R., McGovern, P. E., and Michel, R. H. (1990). Drink and be merry! Infrared spectroscopy and ancient near eastern wine. MASCA Research Papers in Science and Archaeology, Philadelphia, University of Pennsylvania7 25–36.Google Scholar
Baffier, D., Girard, M., Menu, M., and Vignaud, C. (1999). Color at the Grande Grotte, Arcy-Sur-Cure (Yonne, France). Anthropologie 103 1–21.Google Scholar
Bakraji, E. H., Othman, I., Sarhil, A., and Al-Somel, N. (2002). Application of instrumental neutron activation analysis and multivariate statistical methods to archaeological Syrian ceramics. Journal of Trace and Microprobe Techniques 20 57–68.CrossRefGoogle Scholar
Balaram, V. (1996). Recent trends in the instrumental analysis of rare earth elements in geological and industrial materials. Trends in Analytical Chemistry 15 475–486.CrossRefGoogle Scholar
Baldwin, S., Deaker, M., and Maher, W. (1994). Low volume microwave digestion of marine biological tissues for the measurement of trace-elements. Analyst 119 1701–1704.CrossRefGoogle ScholarPubMed
Balmer, J. J. (1885). Notiz über die Spectrallinien des Wasserstoffs. Annalen der Physik und Chemie (Neue Folge) 25 80–87.CrossRefGoogle Scholar
Barakat, A. O., Qian, Y., Kim, M., and Kennicutt, M. C. (2001). Chemical characterization of naturally weathered oil residues in arid terrestrial environment in Al-Alamein, Egypt. Environmental International 27 291–310.CrossRefGoogle ScholarPubMed
Barber, D. J. and Freestone, I. C. (1990). An investigation of the origin of the colour of the Lycurgus Cup by analytical transmission electron microscopy. Archaeometry 32 33–45.CrossRefGoogle Scholar
Barford, N. C. (1985). Experimental Measurements: precision, error and truth. London, Addison-Wesley.Google Scholar
Barnard, T. W., Crockett, M. I., Ivaldi, J. C., et al. (1993). Solid-state detector for ICP-OES. Analytical Chemistry 65 1231–1239.CrossRefGoogle Scholar
Barnes, I. L., Shields, W. R. S., Murphy, T. J., and Brill, R. H. (1974). Isotopic analysis of Laurion lead ores. In Archaeological Chemistry, ed. Beck, C. W., Advances in Chemistry Series 138, Washington, DC, American Chemical Society, pp. 1–10.CrossRefGoogle Scholar
Baugh, P. J. (ed.) (1993). Gas Chromatography: a practical approach. Oxford, Oxford University Press.Google Scholar
Baxter, M. J. (1994). Exploratory Multivariate Analysis in Archaeology. Edinburgh, Edinburgh University Press.Google Scholar
Baxter, M. J. (2003). Statistics in Archaeology. London, Arnold.Google Scholar
Baxter, M. J. and Buck, C. E. (2000). Data handling and statistical analysis. In Modern Analytical Methods in Art and Archaeology, eds. Ciliberto, E. and Spoto, G., Chemical Analysis Series 155, New York, Wiley, pp. 681–746.Google Scholar
Baxter, M. J. and Gale, N. H. (1998). Testing for multivariate normality via univariate tests: a case study using lead isotope ratio data. Journal of Applied Statistics 25 671–683.CrossRefGoogle Scholar
Bayman, J. M. (1995). Rethinking redistribution in the archaeological record – obsidian exchange at the Marana Platform Mound. Journal of Anthropological Research 51 37–63.CrossRefGoogle Scholar
Beardsley, F. R., Goles, G. G., and Ayres, W. S. (1996). Provenance studies on Easter Island obsidian: an archaeological application. In Archaeological Chemistry: organic, inorganic and biochemical analysis, ed. Orna, M. V., ACS Symposium Series 625, Washington, DC, American Chemical Society, pp. 47–63.CrossRefGoogle Scholar
Beck, C. W. (ed.) (1974). Archaeological Chemistry. Advances in Chemistry Series 138, Washington, DC, American Chemical Society.CrossRefGoogle Scholar
Beck, C. W. (1986). Spectroscopic investigations of amber. Applied Spectroscopy Reviews 22 57–110.CrossRefGoogle Scholar
Beck, C. W. (1995). The provenience analysis of amber. American Journal of Archaeology 99 125–127.Google Scholar
Beck, C. W. and Shennan, S. (1991). Amber in Prehistoric Britain. Oxford, Oxbow.Google Scholar
Beck, C. W., Wilbur, E., and Meret, S. (1964). Infrared spectra and the origins of amber. Nature 201 256–257.CrossRefGoogle Scholar
Beck, C. W., Wilbur, E., Meret, S., Kossove, D., and Kermani, K. (1965). The infrared spectra of amber and the identification of Baltic amber. Archaeometry 8 96–109.CrossRefGoogle Scholar
Becquerel, A. H. (1896). Sur les radiations émises par phosphorescence. Comptes Rendus hebdomadaires des Séances de l'Académie des Sciences 122 420–421.Google Scholar
Becquerel, A. H. (1900). Déviation du rayonnement du radium dans un champ électrique. Comptes Rendus hebdomadaires des Séances de l'Académie des Sciences 130 809–815.Google Scholar
Beer, A. (1852). Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten. Annalen der Physik und Chemie (Poggendorff) 86 78–88.CrossRefGoogle Scholar
Behrens, H. and Stuke, A. (2003). Quantification of H2O contents in silicate glasses using IR spectroscopy – a calibration based on hydrous glasses analysed by Karl-Fischer titration. Glass Science and Technology 76 176–189.Google Scholar
Bentley, R. A., Price, T. D., Lüning, J., et al. (2002). Prehistoric migration in Europe: strontium isotope analysis of early Neolithic skeletons. Current Anthropology 43 799–804.CrossRefGoogle Scholar
Bertoncello, R., Milanese, L., Russo, U., et al. (2002). Chemistry of cultural glasses: the early medieval glasses of Monselice's hill (Padova, Italy). Journal of Non-Crystalline Solids 306 249–262.CrossRefGoogle Scholar
Berzelius, J. (1813, 1814). Essay on the cause of chemical proportions, and on some circumstances relating to them: together with a short and easy method of expressing them. Annals of Philosophy 2 443–454 (1813), 3 51–2, 93–106, 244–225, 353–364 (1814).Google Scholar
Berzelius, J. (1814, 1815). Experiments to determine the definite proportions in which the elements of organic nature are combined. Annals of Philosophy 4 409–510, 5 93–101, 174–184, 260–275.Google Scholar
Bethell, P. and Máté, I. (1989). The use of soil phosphate analysis in archaeology: a critique. In Scientific Analysis in Archaeology, ed. Henderson, J., Monograph 19, Oxford, Oxford University Committee for Archaeology, pp. 1–29.Google Scholar
Bethell, P. H. and Smith, J. U. (1989). Trace-element analysis of an inhumation from Sutton Hoo, using inductively coupled plasma emission-spectrometry – an evaluation of the technique applied to analysis of organic residues. Journal of Archaeological Science 16 47–55.CrossRefGoogle Scholar
Bethke, C. (2003). The Geochemist's Workbench™ Version 6. Urbana-Champaign, University of Illinois (www.rockware.com).Google Scholar
Beynon, J. H. and Brenton, A. G. (1982). An Introduction to Mass Spectrometry. Cardiff, University of Wales Press.Google Scholar
Beynon, J. D. E. and Lamb, D. R. (eds.) (1980). Charge-coupled Devices and their Applications. London, McGraw-Hill.Google Scholar
Bichler, M., Egger, H., Preisinger, A., Ritter, D., and Strastny, P. (1997). NAA of the “Minoan pumice” at Thera and comparison to alluvial pumice deposits in the Eastern Mediterranean region. Journal of Radioanalytical and Nuclear Chemistry 224 7–14.CrossRefGoogle Scholar
Bieber, A. M. Jr., Brooks, W. D., Harbottle, G., and Sayre, E. V. (1976). Application of multivariate techniques to analytical data on Aegean ceramics. Archaeometry 18 59–74.CrossRefGoogle Scholar
Bigazzi, G., Meloni, S., Oddone, M., and Radi, G. (1986). Provenance studies of obsidian artifacts: trace elements analysis and data reduction. Journal of Radioanalytical and Nuclear Chemistry 98 353–363.CrossRefGoogle Scholar
Binder, D., Bourgeois, G., Benoit, F., and Vitry, C. (1990). Identification de brai de bouleau (Betula) dans le Néolithique de Giribaldi (Nice, France) par la spectrométrie de masse. Revue d'Archéométrie 14 37–42.CrossRefGoogle Scholar
Bishop, R. L. and Blackman, M. J. (2002). Instrumental neutron activation analysis of archaeological ceramics: scale and interpretation. Accounts of Chemical Research 35 603–610.CrossRefGoogle ScholarPubMed
Blau, K. and Halket, J. M. (eds.) (1993). Handbook of Derivatives for Chromatography. Chichester, Wiley.Google Scholar
Blau, S., Kennedy, B. J., and Kim, J. Y. (2002). An investigation of possible fluorosis in human dentition using synchrotron radiation. Journal of Archaeological Science 29 811–817.CrossRefGoogle Scholar
Bohr, N. (1913). On the constitution of atoms and molecules. Philosophical Magazine Series 6 26 1–25.CrossRefGoogle Scholar
Bonfield, K. M. (1997). The Analysis and Interpretation of Lipid Residues Associated with Prehistoric Pottery: pitfalls and potential. Unpublished Ph.D. thesis, University of Bradford, UK.Google Scholar
Boss, C. B. and Fredeen, K. J. (1999). Concepts, Instrumentation and Techniques in Inductively Coupled Plasma Optical Emission Spectrometry. Norwalk, CO, Perkin Elmer (2nd edn.).Google Scholar
Bothe, B. and Becker, H. (1930). Künstliche Erregung von Kern-γ-Strahlen. Zeitschrift für Physik 66 289–306.CrossRefGoogle Scholar
Bowman, S. (ed.) (1991). Science and the Past. London, British Museum Press.CrossRefGoogle Scholar
Brady, J. E. and Hollum, J. R. (1993). Chemistry: the study of matter and its changes. New York, Wiley.Google Scholar
Brenna, J. T., Corso, T. N., Tobias, H. J., and Caimi, R. J. (1997). High-precision continuous-flow isotope ratio mass spectrometry. Mass Spectrometry Reviews 16 227–258.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Brenner, I. B. and Zander, A. T. (2000). Axially and radially viewed inductively coupled plasmas – a critical review. Spectrochimica Acta B 55 1195–1240.CrossRefGoogle Scholar
Brill, R. H. and Wampler, J. M. (1967). Isotope studies of ancient lead. American Journal of Archaeology 71 63–77.CrossRefGoogle Scholar
Brody, R. H. (2000). Applications of FT-Raman Spectroscopy to Biomaterials. Unpublished Ph.D. Thesis, UK, University of Bradford.Google Scholar
Brody, R. H., Edwards, H. G. M., and Pollard, A. M. (2001). Chemometric methods applied to the differentiation of Fourier-transform Raman spectra of ivories. Analytica Chimica Acta 427 223–232.CrossRefGoogle Scholar
Ramsey, Bronk C., Pettitt, P. B., Hedges, R. E. M., Hodgins, G. W. L., and Owen, D. C. (2000). Radiocarbon dates from the Oxford AMS system, Archaeometry datelist 30. Archaeometry 42 459–479.CrossRefGoogle Scholar
Bronk, H., Rohrs, S., Bjeoumikhov, , N., et al. (2001). ArtTAX- a new mobile spectrometer for energy-dispersive micro X-ray fluorescence spectrometry on art and archaeological objects. Fresenius Journal of Analytical Chemistry 371 307–316.CrossRefGoogle ScholarPubMed
Brønsted, J. N. (1923). Some remarks on the concept of acids and bases. Recueil des Travaux Chimiques des Pays-Bas 42 718–728.Google Scholar
Brothwell, D. and Higgs, E. (eds.) (1963). Science in Archaeology: a survey of progress and research.London, Thames and Hudson (2nd edn. 1969).Google Scholar
Brothwell, D. and Pollard, A. M. (eds.) (2001). Handbook of Archaeological Sciences.Chichester, Wiley.Google Scholar
Brown, M. A. and Blin-Stoyle, A. E. (1959). Spectrographic analysis of British Middle and Late Bronze Age finds (including reprint of “A sample analysis of British Middle and Late Bronze Age material, using optical spectrometry”, from Proceedings of the Prehistoric Society.)Supplement to Archaeometry 2.Google Scholar
Brown, R. (1827). A Brief Account of Microscopical Observations. (Reprinted in Edinburgh New Philosophical Journal 358–837 (July–September 1828)).
Brown, W. H. (2000). Introduction to Organic Chemistry. Fort Worth, Saunders College (2nd edn.).Google Scholar
Bryant, J. D. and Froelich, P. N. (1996). Oxygen-isotope composition of human tooth enamel from medieval Greenland – linking climate and society – comment. Geology 24 477–478.2.3.CO;2>CrossRefGoogle Scholar
Budd, P., Pollard, A. M., Scaife, B., and Thomas, R. G. (1995a). The possible fractionation of lead isotopes in ancient metallurgical processes. Archaeometry 37 143–150.CrossRefGoogle Scholar
Budd, P., Haggerty, R., Pollard, A. M., Scaife, B., and Thomas, R. G. (1995b). New heavy isotope studies in archaeology. Israel Journal of Chemistry 35 125–130.CrossRefGoogle Scholar
Budd, P., Haggerty, R., Pollard, A. M., Scaife, B., and Thomas, R. G. (1996). Rethinking the quest for provenance. Antiquity 70 168–174.CrossRefGoogle Scholar
Budd, P. D., Lythgoe, P., McGill, R. A. R., Pollard, A. M., and Scaife, B. (1999). Zinc isotope fractionation in liquid brass (Cu-Zn) alloy: potential environmental and archaeological applications. In Geoarchaeology: exploration, environments, resources, ed. Pollard, A. M., London, Geological Society Special Publication, pp. 147–153.Google Scholar
Budd, P., Montgomery, J., Barreiro, B., and Thomas, R. G. (2000). Differential diagenesis of strontium in archaeological human dental tissues. Applied Geochemistry 15 687–694.CrossRefGoogle Scholar
Budd, P., Millard, A., Chenery, C., Lucy, S., and Roberts, C. (2003). Investigating population movement by stable isotope analysis: a report from Britain. Antiquity 78 127–141.CrossRefGoogle Scholar
Buikstra, J. E. and Milner, G. R. (1991). Isotopic and archaeological interpretations of diet in the central Mississippi valley. Journal of Archaeological Science 18 319–329.CrossRefGoogle Scholar
Bull, I. D., Simpson, I. A., Bergen, P. F., and Evershed, R. P. (1999). Muck ‘n’ molecules: organic geochemical methods for detecting ancient manuring. Antiquity 73 86–96.CrossRefGoogle Scholar
Buoso, M. C., Fazinic, S., Haque, A. M. I., et al. (1992). Heavy element distribution profiles in archaeological samples of human tooth enamel and dentin using the proton-induced X-ray-emission technique. Nuclear Instruments and Methods in Physics Research B 68 269–272.CrossRefGoogle Scholar
Burton, J. H. and Price, T. D., (2000). The use and abuse of trace elements for palaeodietary research. In Biogeochemical Approaches to Palaeodietary Analysis, eds. Ambrose, S. and Katzenberg, M. A., New York, Kluwer Academic/Plenum, pp. 159–171.Google Scholar
Burton, J. H., Price, T. D., and Middleton, W. D. (1999). Correlation of bone Ba/Ca and Sr/Ca due to biological purification of calcium. Journal of Archaeological Science 26 609–616.CrossRefGoogle Scholar
Bussell, G. D., Pollard, A. M., and Baird, D. C. (1981). The characterisation of Early Bronze Age jet and jet-like material by X-ray fluorescence. Wiltshire Archaeological Magazine 76 27–32.Google Scholar
Butcher, D. J. and Sneddon, J. (1998). A Practical Guide to Graphite Furnace Atomic Absorption Spectrometry. Chichester, Wiley.Google Scholar
Buxeda i Garrigos, J., Kilikoglou, V., and Day, P. M. (2001). Chemical and mineralogical alteration of ceramics from a Late Bronze Age kiln at Kommos, Crete: the effect on the formation of a reference group. Archaeometry 43 349–371.CrossRefGoogle Scholar
Cahill, T. A., Kusko, B. H., Eldred, R. A., and Schwab, R. N. (1984). Gutenberg's inks and papers: non-destructive compositional analyses by proton milliprobe. Archaeometry 26 3–14.CrossRefGoogle Scholar
Caley, E. R. (1949). Klaproth as a pioneer in the chemical investigation of antiquities. Journal of Chemical Education 26 242–247; 268.CrossRefGoogle Scholar
Caley, E. R. (1951). Early history and literature of archaeological chemistry. Journal of Chemical Education 28 64–66.CrossRefGoogle Scholar
Caley, E. R. (1964). Analysis of Ancient Metals. Oxford, Pergamon.Google Scholar
Caley, E. R. (1967). The early history of chemistry in the service of archaeology. Journal of Chemical Education 44 120–123.CrossRefGoogle Scholar
Calligaro, T., Colinart, S., Poirot, J. P., and Sudres, C. (2002). Combined external-beam PIXE and mu-Raman characterisation of garnets used in Merovingian jewelry. Nuclear Instruments and Methods in Physics Research B 189 320–327.CrossRefGoogle Scholar
Cannizzaro, S. (1858). Sunto di un corso de filosofia chimica. Nuovo Cimento VII 321–366.Google Scholar
Canti, M. G. and Davis, M. (1999). Tests and guidelines for the suitability of sands to be used in archaeological site reburial. Journal of Archaeological Science 26 775–781.CrossRefGoogle Scholar
Capasso, D. J. T., Capasso, L., Di Tota, G., Jones, K. W., and Tuniz, C. (1995). Synchrotron radiation microprobe analysis of human dental calculi from an archaeological site: new possible perspective on paleonutrition studies. International Journal of Osteoarchaeology 5 282–288.CrossRefGoogle Scholar
Carnot, A. (1892a). Recherche du fluor dans les os modernes et les os fossils. Comptes Rendus hebdomadaires des Séances de l'Académie des Sciences 114 1189–1192.Google Scholar
Carnot, A. (1892b). Sur la composition des ossements fossils et la variation de leur teneur fluor dans les différents étages géologiques. Comptes Rendus hebdomadaires des Séances de l'Académie des Sciences 115 243–246.Google Scholar
Carnot, A. (1892c). Sur une application de l'analyse chimique pour fixer l'âge d'ossements humains préhistoriques. Comptes Rendus hebdomadaires des Séances de l'Académie des Sciences 115 337–339.Google Scholar
Carter, G. F. (ed.) (1978). Archaeological Chemistry II. Advances in Chemistry Series 171, Washington, DC, American Chemical Society.Google Scholar
Casetta, B., Giaretta, A., and Mezzacasa, G. (1990). Determination of rare earth and other trace elements in rock samples by ICP-mass spectrometry: comparison with other techniques. Atomic Spectroscopy 11 222–228.Google Scholar
Chabas, A. and Lefevre, R. A. (2000). Chemistry and microscopy of atmospheric particulates at Delos (Cyclades-Greece). Atmospheric Environment 34 225–238.CrossRefGoogle Scholar
Chadwick, J. (1932). Possible existence of a neutron. Nature 129 312.CrossRefGoogle Scholar
Chang, S. C. and Jackson, M. L. (1957). Fractionation of soil phosphorus. Soil Science 84 133–144.CrossRefGoogle Scholar
Charters, S., Evershed, R. P., Goad, L. J., et al. (1993). Quantification and distribution of lipid in archaeological ceramics: implications for sampling potsherds for organic residue analysis and the classification of vessel use. Archaeometry 35 211–223.CrossRefGoogle Scholar
Charters, S., Evershed, R. P., Blinkhorn, P. W., and Denham, V. (1995). Evidence for the mixing of fats and waxes in archaeological ceramics. Archaeometry 37 113–127.CrossRefGoogle Scholar
Cherry, J. F. and Knapp, A. B. (1991). Quantitative provenance studies and Bronze Age trade in the Mediterranean: some preliminary reflections. In Bronze Age Trade in the Mediterranean, ed. Gale, N. H., Studies in Mediterranean Archaeology XC, Jonsered, Åströms, pp. 92–119.Google Scholar
Chippindale, C. (1991). Editorial. Antiquity 65 6–9.CrossRefGoogle Scholar
Christensen, M., Calligaro, T., Consigny, S., et al. (1998). Insight into the usewear mechanism of archaeological flints by implantation of a marker ion and PIXE analysis of experimental tools. Nuclear Instruments and Methods in Physics Research B 136 869–874.CrossRefGoogle Scholar
Christian, G. D. (1994). Analytical Chemistry. New York, Wiley (5th edn.).Google Scholar
Christie, W. W., Dobson, G., and Shepherd, T. (1999). Laboratory accreditation in a lipid analysis context. Lipid Technology 11 118–119.Google Scholar
Ciliberto, E. and Spoto, G. (eds.) (2000). Modern Analytical Methods in Art and Archaeology. New York, Wiley.Google Scholar
Clark, R. J. H., Curri, L., Henshaw, G. S., and Laganara, C. (1997). Characterization of brown-black and blue pigments in glazed pottery fragments from Castel Fiorentino (Foggia, Italy) by Raman microscopy, X-ray powder diffractometry and X-ray photoelectron spectroscopy. Journal of Raman Spectroscopy 28 105–109.3.0.CO;2-Z>CrossRefGoogle Scholar
Clayton, R., Andersson, P., Gale, N. H., Gillis, C., and Whitehouse, M. J. (2002). Precise determination of the isotopic composition of Sn using MC-ICP-MS. Journal of Analytical Atomic Spectrometry 17 1248–1256.CrossRefGoogle Scholar
Climent-Font, A., Demortier, G., Palacio, C., et al. (1998). Characterisation of archaeological bronzes using PIXE, PIGE, RBS and AES spectrometries. Nuclear Instruments and Methods in Physics Research B 134 229–236.CrossRefGoogle Scholar
Clydesdale, A. (1990). Chemicals in Conservation: a guide to possible hazards and safe use. Edinburgh, Scottish Society for Conservation and Restoration (2nd edn.).Google Scholar
Coghlan, H. H. and Case, H. J. (1957). Early metallurgy of copper in Ireland and Britain. Proceedings of the Prehistoric Society 23 91–123.CrossRefGoogle Scholar
Cole, B. J. W., Bentley, M. D., and Hua, Y. (1991). Triterpenoid extractives in the outer bark of Betula lenta black birch. Holzforschung 45 265–268.CrossRefGoogle Scholar
Coles, J. M. (1979). Experimental Archaeology. London, Academic Press.Google Scholar
Collins, M. J., Neilsen-Marsh, C. M., Hiller, J., et al. (2002). The survival of organic matter in bone: a review. Archaeometry 44 383–394.CrossRefGoogle Scholar
Condamin, J., Formenti, F., Metais, M. O., Michel, M., and Blond, P. (1976). The application of gas chromatography to the tracing of oil in ancient amphorae. Archaeometry 10 195–201.CrossRefGoogle Scholar
Connan, J. (1999). Use and trade of bitumen in antiquity and prehistory: molecular archaeology reveals the secrets of past civilizations. Philosophical Transactions of the Royal Society B 354 33–50.CrossRefGoogle Scholar
Connan, J. and Deschesne, O. (1996). Le Bitume à Suse: collection du Musée du Louvre. Paris, Réunion des Musées Nationaux.Google Scholar
Connan, J. and Dessort, D. (1989). Dead sea asphalt in the balms of an Egyptian mummy: identification by molecular criteria. Comptes Rendus de l'Académie des Sciences Serie II 309 1665–1672.Google Scholar
Connan, J., Nissenbaum, A., and Dessort, D. (1992). Molecular archaeology: export of Dead Sea asphalt to Canaan and Egypt in the Chalcolithic-Early Bronze Age (4th-3rd Millennium BC). Geochimica et Cosmochimica Acta 56 2743–2759.CrossRefGoogle Scholar
Connan, J., Lombard, P., Killick, R., et al. (1998). The archaeological bitumens of Bahrain from the Early Dilmun period (c. 2200 BC) to the sixteenth century AD: a problem of sources and trade. Arabian Archaeology and Epigraphy 9 141–181.CrossRefGoogle Scholar
Constantinescu, B. and Bugoi, R. (2000). Archaeometrical studies on silver coins and ancient glassy materials using the Bucharest cyclotron. Acta Physica Hungarica New Series-Heavy Ion Physics 11 451–461.Google Scholar
Cook, J. P. (1995). Characterization and distribution of obsidian in Alaska. Arctic Anthropology 32 92–100.Google Scholar
Copley, M. S., Rose, P. J., Clapham, A., et al. (2001). Processing palm fruits in the Nile valley – biomolecular evidence from Qasr Ibrim. Antiquity 75 538–542.CrossRefGoogle Scholar
Copley, M. S., Berstan, R., Dudd, S. N., et al. (2005a). Dairying in antiquity. I. Evidence from absorbed lipid residues dating to the British Iron Age. Journal of Archaeological Science 32 485–503.CrossRefGoogle Scholar
Copley, M. S., Berstan, R., Straker, V., Payne, S., and Evershed, R. P. (2005b). Dairying in antiquity. II. Evidence from absorbed lipid residues dating to the British Bronze Age. Journal of Archaeological Science 32 505–521.CrossRefGoogle Scholar
Copley, M. S., Berstan, R., Mukherjee, A. J., et al. (2005c). Dairying in antiquity. III. Evidence from absorbed lipid residues dating to the British Neolithic. Journal of Archaeological Science 32 523–546.CrossRefGoogle Scholar
Corbridge, D. E. C. (1995). Phosphorus: an outline of its chemistry, biochemistry and uses. Amsterdam, Elsevier (5th edn.).Google Scholar
Cotton, F. A., Wilkinson, G., and Gaus, P. L. (1995). Basic Inorganic Chemistry. Chichester, Wiley (3rd edn.).Google Scholar
Cousin, H. and Magyar, B. (1994). Precision and accuracy of laser ablation-ICP-MS analysis of rare earth elements with external calibration. Mikrochimica Acta 113 313–323.CrossRefGoogle Scholar
Cox, M. and Mays, S. (eds.) (2000). Human Osteology in Archaeology and Forensic Science. London, Greenwich Medical Media.Google Scholar
Craig, H. (1961). Standards for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133 1833–1834.CrossRefGoogle ScholarPubMed
Craig, O., Mulville, J., Parker Pearson, M., et al. (2000). Detecting milk proteins in ancient pots. Nature 408 312.CrossRefGoogle ScholarPubMed
Cristoni, S. and Bernardi, L. R. (2003). Development of new methodologies for the mass spectrometry study of bioorganic macromolecules. Mass Spectrometry Reviews 22 369–406.CrossRefGoogle ScholarPubMed
Cronyn, J. M. (1990). The Elements of Archaeological Conservation. London, Routledge.CrossRefGoogle Scholar
Cronyn, J. M. (2001). The deterioration of organic materials. In Handbook of Archaeological Sciences, eds. Brothwell, D. R. and Pollard, A. M., Chichester, Wiley, pp. 627–636.
Crowther, J. (1997). Soil phosphate surveys: critical approaches to sampling, analysis and interpretation. Archaeological Prospection 4 93–102.3.0.CO;2-D>CrossRefGoogle Scholar
Cullity, B. D. (1978). Elements of X-ray Diffraction.Reading, Mass., Addison-Wesley (2nd edn.).Google Scholar
Curie, I. and Joliot, F. (1932). Émission de protons de grande vitesse par les substances hydrogénées sous l'influence des rayons γ très pénétrants. Comptes Rendus hebdomadaires des Séances de l'Académie des Sciences 194 273–275.Google Scholar
Curie, P. and Curie, S. (1898). Sur une substance nouvelle radio-active, continue dans la pechblende. Comptes Rendus hebdomadaires des Séances de l'Académie des Sciences 127 175–178.Google Scholar
Dalton, J. (1808, 1810, 1827). A New System of Chemical Philosophy. 3 vols. Manchester, Bickerstaffe, Manchester, Wilson (Vol I Republished 1965, London, Owen).Google Scholar
Damon, P. E., Donahue, D. J., Gore, B. H., et al. (1989). Radiocarbon dating of the Shroud of Turin. Nature 337 611–615.CrossRefGoogle Scholar
Damour, M. A. (1865). Sur la composition des haches en Pierre trouvées dans les monuments celtiques et chez les tribus sauvages. Comptes Rendus hebdomadaires des Séances de l'Académie des Sciences 61 313–321, 357–368.Google Scholar
Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus 16 436–468.CrossRefGoogle Scholar
Darling, J. A. and Hayashida, F. M. (1995). Compositional analysis of the Huitzila and La Lobera obsidian sources in the southern Sierra-Madre Occidental, Mexico. Journal of Radioanalytical and Nuclear Chemistry 196 245–254.CrossRefGoogle Scholar
Das, H. A. and Zonderhuis, J. (1964). The analysis of electrum coins. Archaeometry 7 90–97.CrossRefGoogle Scholar
Date, A. R. and Gray, A. L. (1989). Applications of Inductively Coupled Plasma Mass Spectrometry. London, Blackie.Google Scholar
Davidson, D. A. and Simpson, I. A. (2001). Archaeology and soil micromorphology. In Handbook of Archaeological Sciences, eds. Brothwell, D. and Pollard, A. M., Chichester, Wiley, pp. 167–177.Google Scholar
Davy, H. (1815). Some experiments and observations on the colours used in painting by the ancients. Philosophical Transactions of the Royal Society 105 97–124.CrossRefGoogle Scholar
Benedetto, G. E., Catalano, F., Sabbatini, L., and Zambonin, P. G. (1998). Analytical characterisation of pigments on pre-Roman pottery by means of spectroscopic techniques part I: white coloured shards. Fresenius Journal of Analytical Chemistry 362 170–175.CrossRefGoogle Scholar
Cruz Baltazar, V. (2001). Studies on the State of Preservation of Archaeological Bone. Unpublished Ph.D. Thesis, UK, University of Bradford.Google Scholar
DeAtley, S. P. and Bishop, R. L. (1991). Toward an integrated interface for archaeology and archeometry. In The Ceramic Legacy of Anna O. Shepard, eds. Bishop, R. L. and Lange, R. W., Boulder, CO, University Press of Colorado, pp. 358–380.Google Scholar
Dedina, J. and Tsalev, D. L. (1995). Hydride Generation Atomic Absorption Spectrometry. Chichester, Wiley.Google Scholar
Demortier, G. (1997). Accelerator-based analysis of gold jewelry items and experimental archaeology. Annali Di Chimica 87 103–112.Google Scholar
Demortier, G., Fernandez-Gomez, F., Salamanca, M. A. O., and Coquay, P. (1999). PIXE in an external microbeam arrangement for the study of finely decorated Tartesic gold jewellery items. Nuclear Instruments and Methods in Physics Research B 158 275–280.CrossRefGoogle Scholar
Dempster, A. J. (1918). A new method of positive ray analysis. Physical Review 11 316–325.CrossRefGoogle Scholar
DeNiro, M. J. (1985). Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to paleodietary reconstruction. Nature 317 806–809.CrossRefGoogle Scholar
DeNiro, M. J. (1987). Stable isotopy and archaeology. American Scientist 75 182–191.Google Scholar
Descantes, C., Neff, H., Glascock, M. D., and Dickinson, W. R. (2001). Chemical characterization of Micronesian ceramics through instrumental neutron activation analysis: a preliminary provenance study. Journal of Archaeological Science 28 1185–1190.CrossRefGoogle Scholar
Dillmann, P., Populus, P., Fluzin, P., et al. (1997). Microdiffraction of synchrotron radiation – identification of non-metallic phases in ancient iron products. Revue De Metallurgie-Cahiers d'Informations Techniques 94 267–268.Google Scholar
Dillmann, P., Neff, D., Mazaudier, F., et al. (2002). Characterisation of iron archaeological analogues using micro diffraction under synchrotron radiation. Application to the study of long term corrosion behaviour of low alloy steels. Journal de Physique IV 12 393–408.CrossRefGoogle Scholar
Dobb, F. P. (2004). ISO 9001:2000 Quality Registration Step-by-Step. Amsterdam, Elsevier.Google Scholar
Döbereiner, J. W. (1829). An attempt to group elementary substances according to their analogies. Annalen der Physik und Chemie 15 301–307.CrossRefGoogle Scholar
Drozd, J. (1981). Chemical Derivatization in Gas Chromatography. Amsterdam, Elsevier.Google Scholar
Druc, I. C., Burger, R. L., Zamojska, R., and Magny, P. (2001). Ancón and Garagay ceramic production at the time of Chavín de Huántar. Journal of Archaeological Science 28 29–43.CrossRefGoogle Scholar
Dudd, S. N. and Evershed, R. P. (1998). Direct demonstration of milk as an element of archaeological economies. Science 282 1478–1481.CrossRefGoogle ScholarPubMed
Dudd, S. N. and Evershed, R. P. (1999). Unusual triterpenoid fatty acyl ester components of archaeological birch bark tars. Tetrahedron Letters 40 359–362.CrossRefGoogle Scholar
Dudd, S. N., Regert, M., and Evershed, R. P. (1998). Assessing microbial lipid contributions during laboratory degradations of fats and oils and pure triacylglycerols absorbed in ceramic potsherds. Organic Geochemistry 29 1345–1354.CrossRefGoogle Scholar
Duffy, K. I., Carlson, J. H., and Swann, C. P. (2002). A study of green-glazed ware from England and South Carolina, USA (1760–1780). Nuclear Instruments and Methods in Physics Research B 189 369–372.CrossRefGoogle Scholar
Dulski, P. (1994). Interferences of oxide, hydroxide and chloride analyte species in the determination of rare earth elements in geological samples by inductively coupled plasma-mass spectrometry. Fresenius Journal of Analytical Chemistry 350 194–203.CrossRefGoogle Scholar
Dupras, T. L. and Schwarcz, H. P. (2001). Strangers in a strange land: stable isotope evidence for human migration in the Dakhleh Oasis, Egypt. Journal of Archaeological Science 28 1199–1208.CrossRefGoogle Scholar
Durrant, S. F. (1992). Multi-element analysis of environmental matrices by laser ablation inductively coupled plasma mass spectrometry. Analyst 117 1585–1592.CrossRefGoogle Scholar
Durrant, S. F. and Ward, N. I. (1993). Rapid multielemental analysis of Chinese reference soils by laser ablation inductively coupled plasma mass spectrometry. Fresenius Journal of Analytical Chemistry 345 512–517.CrossRefGoogle Scholar
Durrant, S. F. and Ward, N. I. (1994). Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) for the multielemental analysis of biological materials: a feasibility study. Food Chemistry 49 317–323.CrossRefGoogle Scholar
Eastwood, W. J., Pearce, N. J. G., Westgate, J. A., and Perkins, W. T. (1998). Recognition of Santorini (Minoan) tephra in lake sediments from Gölhisar Gölü, southwest Turkey by laser ablation ICP-MS. Journal of Archaeological Science 25 677–687.CrossRefGoogle Scholar
Edwards, H. G. M. (2000). Art works studied using IR and Raman spectroscopy. In Encyclopaedia of Spectroscopy and Spectrometry, eds. Lindon, J. C., Tranter, G. E., and Holmes, J. L., London, Academic Press, pp. 2–17.Google Scholar
Edwards, H. G. M., Farwell, D. W., Holder, J. M., and Lawson, E. E. (1997). Fourier transform Raman spectra of ivory III: identification of mammalian specimens. Spectrochimica Acta Part A 53 2403–2409.CrossRefGoogle Scholar
Edwards, R. (1996). The effects of changes in groundwater geochemistry on the survival of buried metal artifacts. In Preserving Archaeological Remains In-Situ, eds. Corfield, M., Hinton, P., Nixon, T., and Pollard, A. M., London, Museum of London Archaeology Service, pp. 86–92.Google Scholar
Efremov, I. A. (1940). Taphonomy: new branch of palaeontology. Pan-American Geologist 74 81–94.Google Scholar
Eglinton, G. and Logan, G. A. (1991). Molecular preservation. Philosophical Transactions of the Royal Society of London B 333 315–328.CrossRefGoogle ScholarPubMed
Ehleringer J. R. and Rundel P. W. (1988). Stable isotopes: history, units and instrumentation. In Stable Isotopes in Ecological Research, eds. Rundel, P. W., Ehleringer, J. R., and Nagy, K. A., New York, Springer-Verlag, pp. 1–15.Google Scholar
Eiland, M. L. and Williams, Q. (2001). Investigation of Islamic ceramics from Tell Tuneinir using X-ray diffraction. Geoarchaeology 16 875–903.CrossRefGoogle Scholar
Einstein, A. (1905). Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesischtspunkt. Annalen der Physik (Vierte Folge) 17 132–148.CrossRefGoogle Scholar
Ekman, R. (1983). The suberin monomers and triterpenoids from the outer bark of Betula verrucosa Ehrh. Holzforschung 37 205–211.CrossRefGoogle Scholar
Elder, E. R., Gurewitsch, A. M., Langmuir, R. V., and Pollock, H. C. (1947). Radiation from electrons in a synchrotron. Physical Review 71 829–830.CrossRefGoogle Scholar
Elekes, Z., Biro, K. T., Uzonyi, I., Rajta, I., and Kiss, A. Z. (2000). Geochemical analysis of radiolarite samples from the Carpathian basin. Nuclear Instruments and Methods in Physics Research B 170 501–514.CrossRefGoogle Scholar
Emeleus, V. M. (1958). The technique of neutron activation analysis as applied to trace element determination in pottery and coins. Archaeometry 1 6–15.Google Scholar
Emeleus, V. M. and Simpson, G. (1960). Neutron activation analysis of ancient Roman potsherds. Nature 185 196.CrossRefGoogle Scholar
Emerson, T. E. and Hughes, R. E. (2000). Figurines, flint clay sourcing, the Ozark Highlands, and Cahokian acquisition. American Antiquity 65 79–101.CrossRefGoogle Scholar
Emiliani, C. (1969). The significance of deep-sea cores. In Science in Archaeology, eds. Brothwell, D. and Higgs, E., London, Thames and Hudson, pp. 109–117 (2nd edn.).Google Scholar
Engel, M. H. and Macko, S. A. (1993). Organic Geochemistry: principles and applications. New York, Plenum.CrossRefGoogle Scholar
English, N. B., Betancourt, J. L., Dean, J. S., and Quade, J. (2001). Strontium isotopes reveal distant sources of architectural timber in Chaco Canyon, New Mexico. Proceedings of the National Academy of Sciences of the United States of America 98 11891–11896.CrossRefGoogle ScholarPubMed
Entwistle, J. A. and Abrahams, P. W., (1997). Multi-element analysis of soils and sediments from Scottish historical sites. The potential of inductively coupled plasma-mass spectrometry for rapid site investigation. Journal of Archaeological Science 24 407–416.CrossRefGoogle Scholar
Entwhistle, J. A., Abrahams, P. W., and Dodgshon, R. A. (1998). Multi-element analysis of soils from Scottish historical sites. Interpreting land-use history through physical and geochemical analysis of soil. Journal of Archaeological Science 25 53–68.CrossRefGoogle Scholar
Ericson, J. E. (1985). Strontium isotope characterization in the study of prehistoric human ecology. Journal of Human Evolution 14 503–514.CrossRefGoogle Scholar
Erlandson, J. M., Robertson, J. D., and Descantes, C. (1999). Geochemical analysis of eight red ochres from western North America. American Antiquity 64 517–526.CrossRefGoogle Scholar
Evans, J. (1989). Neutron activation analysis and Romano-British pottery studies. In Scientific Analysis in Archaeology, ed. Henderson, J., Monograph No. 19, Oxford, Oxford University Committee for Archaeology, pp. 136–162.Google Scholar
Evans, R. D. and Outridge, P. M. (1994). Applications of laser ablation inductively coupled plasma mass spectrometry to the determination of environmental contaminants in calcified biological structures. Journal of Analytical Atomic Spectroscopy 9 985–989.CrossRefGoogle Scholar
Evans, R. D., Richner, P., and Outridge, P. M. (1995). Micro-spatial variations of heavy metals in the teeth of Walrus as determined by laser ablation ICP-MS: The potential for reconstructing a history of metal exposure. Archives of Environmental Contamination and Toxicology 28 55–60.CrossRefGoogle ScholarPubMed
Evershed, R. P. (1990). Lipids from samples of skin from seven Dutch bog bodies: preliminary report. Archaeometry 32 139–153.CrossRefGoogle Scholar
Evershed, R. P. (1993). Advances in silylation. In Handbook of Derivatives for Chromatography, eds. Blau, K. and Halket, J. M., New York, Wiley, pp. 51–108 (2nd edn.).Google Scholar
Evershed, R. P. and Connolly, R. C. (1988). Lipid preservation in Lindow man. Naturwissenschaften 75 143–145.CrossRefGoogle ScholarPubMed
Evershed, R. P., Jerman, K., and Eglinton, G. (1985). Pine wood origin for pitch from the Mary Rose. Nature 314 528–530.CrossRefGoogle Scholar
Evershed, R. P., Heron, C., and Goad, L. J. (1990). Analysis of organic residues of archaeological origin by high-temperature gas chromatography and gas chromatography-mass spectrometry. Analyst 115 1339–1342.CrossRefGoogle Scholar
Evershed, R. P., Heron, C., and Goad, L. J. (1991). Epicuticular wax components preserved in pot sherds as chemical indicators of leafy vegetables in ancient diets. Antiquity 65 540–544.CrossRefGoogle Scholar
Evershed, R. P., Turner-Walker, G., Hedges, R. E. M., Tuross, N., and Leyden, A. (1995). Preliminary results for the analysis of lipids in ancient bone. Journal of Archaeological Science 22 277–290.CrossRefGoogle Scholar
Evershed, R. P., Mottram, H. R., Dudd, S. N., et al. (1997a). New criteria for the identification of animal fats preserved in archaeological pottery. Naturwissenschaften 84 402–406.CrossRefGoogle Scholar
Evershed, R. P., Vaughan, S. J., Dudd, S. N., and Soles, J. S. (1997b). Fuel for thought? Beeswax in lamps and conical cups from Late Minoan Crete. Antiquity 71 979–985.CrossRefGoogle Scholar
Ewing, G. W. (1985). Instrumental Methods of Chemical Analysis. New York, McGraw-Hill (5th edn).Google Scholar
Ewing, G. W. (ed.) (1997). Analytical Instrumentation Handbook. New York, Marcel Dekker (2nd edn.).Google Scholar
Fales, H. M., Jaouni, T. M., and Babashak, J. F. (1973). Simple device for preparing ethereal diazomethane without resorting to codistillation. Analytical Chemistry 45 2302–2303.CrossRefGoogle Scholar
Fang, Z. (1995). Flow Injection Atomic Absorption Spectrometry. Chichester, Wiley.Google Scholar
Faraday, M. (1834). Experimental research in electricity. 7th series. Philosophical Transactions of the Royal Society 124 77–122.CrossRefGoogle Scholar
Farnum, J. F., Glascock, M. D., Sandford, M. K., and Gerritsen, S. (1995). Trace-elements in ancient human bone and associated soil using NAA. Journal of Radioanalytical and Nuclear Chemistry 196 267–274.CrossRefGoogle Scholar
Farquhar, G. D., O'Leary, M. H., and Berry, J. A. (1982). On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology 9 121–137.CrossRefGoogle Scholar
Faure, G. (1986). Principles of Isotope Geology. Chichester, Wiley (2nd edn.).Google Scholar
Fazeli, H., Coningham, R. A. E., and Pollard, A. M. (2001). Chemical characterization of Late Neolithic and Chalcolithic pottery from the Tehran Plain, Iran. Iran XXXIX 1–17.Google Scholar
Feigl, F. (1954). Spot Tests. Amsterdam, Elsevier (4th edn.).Google Scholar
Ferranti, P. (2004). Mass spectrometric approach for the analysis of food proteins. European Journal of Mass Spectrometry 10 349–358.CrossRefGoogle ScholarPubMed
Ferrence, S. C., Betancourt, P. P., and Swann, C. P. (2002). Analysis of Minoan white pigments used on pottery from Kommos, Palaikastro, Mochlos and Knossos. Nuclear Instruments and Methods in Physics Research B 189 364–368.CrossRefGoogle Scholar
Fifield, F. W. and Kealey, D. (2000). Principles and Practice of Analytical Chemistry. Oxford, Blackwell Science (5th edn.).Google Scholar
Figg, D. J., Cross, J. B., and Brink, C. (1998). More investigations into elemental fractionation resulting from laser ablation inductively coupled plasma mass spectrometry on glass samples. Applied Surface Science 129 287–291.CrossRefGoogle Scholar
Fiorini, C. and Longoni, A. (1998). Application of a new noncryogenic X-ray detector in portable instruments for archaeometric analyses. Review of Scientific Instruments 69 1523–1528.CrossRefGoogle Scholar
Fleming, S. J. (1975). Authenticity in Art: the scientific detection of forgery. London, Institute of Physics.Google Scholar
Fleming, S. J. and Swann, C. P. (1992). Recent applications of PIXE spectrometry in archaeology 2. Characterization of Chinese pottery exported to the Islamic world. Nuclear Instruments and Methods in Physics Research B 64 528–537.CrossRefGoogle Scholar
Fleming, S. J. and Swann, C. P. (1993). Recent applications of PIXE spectrometry in archaeology. 1. Observations on the early development of copper metallurgy in the Old-World. Nuclear Instruments and Methods in Physics Research B 75 440–444.CrossRefGoogle Scholar
Fleming, S. J. and Swann, C. P. (1994). Roman onyx glass – a study of production recipes and colorants, using PIXE spectrometry. Nuclear Instruments and Methods in Physics Research B 85 864–868.CrossRefGoogle Scholar
Fleming, S. J. and Swann, C. P. (1999). Roman mosaic glass: a study of production processes, using PIXE spectrometry. Nuclear Instruments and Methods in Physics Research B 150 622–627.CrossRefGoogle Scholar
Ford, L. A., Coningham, R. A. E., Pollard, A. M., and Stern, B. (2005). A geochemical investigation of the origin of Rouletted and other related South Asian fine wares. Antiquity 79 909–20.CrossRefGoogle Scholar
Formenti, F. and Duthel, J. M. (1996). The analysis of wine and other organics inside amphoras of the Roman period. In The Origins and Ancient History of Wine, eds. McGovern, P. E., Fleming, S. J., and Katz, S. H., Langhorne, PA, Gordon and Breach, pp. 79–85.CrossRefGoogle Scholar
Freestone, I. C. (2001). Post-depositional changes in archaeological ceramics and glasses. In Handbook of Archaeological Sciences, eds. Brothwell, D. R. and Pollard, A. M., Chichester, Wiley, pp. 615–625.Google Scholar
Frenzel, B. (ed.) (1995). Problems of Stable Isotopes in Tree-rings, Lake Sediments and Peat-bogs as Climatic Evidence for the Holocene. Strasbourg, European Science Foundation.Google Scholar
Fresenius, C. R. (1841). Anleitung zur qualitativen chemischen Analyse. Bonn (2nd–17th edns., Brunswick 1842–1896).Google Scholar
Fresenius, C. R. (1843). Elementary Instruction in Chemical Analysis (trans. Bullock, J. Lloyd). London, Churchill.Google Scholar
Fresenius, C. R. (1845). Anleitung zur quantitativen chemischen Analyse. Brunswick (2nd–6th edns. 1847–1887).Google Scholar
Fricke, H. C., O'Neil, J., and Lynnerup, N. (1995). Oxygen isotope composition of human tooth enamel from medieval Greenland – linking climate and society. Geology 23 869–872.2.3.CO;2>CrossRefGoogle Scholar
Fricke, H. C., Clyde, W. C., and O'Neil, J. R. (1998). Intra-tooth variations in δ18O (PO4) of mammalian tooth enamel as a record of seasonal variations in continental climate variables. Geochimica et Cosmochimica Acta 62 1839–1850.CrossRefGoogle Scholar
Furuta, N. (1991). Interlaboratory comparison study on lead isotope ratios determined by inductively coupled plasma mass spectrometry. Analytical Sciences 7 823–826.CrossRefGoogle Scholar
Gale, N. H. (1991). Copper oxide ingots: their origin and their place in the Bronze Age metals trade in the Mediterranean. In Bronze Age Trade in the Mediterranean, ed. Gale, N. H., Studies in Mediterranean Archaeology 90, Aströms, Jönsered, pp. 197–239.
Gale, N. H. (1997). The isotopic composition of tin in some ancient metals and the recycling problem in metal provenancing. Archaeometry 39 71–82.CrossRefGoogle Scholar
Gale, N. H. and Stos-Gale, Z. A. (1982). Bronze Age copper sources in the Mediterranean: a new approach. Science 216 11–19.CrossRefGoogle ScholarPubMed
Gale, N. H. and Stos-Gale, Z. A. (1992). Lead isotope studies in the Aegean (The British Academy Project). In New Developments in Archaeological Science, ed. Pollard, A. M., Proceedings of the British Academy 77, Oxford, Oxford University Press, pp. 63–108.Google Scholar
Gale, N. H. and Stos-Gale, Z. A. (2000). Lead isotope analysis applied to provenance studies. In Modern Analytical Methods in Art and Archaeology, eds. Ciliberto, E. and Spoto, G., Chemical Analysis Series 155, New York, Wiley, pp. 503–584.Google Scholar
Gale, N. H., Stos-Gale, Z. A., Maliotis, G., and Annetts, N. (1997). Lead isotope data from the Isotrace Laboratory, Oxford: Archaeometry data base 4, ores from Cyprus. Archaeometry 39 237–246.CrossRefGoogle Scholar
Gale, N. H., Woodhead, A. P., Stos-Gale, Z. A., Walder, A., and Bowen, I. (1999). Natural variations detected in the isotopic composition of copper: possible applications to archaeology and geochemistry. International Journal of Mass Spectrometry 184 1–9.CrossRefGoogle Scholar
Garbe-Schonberg, C. D., Reimann, C., and Pavlov, V. A. (1997). Laser ablation ICP-MS analyses of tree-ring profiles in pine and birch from N Norway and NW Russia – a reliable record of the pollution history of the area?Environmental Geology 32 9–16.CrossRefGoogle Scholar
Garcia-Heras, M., Blackman, M. J., Fernandez-Ruiz, R., and Bishop, R. L. (2001). Assessing ceramic compositional data: a comparison of total reflection X-ray fluorescence and instrumental neutron activation analysis on Late Iron Age Spanish Celtiberian ceramics. Archaeometry 43 323–347.CrossRefGoogle Scholar
Garnier, N., Cren-Olivé, C., Rolando, C., and Regert, M. (2002). Characterization of archaeological beeswax by electron ionization and electrospray ionization mass spectrometry. Analytical Chemistry 74 4868–4877.CrossRefGoogle ScholarPubMed
Garrels, R. M. and Christ, C. L. (1965). Solutions, Minerals, and Equilibria.New York, Harper and Row.Google Scholar
Gausch-Jané, M. R., Ibern-Gómez, M., Andrés-Lacueva, C., Jáuregui, O., and Lamuela-Raventós, R. M. (2004). Liquid chromatography with mass spectrometry in tandem mode applied for the identification of wine markers in residues from ancient Egyptian vessels. Analytical Chemistry 76 1672–1677.CrossRefGoogle Scholar
Gay-Lussac, J. L. (1808). Memoir on the combination of gaseous substances with each other. Mémoires de la Société d'Arçeuil II 207.Google Scholar
Geiger, H. and Marsden, E. (1909). On a diffuse reflection of the α-particles. Proceedings of the Royal Society of London A 82 495–500.CrossRefGoogle Scholar
Gernaey, A. M., Minnikin, D. E., Copley, M. S., et al. (1999). Correlation of the occurrence of mycolic acids with tuberculosis prevalence in an archaeological population. In Tuberculosis Past and Present, eds. Pälfi, G., Dutour, O., Deák, J., and Hutás, I., Szeged, Hungary, Golden Book Publisher Ltd. and Tuberculosis Foundation, pp. 275–282.Google Scholar
Gersch, H. K., Robertson, J. D., Henderson, A. G., Pollack, D., and Munson, C. A. (1998). PIXE analysis of prehistoric and protohistoric Caborn-Welborn phase copper artifacts from the lower Ohio River Valley. Journal of Radioanalytical and Nuclear Chemistry 234 85–90.CrossRefGoogle Scholar
Ghazi, A. M. (1994). Lead in archaeological samples: an isotopic study by ICP-MS. Applied Geochemistry 9 627–636.CrossRefGoogle Scholar
Giauque, R. D., Asaro, F., Stross, F. H., and Hester, T. R. (1993). High-precision nondestructive X-ray-fluorescence method applicable to establishing the provenance of obsidian artifacts. X-Ray Spectrometry 22 44–53.CrossRefGoogle Scholar
Gillard, R. D., Hardman, S. M., Thomas, R. G., and Watkinson, D. E. (1994). The mineralization of fibres in burial environments. Studies in Conservation 39 132–140.CrossRefGoogle Scholar
Giumlia-Mair, A., Keall, E. J., Shugar, A. N., and Stock, S. (2002). Investigation of a copper-based hoard from the Megalithic site of al-Midamman, Yemen: an interdisciplinary approach. Journal of Archaeological Science 29 195–209.CrossRefGoogle Scholar
Glascock, M. D. (1991). Tables for Neutron Activation Analysis.Colombia, University of Missouri.Google Scholar
Glascock, M. D. (1994). Nuclear reaction chemical analysis: prompt and delayed measurements. In Chemical Analysis by Nuclear Methods, ed. Alfassi, Z. B., Chichester, Wiley, pp. 75–99.Google Scholar
Glascock, M. D. (1998). Activation analysis. In Instrumental Multi-element Chemical Analysis, ed. Alfassi, Z. B., Dordrecht, Kluwer Academic, pp. 93–150.CrossRefGoogle Scholar
Glascock, M. D. (2000). The status of activation analysis in archaeology and geochemistry. Journal of Radioanalytical and Nuclear Chemistry 244 537–541.CrossRefGoogle Scholar
Glascock, M. D. and Neff, H. (2003). Neutron activation analysis and provenance research in archaeology. Measurement Science and Technology 14 1516–1526.CrossRefGoogle Scholar
Glascock, M. D., Spalding, T. G., Biers, J. C., and Corman, M. F. (1984). Analysis of copper-based metallic artefacts by prompt gamma-ray neutron activation analysis. Archaeometry 26 96–103.CrossRefGoogle Scholar
Glegg, G. A. and Rowland, S. J. (1996). The Braer oil spill: hydrocarbon concentrations in intertidal organisms. Marine Pollution Bulletin 32 486–492.CrossRefGoogle Scholar
Godfrey, I. M., Ghisalberti, E. L., Beng, E. W., Byrne, L. T., and Richardson, G. W. (2002). The analysis of ivory from a marine environment. Studies in Conservation 47 29–45.Google Scholar
Goffer, Z. (1980). Archaeological Chemistry: a sourcebook on the applications of chemistry to archaeology. New York, Wiley-Interscience.Google Scholar
Goldschmidt, V. M. (1954). Geochemistry. London, Oxford University Press.Google Scholar
Golightly, D. W. and Montaser, A. (1992). Inductively Coupled Plasmas in Analytical Atomic Spectrometry,New York, VCH Publishers (2nd edn.).Google Scholar
Gomez, B., Neff, H., Rautman, M. L., Vaughan, S. J., and Glascock, M. D. (2002). The source provenance of Bronze Age and Roman pottery from Cyprus. Archaeometry 44 23–36.CrossRefGoogle Scholar
Gordus, A. A. (1967). Quantitative non-destructive neutron activation analysis of silver in coins. Archaeometry 10 78–86.CrossRefGoogle Scholar
Gosser, D. C., Ohnersorgen, M. A., Simon, A. W., and Mayer, J. W. (1998). PIXE analysis of Salado polychrome ceramics of the American Southwest. Nuclear Instruments and Methods in Physics Research B 136–138 880–887.CrossRefGoogle Scholar
Gratuze, B. (1999). Obsidian characterization by laser ablation ICP-MS and its application to prehistoric trade in the Mediterranean and the Near East: sources and distribution of obsidian within the Aegean and Anatolia. Journal of Archaeological Science 26 869–881.CrossRefGoogle Scholar
Gratuze, B., Blet-Lemarquand, M., and Barrandon, J. N. (2001). Mass spectrometry with laser sampling: a new tool to characterize archaeological materials. Journal of Radioanalytical and Nuclear Chemistry 247 645–656.CrossRefGoogle Scholar
Greenwood, N. N. and Earnshaw, A. (1997). Chemistry of the Elements.Oxford, Butterworth-Heinemann (2nd edn.).Google Scholar
Griffiths, H. (ed.) (1998). Stable Isotopes: integration of biological, ecological and geochemical processes. Oxford, Bios.Google Scholar
Grootes, P. M. and Stuiver, M. (1986). Ross Ice Shelf oxygen isotopes and west Antarctic climate history. Quaternary Research 26 49–67.CrossRefGoogle Scholar
Grünberg, J. M., Graetsch, H., Baumer, U., and Koller, J. (1999). Untersuchung der mittelpalaolithischen Harzreste von Königsaue, Ldkr. Aschersleben-Stafurt. Jahresschrift für mitteldeutsche Vorgeschichte 81 7–38.Google Scholar
Grupe, G., Price, T. D., Schröter, F., et al. (1997). Mobility of Bell Beaker people revealed by strontium isotope ratios of tooth and bone: a study of southern Bavarian skeletal remains. Applied Geochemistry 12 517–525.CrossRefGoogle Scholar
Guerra, M. F., Sarthe, C-O., Gondonneau, A., and Barrandon, J-N. (1999). Precious metals and provenance enquiries using LA-ICP-MS. Journal of Archaeological Science 26 1101–1110.CrossRefGoogle Scholar
Gunstone, F. D., Harwood, J. L., and Padley, F. B. (1994). The Lipid Handbook. London, Chapman and Hall.Google Scholar
Hahn, O. and Strassmann, F., (1939). Über den Nachweis und das Verhalten der bei der Bestrahlung des Urans mittels Neutronen entstehenden Erdalkalimetalle. Die Naturwissenschaften 27 11–15.CrossRefGoogle Scholar
Hairfield, H. H.. and Hairfield, E. M. (1990). Identification of a Late Bronze Age resin. Analytical Chemistry 62 41–45.CrossRefGoogle Scholar
Hall, E. T. (1960). X-ray fluorescent analysis applied to archaeology. Archaeometry 3 29–35.CrossRefGoogle Scholar
Hall, E. T., Schweizer, F., and Toller, P. A. (1973). X-ray fluorescence analysis of museum objects: a new instrument. Archaeometry 15 53–78.CrossRefGoogle Scholar
Hall, M. E., Brimmer, S. P., Li, F. H., and Yablonsky, L. (1998). ICP-MS and ICP-OES studies of gold from a Late Sarmatian burial. Journal of Archaeological Science 25 545–552.CrossRefGoogle Scholar
Halliday, A., Lee, D. -C., Christensen, J. N., et al. (1998). Applications of multiple collector-ICPMS to cosmochemistry, geochemistry and palaeoceanography. Geochimica et Cosmochimica Acta 62 919–940.CrossRefGoogle Scholar
Hamilton, D. L. and Hopkins, T. C. (1995). Preparation of glasses for use as chemical standards involving the coprecipitated gel technique. Analyst 120 1373–1377.CrossRefGoogle Scholar
Hancock, R. G. V., Millet, N. B. and Mills, A. J. (1986). A rapid INAA method to characterize Egyptian ceramics. Journal of Archaeological Science 13 107–117.CrossRefGoogle Scholar
Hancock, R. G. V., Grynpas, M. D., and Pritzker, K. P. H. (1989). The abuse of bone analysis for archaeological dietary studies. Archaeometry 31 169–179.CrossRefGoogle Scholar
Hancock, R. G. V., Aufreiter, S., Moreau, J. -F., and Kenyon, I. (1996). Chemical chronology of turquoise blue glass trade beads from the Lac-Saint-Jean region of Quebec. In Archaeological Chemistry: organic, inorganic and biochemical analysis, ed. Orna, M. V., ACS Symposium Series 625, Washington, DC, American Chemical Society, pp. 23–36.CrossRefGoogle Scholar
Hancock, R. G. V., Pavlish, L. A., Farquhar R. M., and Knight, D. (1999a). The analysis of brass samples from the Ball and Warminster sites in southern Ontario, Canada. In Metals in Antiquity, eds. Young, S. M. M., Pollard, A. M., Budd, P., and Ixer, R. A., BAR International Series 792, Oxford, Archaeopress, pp. 341–347.Google Scholar
Hancock, R. G. V., Aufreiter, S., Kenyon, I., and Latta, M. (1999b). White glass beads from the Auger site, southern Ontario, Canada. Journal of Archaeological Science 26 907–912.CrossRefGoogle Scholar
Harbottle, G. (1970). Neutron activation analysis of potsherds from Knossos and Mycenae. Archaeometry 12 23–34.CrossRefGoogle Scholar
Harbottle, G. (1976). Activation analysis in archaeology. In Radiochemistry Vol. 3, ed. Newton, G. W. A., London, Chemical Society, pp. 33–72.CrossRefGoogle Scholar
Harbottle, G. (1982). Chemical characterization in archaeology. In Contexts for Prehistoric Exchange, eds. Ericson, J. E. and Earle, T. K., New York, Academic Press, pp. 13–51.Google Scholar
Harbottle, G. (1986). 25 years of research in the analysis of archaeological artifacts and works of art. Nuclear Instruments and Methods in Physics Research B 14 10–15.CrossRefGoogle Scholar
Harbottle, G. (1990). Neutron activation analysis in archaeological chemistry. Topics in Current Chemistry 157 57–91.CrossRefGoogle Scholar
Harbottle, G., Gordon, B. M., and Jones, K. W. (1986). Use of synchrotron radiation in archaeometry. Nuclear Instruments and Methods in Physics Research B 14 116–122.CrossRefGoogle Scholar
Harris, D. C. (1997). Quantitative Chemical Analysis. New York, Freeman.Google Scholar
Hart, F. A. and Adams, S. J. (1983). The chemical-analysis of Romano-British pottery from the Alice Holt forest, Hampshire, by means of inductively-coupled plasma emission-spectrometry. Archaeometry 25 179–185.CrossRefGoogle Scholar
Hart, F. A., Storey, J. M. V., Adams, S. J., Symonds, R. P., and Walsh, J. N. (1987). An analytical study, using inductively coupled plasma (ICP) spectrometry, of Samian and colour-coated wares from the roman town at Colchester together with related continental Samian wares. Journal of Archaeological Science 14 577–598.CrossRefGoogle Scholar
Hartmann, G., Kappel, I., Grote, K., and Arndt, B. (1997). Chemistry and technology of prehistoric glass from Lower Saxony and Hesse. Journal of Archaeological Science 24 547–559.CrossRefGoogle Scholar
Haswell, S. J. (ed.) (1991). Atomic Absorption Spectrometry: theory, design and applications. Amsterdam, Elsevier.Google Scholar
Hatcher, H., Hedges, R. E. M., Pollard, A. M., and Kenrick, P. M. (1980). Analysis of Hellenistic and Roman fine pottery from Benghazi. Archaeometry 22 133–151.CrossRefGoogle Scholar
Hatcher, H., Tite, M. S., and Walsh, J. N. (1995). A comparison of inductively-coupled plasma emission spectrometry and atomic absorption spectrometry analysis on standard reference silicate materials and ceramics. Archaeometry 37 83–94.CrossRefGoogle Scholar
Hayek, E. W. H., Krenmayr, P., Lohninger, H., et al. (1990). Identification of archaeological and recent wood tar pitches using gas chromatography/mass spectrometry and pattern recognition. Analytical Chemistry 62 2038–2043.CrossRefGoogle Scholar
Health and Safety Executive (2002). Control of Substances Hazardous to Health. Sudbury, HSE Books (4th edn.).
Health and Safety Executive (2004). A Step by Step Guide to COSHH Assessment. Sudbury, HSE Books (2nd edn.).
Hedges, R. E. M. (1979). Analysis of the Drake Plate: comparison with the composition of Elizabethan brass. Archaeometry 21 21–26.CrossRefGoogle Scholar
Hedges, R. E. M. (2003). Isotopes and red herrings: comments on Milner et al. and Lidén et al. Antiquity 78 34–37.CrossRefGoogle Scholar
Hedges, R. E. M. and Millard, A. R. (1995). Bones and groundwater: towards the modelling of diagenetic processes. Journal of Archaeological Science 22 155–164.CrossRefGoogle Scholar
Hedges, R. E. M., Millard, A., and Pike, A. W. G. (1995). Measurements and relationships of diagenetic alteration of bone from three archaeological sites. Journal of Archaeological Science 22 201–209.CrossRefGoogle Scholar
Hedges, R. E. M., Stevens, R. E., and Richards, M. P. (2004). Bone as a stable isotope archive for local climatic information. Quaternary Science Reviews 23 959–965.CrossRefGoogle Scholar
Heimann, R. B., Kreher, U., Spazier, I., and Wetzel, G. (2001). Mineralogical and chemical investigations of bloomery slags from prehistoric (8th century BC to 4th century AD) iron production sites in upper and lower Lusatia, Germany. Archaeometry 42 227–252.CrossRefGoogle Scholar
Hein, A., Mommsen, H., and Maran, J. (1999). Element concentration distributions and most discriminating elements for provenancing by neutron activation analyses of ceramics from Bronze Age sites in Greece. Journal of Archaeological Science 26 1053–1058.CrossRefGoogle Scholar
Hein, A., Tsolakidou, A., Iliopoulos, I., et al. (2002). Standardisation of elemental analytical techniques applied to provenance studies of archaeological ceramics: an inter laboratory calibration study. Analyst 127 542–553.CrossRefGoogle ScholarPubMed
Henderson, J. (2000). The Science and Archaeology of Materials: an investigation of inorganic materials. London, Routledge.Google Scholar
Henderson, P. (1984). Rare earth element geochemistry. In Developments in Geochemistry, ed. Henderson, P., Amsterdam, Elsevier, pp. 1–29.Google Scholar
Heron, C. (1996). Archaeological science as forensic science. In Studies in Crime: an introduction to forensic archaeology, eds. Hunter, J., Roberts, C., and Martin, A., London, Batsford, pp. 156–170.Google Scholar
Heron, C. (2001). Geochemical prospecting. In Handbook of Archaeological Sciences, eds. Brothwell, D. R. and Pollard, A. M., Chichester, Wiley, pp. 565–573.Google Scholar
Heron, C. and Evershed, R. P. (1993). The analysis of organic residues and the study of pottery use. In Archaeological Method and Theory, ed. Schiffer, M. B., Tucson, AZ, University of Arizona Press, pp. 247–286.Google Scholar
Heron, C. and Pollard, A. M. (1988). The analysis of natural resinous materials from Roman amphoras, In Science and Archaeology, Glasgow 1987, eds. Slater, E. A. and Tate, J. O., British Series 196, Oxford, British Archaeological Reports, pp. 429–447.Google Scholar
Heron, C., Evershed, R. P., and Goad, L. J. (1991). Effects of migration of soil lipids on organic residues associated with buried potsherds. Journal of Archaeological Science 18 641–659.CrossRefGoogle Scholar
Heron, C., Nemcek, N., Bonfield, K. M., Dixon, D., and Ottaway, B. S. (1994). The chemistry of Neolithic beeswax. Naturwissenschaften 81 266–269.CrossRefGoogle Scholar
Hertz, H. (1887). Ueber einen Einfluss des ultrvioletten Lichtes auf die electrische Entladung. Annalen der Physik und Chemie 31 983–1003.CrossRefGoogle Scholar
Hertz, H. (1893). Electric Waves. London, Macmillan and Co. (trans. Jones, D. E.).Google Scholar
Herz, N. and Garrison, E. G. (1998). Geological Methods for Archaeology. Oxford, Oxford University Press.Google Scholar
Hocart, C. H., Fankhauser, B., and Buckle, D. W. (1993). Chemical archaeology of kava, a potent brew. Rapid Communications in Mass Spectrometry 7 219–224.CrossRefGoogle ScholarPubMed
Hoefs, J. (1997). Stable Isotope Geochemistry. Berlin, Springer.
Hollocher, K. and Ruiz, J. (1995). Major and trace-element determinations on NIST glass standard reference material-611, material-612, material-614, and material-1834 by inductively-coupled plasma-mass spectrometry. Geostandards Newsletter 19 27–34.CrossRefGoogle Scholar
Holmes, L. J., Robinson, V. J., Makinson, P. R. and Livens, F. R. (1995). Multi-element determination in complex matrices by inductively coupled plasma-mass spectrometry (ICP-MS). Science of the Total Environment 173 345–350.CrossRefGoogle Scholar
Hosetter, E., Beck, C. W., and Stewart, D. R. (1994). A bronze stitula from tomb 128, Valle Trebba: chemical evidence of resinated wine at Spina. Studi Etruschi Bretschneider LIX 211–225.Google Scholar
Hudson, J. (1992). The History of Chemistry. Basingstoke, Macmillan.Google Scholar
Hughes, M. J., Cowell, M. R., and Craddock, P. T. (1976). Atomic absorption techniques in archaeology. Archaeometry 18 19–37.CrossRefGoogle Scholar
Hughes, M. J., Northover, J. P., and Staniaszek, B. E. P. (1982). Problems in the analysis of leaded bronze alloys in ancient artefacts. Oxford Journal of Archaeology 1 359–363.CrossRefGoogle Scholar
Hughes, M. J., Cowell, M. R., and Hook, D. R. (1991). Neutron Activation and Plasma Emission Spectrometric Analysis in Archaeology. Occasional Paper 82, London, British Museum.Google Scholar
Hult, M. and Fessler, A. (1998). Sr/Ca mass ratio determination in bones using fast neutron activation analysis. Applied Radiation and Isotopes 49 1319–1323.CrossRefGoogle ScholarPubMed
Hunter, F. J., McDonnell, J. G., Pollard, A. M., Morris, C. R., and Rowlands, C. C. (1993). The scientific identification of archaeological jet-like artifacts. Archaeometry 35 69–89.CrossRefGoogle Scholar
Hunter, J. R., Roberts, C. A., and Martin, A. (eds.) (1997). Studies in Crime: an introduction to forensic archaeology. London, Routledge.Google Scholar
IAEA (1995). Reference and Intercomparison Materials for Stable Isotopes of Light Elements. IAEA TECDOC Series No. 825. Vienna, International Atomic Energy Agency. [http://www-pub.iaea.org/MTCD/publications/PDF/te_825_prn.pdf].
Jackson, K. W. (1999). Electrothermal Atomization for Analytical Atomic Spectrometry. Chichester, Wiley.Google Scholar
Jakes, K. A. (ed.) (2002). Archaeological Chemistry: materials, methods, and meaning. ACS symposium series no. 831, Washington, DC, American Chemical Society.CrossRefGoogle Scholar
James, W. D., Dahlin, E. S., and Carlson, D. L. (2005). Chemical compositional studies of archaeological artifacts: comparison of LA-ICP-MS to INAA measurements. Journal of Radioanalytical and Nuclear Chemistry 263 697–702.CrossRefGoogle Scholar
Janssens, K., Aerts, A., Vincze, L., et al. (1996). Corrosion phenomena in electron, proton and synchrotron X-ray microprobe analysis of Roman glass from Qumran, Jordan. Nuclear Instruments and Methods B 109–110 690–695.CrossRefGoogle Scholar
Janssens, K. H., Deraedt, I., Schalm, O., and Veeckman, J. (1998a). Composition of 15th–17th century archaeological glass vessels excavated in Antwerp, Belgium. Mikrochimica ActaSuppl. 15 253–267.Google Scholar
Janssens, K., Vincze, L., Vekemans, B., et al. (1998b). The non-destructive determination of REE in fossilized bone using synchrotron radiation induced K-line X-ray microfluorescence analysis. Fresenius Journal of Analytical Chemistry 363 413–420.CrossRefGoogle Scholar
Janssens, K., Vittiglio, G., Deraedt, I., et al. (2000). Use of microscopic XRF for non-destructive analysis in art and archaeometry. X-Ray Spectrometry 29 73–91.3.0.CO;2-M>CrossRefGoogle Scholar
Jarvis, K. E. (1988). Inductively coupled plasma mass spectrometry: a new technique for the rapid or ultra-trace level determination of the rare-earth elements in geological materials. Chemical Geology 68 31–39.CrossRefGoogle Scholar
Jarvis, K. E. and Williams, J. G. (1993). Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): a rapid technique for the direct, quantitative determination of major, trace and rare-earth elements in geological samples. Chemical Geology 106 251–262.CrossRefGoogle Scholar
Jeffrey, G. H. (ed) (1989). Vogel's Textbook of Quantitative Chemical Analysis. Harlow, Longman Scientific and Technical (5th edn.).Google Scholar
Jeffries, T. E., Pearce, N. J. G., Perkins, W. T., and Raith, A. (1996). Chemical fractionation during infrared and ultraviolet laser ablation inductively coupled plasma mass spectrometry – implications for mineral microanalysis. Analytical Communications 33 35–39.CrossRefGoogle Scholar
Jenkins, R. (1974). An Introduction to X-ray Spectrometry. Chichester, Wiley.Google Scholar
Jenkins, R. (1988). X-ray Fluorescence Spectrometry. Chichester, Wiley-Interscience.Google Scholar
Jenkins, R. (2002). X-ray powder methods. In McGraw-Hill Encyclopedia of Science and Technology 19, New York, McGraw-Hill, pp. 668–673.Google Scholar
Jenne, E. A. (ed.) (1979). Chemical Modeling in Aqueous Systems. Washington, DC, American Chemical Society Symposium Series.CrossRefGoogle Scholar
Johansson, S. A. E. and Campbell, J. L. (1988). PIXE: a novel technique for elemental analysis. Chichester, Wiley.Google Scholar
Johnsen, S. J., Clausen, H. B., Dansgaard, W., et al. (1997). The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability. Journal of Geophysical Research – Oceans 102 26397–26410.CrossRefGoogle Scholar
Jones, A. M., Iacumin, P., and Young, E. D. (1999). High-resolution delta O-18 analysis of tooth enamel phosphate by isotope ratio monitoring gas chromatography mass spectrometry and ultraviolet laser fluorination. Chemical Geology 153 241–248.CrossRefGoogle Scholar
Jones, M. (2001). The Molecule Hunt: archaeology and the hunt for ancient DNA. London, Allen Lane.Google Scholar
Jones, R. E. (1986). Greek and Cypriot Pottery: a review of scientific studies. Fitch Laboratory Occasional Paper 1, Athens, British School at Athens.Google Scholar
Junghans, S., Sangmeister, E., and Schröder, M. (1960). Metallanalysen kupferzeitlicher und frühbronzezeitlicher Bodenfunde aus Europa. Berlin, Verlag Gebr. Mann.Google Scholar
Junghans, S., Sangmeister, E., and Schröder, M. (1968–1974). Kupfer und Bronze in der Fruhen Metallzeit Europas. Vol. 1. Die Materialgruppen beim Stand von 12.000 Analysen. Vol. 2. Tafeln, Tabellen und Diagramme, Karten (in 3 vols). Vol 3. Katalog der Analysen Nr. 985–10 040. Vol. 4. Katalog der Analysen Nr. 10 041–22 000 (mit Nachuntersuchungen der Analysen Nr. 1–10 040). Berlin, Verlag Gebr. Mann.
Katzenberg, M. A., Schwarcz, H. P., Knyf, M., and Melbye, F. J. (1995). Stable isotope evidence for maize horticulture and paleodiet in southern Ontario, Canada. American Antiquity 60 335–350.CrossRefGoogle Scholar
Kelly, J. F. (2000). Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Canadian Journal of Zoology 78 1–27.CrossRefGoogle Scholar
Kempfert, K. D., Coel, B., Troost, P., and Lavery, D. S. (2001). Advancements in FTIR microscope design for faster and easier microanalysis. American Laboratory 33 (Nov) 22–27.Google Scholar
Kennett, D. J., Neff, H., Glascock, M. D., and Mason, A. Z. (2001). Interface – archaeology and technology. A geochemical revolution: inductively coupled plasma mass spectrometry. SAA Archaeological Record 1 22–26.Google Scholar
Kilikoglou, V., Bassiakos, Y., Doonan, R. C., and Stratis, J. (1997) NAA and ICP analysis of obsidian from Central Europe and the Aegean: source characterisation and provenance determination. Journal of Radioanalytical and Nuclear Chemistry 216 87–93.CrossRefGoogle Scholar
Killops, S. D. and Killops, V. J. (2005). Introduction to Organic Geochemistry. Harlow, Longman Scientific and Technical (2nd edn.).Google Scholar
Kim, Y. S. and Singh, A. P. (1999). Micromorphological characteristics of compression wood degradation in waterlogged archaeological pine wood. Holzforschung 53 381–385.CrossRefGoogle Scholar
King, A., Hatch, J. W., and Scheetz, B. E. (1997). The chemical composition of jasper artefacts from New England and the middle Atlantic: implications for the prehistoric exchange of “Pennsylvania jasper”. Journal of Archaeological Science 24 793–812.CrossRefGoogle Scholar
Kingston, H. M. and Walter, P. J. (1992). Comparison of microwave versus conventional dissolution for environmental applications. Spectroscopy 7 20–25.Google Scholar
Kirchhoff, G. and Bunsen, R. (1860). Chemical analysis by observation of spectra. Annalen der Physik und der Chemie (Poggendorff) 110 161–189.CrossRefGoogle Scholar
Kirchner, M. T., Edwards, H. G. M., Lucy, D., and Pollard, A. M. (1997). Ancient and modern specimens of human teeth: a Fourier transform Raman spectroscopic study. Journal of Raman Spectroscopy 28 171–178.3.0.CO;2-V>CrossRefGoogle Scholar
Klaproth, M. H. (1795–1815). Beiträge zur chemischen Kenntniss der Mineralkörpe. 6 vols. Berlin und Stettin.Google Scholar
Klaproth, M. H. (1798). Mémoire de numismatique docimastique. Mémoires de l'académie royale des sciences et belles-lettres, Berlin, Classe de philosophie expérimentale97–113.Google Scholar
Knapp, A. B. and Cherry, J. F. (1994). Provenance Studies and Bronze Age Cyprus: production, exchange and politico-economic change. Monographs in World Archaeology 21, Madison, Prehistory Press.Google Scholar
Knight, D. M. (ed.) (1968). Classical Scientific Papers: chemistry. London, Mills and Boon.Google Scholar
Knight, D. M. (ed.) (1970). Classical Scientific Papers: chemistry. Second series: papers on the nature and arrangement of the chemical elements. London, Mills and Boon.Google Scholar
Koch, P. L., Heisinger, J., Moss, C., et al. (1995). Isotopic tracking of change in diet and habitat use in African elephants. Science 267 1340–1343.CrossRefGoogle ScholarPubMed
Krause, R. and Pernicka, E. (1996). SMAP – The Stuttgart Metal Analysis Project. Archaologisches Nachrichtenblatt 1 274–291.Google Scholar
Kuczumow, A., Chevallier, P., Dillmann, P., Wajnberg, P., and Rudas, M. (2000). Investigation of petrified wood by synchrotron X-ray fluorescence and diffraction methods. Spectrochimica Acta B 55 1623–1633.CrossRefGoogle Scholar
Kuhn, R. D. and Sempowski, M. L. (2001). A new approach to dating the League of the Iroquois. American Antiquity 66 301–314.CrossRefGoogle Scholar
Kuleff, I. and Pernicka, E. (1995). Instrumental neutron activation analysis of native copper – some methodological considerations. Journal of Radioanalytical and Nuclear Chemistry 191 145–161.CrossRefGoogle Scholar
Kuleff, I., Djingova, R., Alexandrova, A., Vakova, V., and Amov, B. (1995). INAA, AAS and lead isotope analysis of ancient lead anchors from the Black Sea. Journal of Radioanalytical and Nuclear Chemistry 196 65–76.CrossRefGoogle Scholar
Kuzmin, Y. V., Popov, V. K., Glascock, M. D., and Shackley, M. S. (2002). Sources of archaeological volcanic glass in the Primorye (Maritime) province, Russian Far East. Archaeometry 44 505–515.CrossRefGoogle Scholar
Lajtha, K. and Michener, R. H. (1994). Stable Isotopes in Ecology and Environmental Science. London, Blackwell Scientific.Google Scholar
Lambert, J. B. (ed.) (1984). Archaeological Chemistry III. Advances in Chemistry Series 205, Washington, DC, American Chemical Society.CrossRefGoogle Scholar
Lambert, J. B. (1997). Traces of the Past: unraveling the secrets of archaeology through chemistry. Reading, Mass., Addison-Wesley.Google Scholar
Lambert, J. B. and Grupe, G. (1993). Prehistoric Human Bone: archaeology at the molecular level. Berlin, Springer-Verlag.CrossRefGoogle Scholar
Lambert, J. B., Simpson, S. V., Szpunar, C. B., and Buikstra, J. E. (1984a). Copper and barium as dietary discriminants – the effects of diagenesis. Archaeometry 26 131–138.CrossRefGoogle Scholar
Lambert, J. B., Simpson, S. V., Szpunar, C. B., and Buikstra, J. E. (1984b). Ancient human diet from inorganic analysis of bone. Accounts of Chemical Research 17 298–305.CrossRefGoogle Scholar
Lampadius, W. A. (1801). Handbuch zur chemischen Analyse der Mineralkörper. Freyberg.Google Scholar
Lampert, C. D., Glover, I. C., Heron, C. P., et al. (2002). Characterization and radiocarbon dating of archaeological resins from Southeast Asia. In Archaeological Chemistry: materials, methods and meaning, ed. Jakes, K. A., ACS Symposium Series 831, Washington, DC, American Chemical Society, pp. 84–109.CrossRefGoogle Scholar
Langenheim, J. L. (1990). Plant resins. American Scientist 78 16–24.Google Scholar
Larsen, C. S., Schoeninger, M. J., van der Merwe, N. J., Moore, K. M., and Lee-Thorp, J. A. (1992). Carbon and nitrogen stable isotopic signatures of human dietary change in the Georgia Bight. American Journal of Physical Anthropology 89 197–214.CrossRefGoogle ScholarPubMed
Lavoisier, A. -L. (1789). Traité élémentaire de chimie, présenté dans un ordre nouveau et d'après les découvertes modernes. Paris. (Translated (R. Kerr, Edinburgh, 1790) and reprinted New York, Dover, 1965).Google Scholar
Layard, A. H. (1853). Discoveries in the ruins of Nineveh and Babylon: with travels in Armenia, Kurdistan and the desert, being the result of a second expedition undertaken for the Trustees of the British Museum. London, J. Murray.Google Scholar
Leach, F. (1996). New Zealand and Oceanic obsidians: an archaeological perspective using neutron activation analysis. Journal of the Royal Society of New Zealand 26 79–105.CrossRefGoogle Scholar
Lee, K. M., Appleton, J., Cooke, M., Keenan, F., and Sawicka-Kapusta, K. (1999). Use of laser ablation inductively coupled plasma mass spectrometry to provide element versus time profiles in teeth. Analytica Chimica Acta 395 179–185.CrossRefGoogle Scholar
Lee-Thorp, J. A. and Merwe, N. J. (1991). Aspects of the chemistry of modern and fossil biological apatites. Journal of Archaeological Science 18 343–354.CrossRefGoogle Scholar
Lee-Thorp, J. A., Sealy, J. C., and Merwe, N. J. (1989). Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. Journal of Archaeological Science 16 585–599.CrossRefGoogle Scholar
Lee-Thorp, J. A., Merwe, N. J., and Brain, C. K. (1994). Diet of Australopithecus-Robustus at Swartkrans from stable carbon isotopic analysis. Journal of Human Evolution 27 361–372.CrossRefGoogle Scholar
Leigh, G. J., Favre, H. A., and Metanomski, W. V. (1998). Principles of Chemical Nomenclature: a guide to IUPAC recommendations. Oxford, Blackwell Science.Google Scholar
Lenard, P. (1903). Über die absorption von kathoden-strahlen verscheidener Geschwindigkeit. Annalen der Physik (Vierte Folge) 12 714–744.CrossRefGoogle Scholar
Leung, P. L., Stokes, M. J., Li, M. T. W., Peng, Z. C., and Wu, S. C. (1998). EDXRF studies on the chemical composition of ancient porcelain bodies from Linjiang, Jiangxi, China. X-Ray Spectrometry 27 11–16.3.0.CO;2-R>CrossRefGoogle Scholar
Levinson, A. A., Luz, B., and Kolodny, Y. (1987). Variations in oxygen isotope compositions of human teeth and urinary stones. Applied Geochemistry 2 367–371.CrossRefGoogle Scholar
Lichte, F. E., Meier, A. L., and Crock, J. G. (1987). Determination of the rare-earth elements in geological materials by inductively coupled plasma mass spectrometry. Analytical Chemistry 59 1150–1157.CrossRefGoogle Scholar
Lidén, K., Eriksson, G., Nordqvist, B., Götherström, A., and Bendixen, E. (2003). The wet and the wild followed by the dry and the tame – or did they occur at the same time? Diet in Mesolithic – Neolithic southern Sweden. Antiquity 78 23–33.CrossRefGoogle Scholar
Linderholm, J. and Lundberg, E. (1994). Chemical characterization of various archaeological soil samples using main and trace-elements determined by inductively-coupled plasma-atomic emission-spectrometry. Journal of Archaeological Science 21 303–314.CrossRefGoogle Scholar
Lindsay, W. L. (1979). Chemical Equilibria in Soils.New York, Wiley.Google Scholar
Linke, R. and Schreiner, M. (2000). Energy dispersive X-ray fluorescence analysis and X-ray microanalysis of medieval silver coins – an analytical approach for non-destructive investigation of corroded metallic artifacts. Mikrochimica Acta 133 165–170.CrossRefGoogle Scholar
Little, B., Wagner, P., and Mansfeld, F. (1991). Microbiologically influenced corrosion of metals and alloys. International Materials Review 36 253–272.CrossRefGoogle Scholar
Littlefield, T. A. and Thorley, N. (1979). Atomic and Nuclear Physics: an introduction. New York, Van Nostrand Reinhold (3rd edn.).CrossRefGoogle Scholar
Lochner, F., Appleton, J., Keenan, F., and Cooke, M. (1999). Multi-element profiling of human deciduous teeth by laser ablation-inductively coupled plasma-mass spectrometry. Analytica Chimica Acta 401 299–306.CrossRefGoogle Scholar
Longinelli, A. (1984). Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatic research?Geochimica et Cosmochimica Acta 48 385–390.CrossRefGoogle Scholar
Longinelli, A. (1995). Stable isotope ratios in phosphate from mammal bone and tooth as climatic indicators. In Problems of Stable Isotopes in Tree-rings, Lake Sediments and Peat-bogs as Climatic Evidence for the Holocene, ed. Frenzel, B., Strasbourg, European Science Foundation, pp. 57–70.Google Scholar
Lowenstam, H. A. and Weiner, S. (1989). On Biomineralization. New York, Oxford University Press.Google Scholar
Lowry, T. M. (1923). Uniqueness of hydrogen. Chemical Industry – London 42 43–47.CrossRefGoogle Scholar
Loy, T. H. (1983). Prehistoric blood residues: detection on stone tool surfaces and identification of species of interest. Science 220 1269–1271.CrossRefGoogle Scholar
Loy, T. H. and Dixon, E. J. (1998). Blood residues on fluted points from Eastern Beringia. American Antiquity 63 21–46.CrossRefGoogle Scholar
Lubell, D., Jackes, M., Schwarcz, H., Knyf, M., and Meiklejohn, C. (1994). The Mesolithic Neolithic transition in Portugal – isotopic and dental evidence of diet. Journal of Archaeological Science 21 201–216.CrossRefGoogle Scholar
Mallory-Greenough, L. M. and Greenough, J. D. D. (1998). New data for old pots: trace element characterization of ancient Egyptian pottery using ICP-MS. Journal of Archaeological Science 25 85–97.CrossRefGoogle Scholar
Mandal, S., Cooney, G., Meighan, I. G., and Jamison, D. D. (1997). Using geochemistry to interpret porcellanite stone axe production in Ireland. Journal of Archaeological Science 24 757–763.CrossRefGoogle Scholar
Mando, P. A. (1994). Advantages and limitations of external beams in applications to arts and archaeology, geology and environmental-problems. Nuclear Instruments and Methods in Physics Research B 85 815–823.CrossRefGoogle Scholar
Mano, N. and Goto, J. (2003). Biomedical and biological mass spectrometry. Analytical Sciences 19 3–14.CrossRefGoogle ScholarPubMed
Mansilla, J., Solis, C., Chavez-Lomeli, M. E., and Gama, J. E. (2003). Analysis of colored teeth from Precolumbian Tlatelolco: postmortem transformation or intravitam processes?American Journal of Physical Anthropology 120 73–82.CrossRefGoogle ScholarPubMed
Martinetto, P., Anne, M., Dooryhée, E., et al. (2001). Synchrotron X-ray micro-beam studies of ancient Egyptian make-up. Nuclear Instruments and Methods in Physics Research B 181 744–748.CrossRefGoogle Scholar
Matson, R. G. and Chisholm, B. (1991). Basketmaker II subsistence – carbon isotopes and other dietary indicators from Cedar-Mesa, Utah. American Antiquity 56 444–459.CrossRefGoogle Scholar
Mauk, J. L. and Hancock, R. G. V. (1998). Trace element geochemistry of native copper from the White Pine mine, Michigan (USA): implications for sourcing artefacts. Archaeometry 40 97–107.CrossRefGoogle Scholar
Maxwell, J. C. (1864). A dynamical theory of the electromagnetic field. Proceedings of the Royal Society of London 13 531–536.CrossRefGoogle Scholar
May, T. W. and Wiedmeyer, R. H. (1998). A table of polyatomic interferences in ICP-MS. Atomic Spectroscopy 19 150–154.Google Scholar
McEvoy, J. P. and Zarate, O. (1999). Introducing Quantum Theory. Cambridge, Icon Books.Google Scholar
McGovern, P. E. (1997). Wine of Egypt's golden age: an archaeochemical perspective. Journal of Egyptian Archaeology 83 69–108.CrossRefGoogle Scholar
McGovern, P. E. and Michel, R. H. (1996). The analytical and archaeological challenge of detecting ancient wine: two case studies from the ancient Near East. In The Origins and Ancient History of Wine, eds. McGovern, P. E., Fleming, S. J., and Katz, S. H., Langhorne, PA, Gordon and Breach, pp. 57–65.CrossRef
McGovern, P. E., Glusker, D. L., Exner, L. J., and Voigt, M. M. (1996). Neolithic resinated wine. Nature 381 480–481.CrossRefGoogle Scholar
McNeil, M. and Selwyn, L. S. (2001). Electrochemical processes in metal corrosion. In Handbook of Archaeological Sciences, eds. Brothwell, D. R. and Pollard, A. M., Chichester, Wiley, pp. 605–614.Google Scholar
Mendelejeff, D. (1869). Ueber die Beziehungen der Eigenschaften zu den Atomgewichten der Elemente. Zeitschrift für Chemie 12 405–406.Google Scholar
Mendeleef, D. (1879, 1880). The Periodic Law of the chemical elements. Chemical News 40 (1879) 231–232, 243–244, 255–256, 267–268, 279–280, 291–292, 303–304. 41 (1880) 27–28.Google Scholar
Mester, Z. and Sturgeon, R. (eds.) (2003). Sample Preparation for Trace Element Analysis. Amsterdam, Elsevier.Google Scholar
Metcalf, D. M. and Schweizer, F. (1971). The metal contents of the silver pennies of William II and Henry I (1087–1135). Archaeometry 13 177–190.CrossRefGoogle Scholar
Michel, V., Ildefonse, Ph., and Morin, G. (1996). Assessment of archaeological bone and dentine preservation from Lazaret Cave (Middle Pleistocene) in France. Palaeogeography, Palaeoclimatology, Palaeoecology 126 109–119.CrossRefGoogle Scholar
Middleditch, B. S. (1989). Analytical Artefacts: GC, MS, HPLC and PC. Amsterdam, Elsevier.Google Scholar
Middleton, W. D. and Price, T. D. (1996). Identification of activity areas by multi-element characterization of sediments from modern and archaeological house floors using inductively coupled plasma-atomic emission spectroscopy. Journal of Archaeological Science 23 673–687.CrossRefGoogle Scholar
Miksic, J. N., Yap, C. T., and Younan, H. (1994). Archaeology and early Chinese glass trade in southeast-Asia. Journal of Southeast Asian Studies 25 31–46.CrossRefGoogle Scholar
Millard, A. R. and Hedges, R. E. M. (1996). A diffusion-adsorption model of uranium uptake by archaeological bone. Geochimica et Cosmochimica Acta 60 2139–2152.CrossRefGoogle Scholar
Miller, J. C. and Miller, J. N. (1993). Statistics for Analytical Chemistry. London, Ellis Horwood (3rd edn.).Google Scholar
Mills, J. S. and White, R. (1989). The identity of the resins from the Late Bronze Age shipwreck at Ulu Burun (Kaş). Archaeometry 31 37–44.CrossRefGoogle Scholar
Mills, J. S. and White, R. (1994). The Organic Chemistry of Museum Objects. Oxford, Butterworth Heinemann (2nd edn.).Google Scholar
Milner, N., Craig, O. E., Bailey, G. N., Pedersen, K., and Andersen, S. H. (2003). Something fishy in the Neolithic? A re-evaluation of stable isotope analysis of Mesolithic and Neolithic coastal populations. Antiquity 78 9–22.CrossRefGoogle Scholar
Mirti, P., Aruga, R., Zelano, V., Appolonia, L., and Aceto, M. (1990). Investigation of Roman terra-sigillata by atomic-absorption and emission-spectroscopy and multivariate-analysis of data. Fresenius Journal of Analytical Chemistry 336 215–221.CrossRefGoogle Scholar
Mirti, P., Lepora, A., and Sagui, L. (2000). Scientific analysis of seventh-century glass fragments from the Crypta Balbi in Rome. Archaeometry 42 359–374.CrossRefGoogle Scholar
Moenke-Blankenburg, L., Schumann, T., Gunther, D., Kuss, H., and Paul, M. (1992). Quantitative analysis of glass using inductively coupled plasma atomic emission and mass spectrometry, laser micro-analysis inductively coupled plasma atomic emission spectrometry and laser ablation inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectroscopy 7 251–254.CrossRefGoogle Scholar
Mommsen, H. (1981). Filters to sort out pottery samples of the same provenance from a data-bank of neutron activation analyses. Archaeometry 23 209–215.CrossRefGoogle Scholar
Mommsen, H., Beier, Th., Dittmann, H., et al. (1996). X-ray fluorescence analysis on inks and papers of incunabula with synchrotron radiation. Archaeometry 38 347–357.CrossRefGoogle Scholar
Mommsen, H., Bier, T., and Hein, A. (2002). A complete chemical grouping of the Berkeley neutron activation analysis data on Mycenaean pottery. Journal of Archaeological Science 29 613–637.CrossRefGoogle Scholar
Montaser, A. (1998). Inductively Coupled Plasma Mass Spectrometry. New York, Wiley-VCH.Google Scholar
Montelius, G. O. A. (1899). Der Orient und Europa. Stockholm.Google Scholar
Moreau, J. -F. and Hancock, R. G. V. (1996). Chrono-cultural technique based on the instrumental neutron activation analysis of copper-based artifacts from the “contact” period of northeastern North America. In Archaeological Chemistry: organic, inorganic and biochemical analysis, ed. Orna, M. V., ACS Symposium Series 625, Washington, DC, American Chemical Society, pp. 64–82.CrossRefGoogle Scholar
Morgan, M. E., Kingston, J. D., and Marino, B. D. (1994). Carbon isotopic evidence for the emergence of C4 plants in the Neogene from Pakistan and Kenya. Nature 367 162–165.CrossRefGoogle Scholar
Moropoulou, A., Bisbikou, K., Grieken, R., Torfs, K., and Polikreti, K. (2001). Correlation between aerosols, deposits and weathering crusts on ancient marbles. Environmental Technology 22 607–618.CrossRefGoogle ScholarPubMed
Morrison, C. A., Lambert, D. D., Morrison, R. J. S., Ahlers, W. W., and Nicholls, I. A. (1995). Laser ablation-inductively coupled plasma-mass spectrometry: an investigation of elemental responses and matrix effects in the analysis of geostandard materials. Chemical Geology 119 13–29.CrossRefGoogle Scholar
Mortimer, C. (1989). X-ray fluorescence analysis of early scientific instruments. In Archaeometry: proceedings of the 25th International Symposium, ed. Maniatis, Y., Amsterdam, Elsevier, pp. 311–317.Google Scholar
Moseley, H. G. J., (1913, 1914). The high frequency spectra of the elements. Philosophical Magazine 26 1024–1034 (1913), 27 703–713 (1914).Google Scholar
Mottram, H. R., Dudd, S. N., Lawrence, G. J., Stott, A. W., and Evershed, R. P. (1999). New chromatographic, mass spectrometric and stable isotope approaches to the classification of degraded animal fats preserved in archaeological pottery. Journal of Chromatography A 833 209–221.CrossRefGoogle Scholar
Mountjoy, P. -A., Jones, R. E., and Cherry, J. F. (1978). Provenance studies of LM1B/LHIIA marine style. Annual of the British School at Athens 73 143–171.CrossRefGoogle Scholar
Murphy, J. and Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27 31–36.CrossRefGoogle Scholar
Murray, M. A., Boulton, N., and Heron, C. (2000). Viticulture and wine production. In Ancient Egyptian Materials and Technology, eds. Nicholson, P. T. and Shaw, I., Cambridge, Cambridge University Press, pp. 577–608.Google Scholar
Murrell, J. N. (2001). Avogadro and his constant. Helvetica Chimica Acta 84 1314–1327.3.0.CO;2-Q>CrossRefGoogle Scholar
Needham, J. (1954–2004). Science and Civilisation in China. 7 vols. Cambridge, Cambridge University Press.Google Scholar
Neff, H. (ed.) (1992). Chemical Characterization of Ceramic Pastes in Archaeology. Monographs in World Archaeology, Madison, Wisconsin, Prehistory Press.Google Scholar
Neff, H. (2000). Neutron activation analysis for provenance determination in archaeology. In Modern Analytical Methods in Art and Archaeology, eds. Ciliberto, E. and Spoto, G., Chemical Analysis Series 155, New York, Wiley, pp. 81–134.Google Scholar
Nelson, B. K., DeNiro, M. J., Schoeninger, M. J., Paolo, D. J., and Hare, P. E. (1986). Effects of diagenesis on strontium, carbon, nitrogen and oxygen concentrations and isotopic composition of bone. Geochimica et Cosmochimica Acta 50 1941–1949.CrossRefGoogle Scholar
Newlands, J. A. R. (1865). On the Law of Octaves. Chemical News 12 83.Google Scholar
Newton, I. (1671–2). New theory about light and colors. Philosophical Transactions of the Royal Society 6(80) 3075–3087.CrossRefGoogle Scholar
Newton, R. G. and Renfrew, C. (1970). British faience beads reconsidered. Antiquity 44 199–206.CrossRefGoogle Scholar
Nissenbaum, A. (1992). Molecular archaeology: organic geochemistry of Egyptian mummies. Journal of Archaeological Science 19 1–6.CrossRefGoogle Scholar
Nissenbaum, A. (1993). The Dead Sea – an economic resource for 10, 000 years, Hydrobiologia 267 127–141.CrossRefGoogle Scholar
Nölte, J. (2003). ICP Emission Spectrometry: a practical guide. Weinheim, Wiley-VCH.Google Scholar
Norman, M. D., Pearson, N. J., Sharma, A., and Griffin, W. L. (1996). Quantitative analysis of trace elements in geological materials by laser ablation ICPMS: instrumental operating conditions and calibration values of NIST glasses. Geostandards Newsletter 20 247–261.CrossRefGoogle Scholar
Oakberg, K., Levy, T., and Smith, P. (2000). A method for skeletal arsenic analysis, applied to the chalcolithic copper smelting site of Shiqmim, Israel. Journal of Archaeological Science 27 859–901.CrossRefGoogle Scholar
Oakley, K. P. (1963). Fluorine, uranium and nitrogen dating of bones. In The Scientist and Archaeology, ed. Pyddoke, E., New York, Roy Publishers, pp. 111–119.Google Scholar
Oakley, K. P. (1969). Analytical methods of dating bones. In Science in Archaeology, eds. Brothwell, D. and Higgs, E., London, Thames and Hudson, pp. 35–45 (2nd edn.).Google Scholar
O'Connell, M. M., Bentley, M. D., Campbell, C. S., and Cole, B. J. W. (1988). Betulin and lupeol in bark from four white-barked birches. Phytochemistry 27 2175–2176.CrossRefGoogle Scholar
Oddy, A. (1983). Assaying in antiquity. Gold Bulletin 16 52–59.CrossRefGoogle Scholar
Oddy, A. (1986). The touchstone: the oldest colorimetric method of analysis. Endeavour 10 164–166.CrossRefGoogle Scholar
Olariu, A., Constantinescu, M., Constantinescu, O., et al. (1999). Trace analysis of ancient gold objects using radiochemical neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry 240 261–267.CrossRefGoogle Scholar
Olsen, S. L. (1988). Scanning Electron Microscopy in Archaeology. International Series 452, Oxford, British Archaeological Reports.
Orna, M. V. (ed.) (1996). Archaeological Chemistry: organic, inorganic, and biochemical analysis. ACS symposium series no. 625, Washington, DC, American Chemical Society.CrossRefGoogle Scholar
Otto, H. and Witter, W. (1952). Handbuch der ältesten vorgeschichtlichen Metallurgie in Mitteleuropa. Leipzig, J. A. Barth.Google Scholar
Outridge, P. M., Hughes, R. J., and Evans, R. D. (1996). Determination of trace metals in teeth and bones by solution nebulization ICP-MS. Atomic Spectroscopy 17 1–8.Google Scholar
Parr, J. F. and Boyd, W. E. (2002). The probable industrial origin of archaeological daub at an Iron Age site in northeast Thailand. Geoarchaeology 17 285–303.CrossRefGoogle Scholar
Parry, S. J. (1991). Activation Spectrometry in Chemical Analysis.New York, Wiley.Google Scholar
Parsons, M. L. (1997). X-ray methods. In Analytical Instrumentation Handbook, ed. Ewing, G. W., New York, Marcel Dekker, pp. 557–586 (2nd edn.).Google Scholar
Parsons, P. J. and Slavin, W. (1999). Electrothermal atomization atomic absorption spectrometry for the determination of lead in urine: results of an interlaboratory study. Spectrochimica Acta B 54 853–864.CrossRefGoogle Scholar
Partington, J. R. (1961–1970). A History of Chemistry. 4 vols. London, Macmillan.Google Scholar
Passi, S., Rothschild-Boros, M. C., Fasella, P., Nazzaro-Porro, M., and Whitehouse, D. (1981). An application of high performance liquid chromatography to analysis of lipids in archaeological samples. Journal of Lipid Research 22 778–784.Google ScholarPubMed
Passi, S., Picardo, M., Deluca, A., et al. (1993). Saturated dicarboxylic-acids as products of unsaturated fatty-acid oxidation. Biochimica et Biophysica Acta 1168 190–198.CrossRefGoogle ScholarPubMed
Pate, F. D. (1994). Bone chemistry and paleodiet. Journal of Archaeological Method and Theory 1 161–209.CrossRefGoogle Scholar
Pauli, W. (1925). Über den Zusammenhang des Abschlusses der Elekronengruppen im Atom mit der Komplexstruktur des Spektren. Zeitschrift für Physik 31 765–783.CrossRefGoogle Scholar
Pearce, N. J. G., Perkins, W. T., Westgate, J. A., et al. (1996). A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards Newsletter 21 115–144.CrossRefGoogle Scholar
Peltz, C., Schmid, P., and Bichler, M. (1999). INAA of Aegaean pumices for the classification of archaeological findings. Journal of Radioanalytical and Nuclear Chemistry 242 361–377.CrossRefGoogle Scholar
Percy, J. (1861). Metallurgy. Volume I: Fuel; Fire-clays; Copper; Zinc; Brass. London, Murray. Reprinted Eindhoven, Archeologische Pers Nederland (1984).Google Scholar
Percy, J. (1864). Metallurgy. Volume II: Iron; Steel. London, Murray. Reprinted Eindhoven, Archeologische Pers Nederland (1984).Google Scholar
Percy, J. (1870). Metallurgy. Volume III: Lead. London, Murray. Reprinted Eindhoven, Archeologische Pers Nederland (1984).Google Scholar
Percy, J. (1875). Metallurgy. Volume IV: Silver; Gold. London, Murray. Reprinted Eindhoven, Archeologische Pers Nederland (1984).Google Scholar
Perey, M. (1939). Sur un element 87, derive de l'actinium. Comptes Rendus hebdomadaires des Séances de l'Académie des Sciences 208 97–99.Google Scholar
Perezarantegui, J., Querre, G., and Castillo, J. R. (1994). Particle-induced X-ray-emission – thick-target analysis of inorganic materials in the determination of light-elements. Journal of Analytical Atomic Spectrometry 9 311–314.CrossRefGoogle Scholar
Perkins, W. T., Pearce, N. J. G., and Jeffries, T. E. (1993). Laser ablation inductively coupled plasma mass-spectrometry – a new technique for the determination of trace and ultra-trace elements in silicates. Geochimica et Cosmochimica Acta 57 475–482.CrossRefGoogle Scholar
Perkins, W. T., Pearce, N. J. G., and Westgate, J. A. (1997). The development of laser ablation ICP-MS and calibration strategies: examples from the analysis of trace elements in volcanic glass shards and sulfide minerals. Geostandards Newsletter 21 175–190.CrossRefGoogle Scholar
Perlman, I. and Asaro, F. (1969). Pottery analysis by neutron activation analysis. Archaeometry 11 21–52.CrossRefGoogle Scholar
Perrin, J. (1909). Mouvement Brownien et réalité moléculaire. Annales de Chimie et de Physique 8me Series 17 5–114.Google Scholar
Person, A., Bocherens, H., Saliege, J. F., et al. (1995). Early diagenetic evolution of bone phosphate – an X-ray diffractometry analysis. Journal of Archaeological Science 22 211–221.CrossRefGoogle Scholar
Petit-Dominguez, M. D., Garcia-Gimenez, R., and Rucandio, M. I. (2003). Chemical characterization of Iberian amphorae and tannin determination as indicative of amphora contents. Mikrochimica Acta 141 63–68.CrossRefGoogle Scholar
Pettenkoffer, M. (1850). Ueber die regemässigen Abstände der Aeguivalentzahlen der sogennanten ein fachen Radicale. Akademie der Wissenschaften 30 261–272.Google Scholar
Pike, A. W. G., Hedges, R. E. M., and Calsteren, P. (2002). U-series dating of bone using the diffusion-adsorption model. Geochimica et Cosmochimica Acta 66 4273–4286.CrossRefGoogle Scholar
Pillay, A. E. and Punyadeera, C. (2001). An enhanced procedure for the rapid digestion of high silicate archeological specimens followed by ICP-MS determination of traces of rare earth elements (REEs). Journal of Trace and Microprobe Techniques 19 225–241.CrossRefGoogle Scholar
Platzner, I. T. (1997). Modern Isotope Ratio Mass Spectrometry. Chichester, Wiley.Google Scholar
Plücker, J. (1858). Ueber die Einworkung des Magneten auf die elektrischen Entladungen in verdünnten Gasen. Annalen der Physik und Chemie 103 88–106, 151–157.CrossRefGoogle Scholar
Polette, L. A., Meitzner, G., Yacaman, M. J., and Chianelli, R. R. (2002). Maya blue: application of XAS and HRTEM to materials science in art and archaeology. Microchemical Journal 71 167–174.CrossRefGoogle Scholar
Pollard, A. M. (1995). Groundwater modelling in archaeology – the need and the potential. In Science and Site: evaluation and conservation, eds. Beavis, J. and Barker, K., Occasional Paper 1, Bournemouth, Bournemouth University, pp. 93–98.Google Scholar
Pollard, A. M. (1998a). The chemical nature of the burial environment. In Preserving Archaeological Remains in Situ, eds. Corfield, M., Hinton, P., Nixon, T., and Pollard, A. M., London, Museum of London Archaeology Service.Google Scholar
Pollard, A. M. (1998b). Archaeological reconstruction using stable isotopes. In Stable Isotopes: integration of biological, ecological and geochemical processes, ed. Griffiths, H., Oxford, Bios, pp. 285–301.Google Scholar
Pollard, A. M. (in press a). What a long strange trip it's been: lead isotopes in archaeology. In From Mine to Microscope – analysing ancient technology, eds. Shortland, A., Freestone, I., and Rehren, T.
Pollard, A. M. (in press b). Measuring the passage of time: achievements and challenges in archaeological dating. In Oxford Handbook of Archaeology, eds. Cunliffe, B., Gosden, C., and Joyce, R.
Pollard, A. M. and Hatcher, H. (1986). The chemical analysis of Oriental ceramic body compositions: part 2 – greenwares. Journal of Archaeological Science 13 261–287.CrossRefGoogle Scholar
Pollard, A. M. and Heron, C. (1996). Archaeological Chemistry. Cambridge, Royal Society of Chemistry.Google Scholar
Pollard, A. M. and Wilson, L. (2001). Global biogeochemical cycles and isotope systematics – how the world works. In Handbook of Archaeological Sciences, eds. Brothwell, D. R. and Pollard, A. M., Chichester, Wiley, pp. 191–201.Google Scholar
Pollard, A. M., Bussell, G. D., and Baird, D. C. (1981). The analytical investigation of Early Bronze Age jet and jet-like material from the Devizes Museum. Archaeometry 23 139–167.CrossRefGoogle Scholar
Pomies, M. P., Barbaza, M., Menu, M., and Vignaud, C. (1999a). Preparation of red prehistoric pigments by heating. Anthropologie 103 503–518.Google Scholar
Pomies, M. P., Menu, M., and Vignaud, C. (1999b). TEM observations of goethite dehydration: application to archaeological samples. Journal of the European Ceramic Society 19 1605–1614.CrossRefGoogle Scholar
Ponting, M. and Segal, I. (1998). Inductively coupled plasma-atomic emission spectroscopy analyses of Roman military copper-alloy artefacts from the excavations at Masada, Israel. Archaeometry 40 109–122.CrossRefGoogle Scholar
Ponting, M., Evans, J. A., and Pashley, V. (2003). Fingerprinting of Roman mints using laser-ablation MC-ICP-MS lead isotope analysis. Archaeometry 45 591–597.CrossRefGoogle Scholar
Poole, C. F. (2003). The Essence of Chromatography. Amsterdam, Elsevier.Google Scholar
Potts, P. J., Webb, P. C., and Watson, J. S. (1985). Energy-dispersive X-ray fluorescence analysis of silicate rocks: comparisons with wavelength-dispersive performance. Analyst 110 507–513.CrossRefGoogle Scholar
Price, T. D. (ed.) (1989a). The Chemistry of Prehistoric Human Bone. Cambridge, Cambridge University Press.Google Scholar
Price, T. D. (1989b). Multi-element studies of diagenesis in prehistoric bone. In The Chemistry of Prehistoric Human Bone, ed. Price, T. D., Cambridge, Cambridge University Press, pp. 126–154.Google Scholar
Price, T. D., Blitz, J., Burton, J., and Ezzo, J. A. (1992). Diagenesis in prehistoric bone: problems and solutions. Journal of Archaeological Science 19 513–529.CrossRefGoogle Scholar
Price, T. D., Grupe, G., and Schrotter, P. (1994). Reconstruction of migration patterns in the Bell Beaker period by stable strontium isotope analysis. Applied Geochemistry 9 413–417.CrossRefGoogle Scholar
Price, W. J. (1972). Analytical Atomic Absorption Spectrometry. London, Heyden.Google Scholar
Prohaska, T., Stadlbauer, C., Wimmer, R., et al. (1998). Investigation of element variability in tree rings of young Norway spruce by laser-ablation-ICPMS. Science of the Total Environment 219 29–39.CrossRefGoogle Scholar
Pulfer, M. and Murphy, R. C. (2003). Electrospray mass spectrometry of phospholipids. Mass Spectrometry Reviews 22 332–364.CrossRefGoogle ScholarPubMed
Radosevich, S. C. (1993). The six deadly sins of trace element analysis: a case of wishful thinking in science. In Investigations of Ancient Human Tissue: chemical analyses in anthropology, ed. Sandford, M. K., Langhorne, PA, Gordon and Breach, pp. 269–332.Google Scholar
Raith, A., Hutton, R. C., Abell, I. D., and Crighton, J. (1995). Non-destructive sampling method of metals and alloys for laser ablation–inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectroscopy 10 591–594.CrossRefGoogle Scholar
Ramsay, W. and Soddy, F. (1903). Experiments in radioactivity, and the production of helium from radium. Proceedings of the Royal Society of London B 72 204–207.CrossRefGoogle Scholar
Rapp, G. R. Jr. and Hill, C. L. (1998). Geoarchaeology: the Earth-science approach to archaeological interpretation. New Haven, Yale University Press.Google Scholar
Raven, A. M., Bergen, P. F., Stott, A. W., Dudd, S. N., and Evershed, R. P. (1997). Formation of long-chain ketones in archaeological pottery vessels by pyrolysis of acyl lipids. Journal of Analytical and Applied Pyrolysis 40 267–285.CrossRefGoogle Scholar
Reed, S. J. B. (1993). Electron Microprobe Analysis. Cambridge, Cambridge University Press (2nd edn.).Google Scholar
Regert, M. (1997). Les Composes Organiques en Prehistoire: nouvelles approaches analytiques. Unpublished Ph.D. Thesis, L'Universite de Paris X.
Regert, M., Bland, H. A., Dudd, S. N., Bergen, P. F., and Evershed, R. P. (1998). Free and bound fatty acid oxidation products in archaeological ceramic vessels. Proceedings of the Royal Society of London Series B-Biological Sciences 265 2027–2032.CrossRefGoogle Scholar
Rehman, I., Smith, R., Hench, L. L., and Bonfield, W. (1995). Structural evaluation of human and sheep bone and comparison with synthetic hydroxyapatite by FT-Raman spectroscopy. Journal of Biomedical Materials Research 29 1287–1294.CrossRefGoogle ScholarPubMed
Reiche, I., Favre-Quattropani, L., Calligaro, T., et al. (1999). Trace element composition of archaeological bones and postmortem alteration in the burial environment. Nuclear Instruments and Methods in Physics Research B 150 656–662.CrossRefGoogle Scholar
Reiche, I., Vignaud, C., and Menu, M. (2002a). The crystallinity of ancient bone and dentine: new insights by transmission electron microscopy. Archaeometry 44 447–459.CrossRefGoogle Scholar
Reiche, I., Vignaud, C., Favre-Quattropani, L., and Menu, M. (2002b). Fluorine analysis in biogenic and geological apatite by analytical transmission electron microscopy and nuclear reaction analysis. Journal of Trace and Microprobe Techniques 20 211–231.CrossRefGoogle Scholar
Renfrew, C. (1979). Problems in European Prehistory. Edinburgh, Edinburgh University Press.Google Scholar
Renfrew, C. and Bahn, P. (1996). Archaeology: theories, methods, practice. London, Thames and Hudson (2nd edn.).Google Scholar
Restelli, M., Batista, S., Bruno, M., Salceda, S., and Mendez, M. (1999). Ultrastructural study of fossil human tooth tissue. Biocell 23 197–202.Google ScholarPubMed
Reunanen, M., Holmborn, B., and Edgren, T. (1993). Analysis of archaeological birch bark pitches. Holzforschung 47 175–177.Google Scholar
Rice, P. M. (1987). Pottery Analysis: a sourcebook. Chicago, University of Chicago Press.Google Scholar
Richards, M. P., Schulting, R. J., and Hedges, R. E. M. (2003). Sharp shift in diet at onset of Neolithic. Nature 425 366.CrossRefGoogle ScholarPubMed
Richards, T. W. (1895). The composition of Athenian pottery. American Chemical Journal 17 152–154.Google Scholar
Ringnes, A. (1989). Origin of the names of the chemical elements. Journal of Chemical Education 66 731–738.CrossRefGoogle Scholar
Ritz, W. (1908). Über ein neues Gesetz der Serienspektren. Physikalische Zeitschrift 9 521–529.Google Scholar
Roberts, N. B., Walsh, H. P. J., Klenerman, L., Kelly, S. A., and Helliwell, T. R. (1996). Determination of elements in human femoral bone using inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectroscopy 11 133–138.CrossRefGoogle Scholar
Robinson, N., Evershed, R. P., Higgs, J., Jerman, K., and Eglinton, G. (1987). Proof of a pine wood origin for pitch from Tudor (Mary Rose) and Etruscan shipwrecks: application of analytical organic chemistry in archaeology. Analyst 112 637–644.CrossRefGoogle Scholar
Robinson, S., Nicholson, R. A., Pollard, A. M., and O'Connor, T. P. (2003). An evaluation of nitrogen porosimetry as a technique for predicting taphonomic durability in animal bone. Journal of Archaeological Science 30 391–403.CrossRefGoogle Scholar
Rodriguez-Lugo, V., Ortiz-Velazquez, L., Miranda, J., Ortiz-Rojas, M., and Castano, V. M. (1999). Study of prehispanic wall paintings from Xochicalco, Mexico, using PIXE, XRD, SEM and FTIR. Journal of Radioanalytical and Nuclear Chemistry 240 561–569.CrossRefGoogle Scholar
Rutherford, E. (1899). Uranium radiation and the electrical conduction produced by it. Philosophical Magazine 5 XLVII 109–163.Google Scholar
Rutherford, E. (1904). Radioactivity. Cambridge, Cambridge University Press.Google Scholar
Rutherford, E. (1911). The scattering of α and β particles by matter and the structure of the atom. Philosophical Magazine Series 6 21 669–688.CrossRefGoogle Scholar
Rutherford, E. and Andrade, E. (1914). The wavelength of the soft gamma rays from Radium B. Philosophical Magazine Series 6 27 854–868.CrossRefGoogle Scholar
Rutherford, E. and Geiger, H. (1908). An electrical method of counting the number of alpha particles from radioactive substances. Proceedings of the Royal Society A81 141–161.CrossRefGoogle Scholar
Rutherford, E. and Royds, T. (1909). The nature of the alpha particle from radioactive substances. Philosophical Magazine Series 6, 17 281–286.CrossRefGoogle Scholar
Rutherford, E. and Soddy, F. (1902). The cause and nature of radioactivity. Philosophical Magazine Series 6 4 370–396.CrossRefGoogle Scholar
Ruvalcaba-Sil, J. L., Salamanca, M. A. O., et al. (1999). Characterization of pre-Hispanic pottery from Teotihuacán, Mexico, by a combined PIXE-RBS and XRD analysis. Nuclear Instruments and Methods in Physics Research B 150 591–596.CrossRefGoogle Scholar
Rydberg, J. R. (1897). The new series in the spectrum of hydrogen. Astrophysical Journal 6 233–238.CrossRefGoogle Scholar
Sabbatini, L., Tarantino, M. G., Zambonin, P. G., and Benedetto, G. E. (2000). Analytical characterization of paintings on pre-Roman pottery by means of spectroscopic techniques. Part II: Red, brown and black colored shards. Fresenius Journal of Analytical Chemistry 366 116–124.CrossRefGoogle Scholar
Salamanca, M. A. O., Ruvalcaba-Sil, J. L., Bucio, L., Manzanilla, L., and Miranda, J. (2000). Ion beam analysis of pottery from Teotihuacán, Mexico. Nuclear Instruments and Methods in Physics Research B 161 762–768.CrossRefGoogle Scholar
Sandford, M. K. (ed.) (1993a). Investigations of Ancient Human Tissues: chemical analyses in anthropology. Langhorne, PA, Gordon and Breach.Google Scholar
Sandford, M. K. (1993b). Understanding the biogenic-diagenetic continuum: interpreting elemental concentrations of archaeological bone. In Investigations of Ancient Human Tissue, ed. Sandford, M. K., Langhorne, PA, Gordon and Breach, pp. 3–57.Google Scholar
Sayre, E. V. (1965). Refinement in methods of neutron activation analysis of ancient glass objects through the use of lithium drifted germanium diode counters. In Comptes Rendus VIIe Congrès International du Verre, Bruxelles, 28 Juin–3 Juillet 1965, Charleroi, Institut National du Verre.Google Scholar
Sayre, E. V. and Dodson, R. W. (1957). Neutron activation study of Mediterranean potsherds. American Journal of Archaeology 61 35–41.CrossRefGoogle Scholar
Scaife, B., Budd, P., McDonnell, J. G., and Pollard, A. M. (1999). Lead isotope analysis, oxide ingots and the presentation of scientific data in archaeology. In Metals in Antiquity, eds. Young, S. M. M., Pollard, A. M., Budd, P., and Ixer, R. A. F., BAR International Series 792, Oxford, Archaeopress, pp. 122–133.Google Scholar
Schliemann, H. (1878). Mykenae: Bericht über meine Forschungen und Entdeckungen in Mykenae und Tiryns. Leipzig, F. A. Brockhaus (English translation Mycenae: a narrative of researches and discoveries at Mycenae and Tiryns, London, J. Murray, 1878).Google Scholar
Schoeninger, M. J., DeNiro, M. J., and Tauber, H. (1983). Stable nitrogen isotope ratios of bone collagen reflect marine and terrestrial components of prehistoric human diet. Science 220 1381–1383.CrossRefGoogle ScholarPubMed
Schofield, P. F., Cressey, G., Howard, Wren P., and Henderson, C. M. B. (1995). Origin of colour in iron and manganese containing glasses investigated by synchrotron radiation. Glass Technology 36 89–94.Google Scholar
Schurr, M. R. (1992). Isotopic and mortuary variability in a Middle Mississippian population. American Antiquity 57 300–320.CrossRefGoogle Scholar
Schwarcz, H. and Schoeninger, M. (1991). Stable isotope analysis in human nutritional ecology. Yearbook of Physical Anthropology 34 283–321.CrossRefGoogle Scholar
Sealy, J. C. and Merwe, N. J. (1985). Isotope assessment of Holocene human diets in the southwestern Cape, South Africa. Nature 315 138–140.CrossRefGoogle ScholarPubMed
Sealy, J., Armstrong, R., and Schrire, C. (1995). Beyond lifetime averages: tracing life histories through isotopic analysis of different calcified tissues from archaeological human skeletons. Antiquity 69 290–300.CrossRefGoogle Scholar
Segal, I., Kloner, A., and Brenner, I. B. (1994). Multielement analysis of archaeological bronze objects using inductively coupled plasma-atomic emission spectrometry – aspects of sample preparation and spectral-line selection. Journal of Analytical Atomic Spectrometry 9 737–744.CrossRefGoogle Scholar
Serpico, M. and White, R. (2000). The botanical identity and transport of incense during the Egyptian New Kingdom. Antiquity 74 884–897.CrossRefGoogle Scholar
Shackleton, N. J. (1969). Marine mollusca in archaeology. In Science in Archaeology, eds. Brothwell, D. and Higgs, E., London, Thames and Hudson, pp. 407–414 (2nd edn.).Google Scholar
Shalev, S. (1995). Metals in ancient Israel – archaeological interpretation of chemical analysis. Israel Journal of Chemistry 35 109–116.CrossRefGoogle Scholar
Sheppard, B. S., Heitkemper, D. T., and Gaston, C. M. (1994). Microwave digestion for the determination of arsenic, cadmium and lead in seafood products by inductively coupled plasma-atomic emission and mass spectrometry. Analyst 119 1683–1686.CrossRefGoogle Scholar
Shimosaka, C. (1999). Relationship between chemical composition and crystalline structure in fish bone during cooking. Journal of Clinical Biochemistry and Nutrition 26 173–182.CrossRefGoogle Scholar
Sillen, A. and Parkington, J. (1996). Diagenesis of bones from Eland's bay cave. Journal of Archaeological Science 23 535–542 (with correction 24 287 1997).CrossRefGoogle Scholar
Sillen, A. and Sealy, J. C. (1995). Diagenesis of strontium in fossil bone – a reconsideration of Nelson et al. (1986). Journal of Archaeological Science 22 313–320.CrossRefGoogle Scholar
Sillen, A., Sealy, J. C., and van der Merwe, N. J. (1989). Chemistry and paleodietary research: no more easy answers. American Antiquity 54 504–512.CrossRefGoogle Scholar
Silva, F. V., Trevizan, L. C., Silva, C. S., Nogueira, A. R. A., and Nóbrega, J. A. (2002). Evaluation of inductively coupled plasma optical emission spectrometers with axially and radially viewed configurations. Spectrochimica Acta B 57 1905–1913.CrossRefGoogle Scholar
Simpson, I. A., van Bergen, P. F., Perret, V., et al. (1999). Lipid biomarkers of manuring practice in relict anthropogenic soils. Holocene 9 223–229.CrossRefGoogle Scholar
Singer, C. (ed.) (1954–1984). A History of Technology. 8 vols. Oxford, Clarendon Press.Google Scholar
Skoog, D. A., Holler, F. J., and. Nieman, T. A. (1998). Principles of Instrumental Analysis. Philadelphia, Saunders College (5th edn.).Google Scholar
Smith, C., Chamberlain, A. T., Riley, M. S., et al. (2001). Not just old but old and cold?Nature 410 771–772.CrossRefGoogle Scholar
Smith, G. D. and Clark, R. J. H. (2004). Raman microscopy in archaeological science. Journal of Archaeological Science 31 1137–1160.CrossRefGoogle Scholar
Smith, P. R. and Wilson, M. T. (2001). Blood residues in archaeology. In Handbook of Archaeological Sciences, eds. Brothwell, D. R. and Pollard, A. M., Chichester, Wiley, pp. 313–322.Google Scholar
Sponheimer, M., Lee-Thorp, J., Ruiter, D., et al. (2005). Hominins, sedges, and termites: new carbon isotope data from the Sterkfontein valley and Kruger National Park. Journal of Human Evolution 48 301–312.CrossRefGoogle ScholarPubMed
Spoto, G., Ciliberto, E., Allen, G. C., et al. (2000). Chemical and structural properties of ancient metallic artefacts: multitechnique approach to study of early bronzes. British Corrosion Journal 35 43–47.CrossRefGoogle Scholar
Stern, B., Heron, C., Serpico, M., and Bourriau, J. (2000). A comparison of methods for establishing fatty acid concentration gradients across potsherds: a case study using Late Bronze Age Canaanite amphorae. Archaeometry 42 399–414.CrossRefGoogle Scholar
Stern, B., Heron, C., Corr, L., Serpico, M., and Bourriau, J. (2003). Compositional variations in aged and heated Pistacia resin found in Late Bronze Age Canaanite amphorae and bowls from Amarna, Egypt. Archaeometry 45 457–469.CrossRefGoogle Scholar
Stevenson, C. M., Abdelrehim, I. M., and Novak, S. W. (2001). Infra-red photoacoustic and secondary ion mass spectrometry measurements of obsidian hydration rims. Journal of Archaeological Science 28 109–115.CrossRefGoogle Scholar
Stiner, M. C., Kuhn, S. L., Weiner, S., and Bar-Yosef, O. (1995). Differential burning, recrystallization, and fragmentation of archaeological bone. Journal of Archaeological Science 22 223–237.CrossRefGoogle Scholar
Stone, J. F. S. and Thomas, L. C. (1956). The use and distribution of faience in the Ancient East and Prehistoric Europe. Proceedings of the Prehistoric Society 22 37–84.CrossRefGoogle Scholar
Stoney, G. S. (1894). Of the “electron”, or atom of electricity. Philosophical Magazine Series 5 38 418–420.CrossRefGoogle Scholar
Stott, A. W., Evershed, R. P., Jim, S., et al. (1999). Cholesterol as a new source of palaeodietary information: experimental approaches and archaeological applications. Journal of Archaeological Science 26 705–716.CrossRefGoogle Scholar
Streitweiser, A. Jr. and Heathcock, C. H. (1985). Introduction to Organic Chemistry.New York, Macmillan.Google Scholar
Stuart-Williams, H. L. Q., Schwarcz, H. P., White, C. D., and Spence, M. W. (1996). The isotopic composition and diagenesis of human bone from Teotihuacán and Oaxaca, Mexico. Palaeogeography Palaeoclimatology Palaeoecology 126 1–14.CrossRefGoogle Scholar
Svehla G. (ed.) (1996). Vogel's Qualitative Inorganic Analysis. Harlow, Longman (7th edn.).
Swann, C. P. (1997). Recent applications of nuclear microprobes to the study of art objects and archaeological artifacts. Nuclear Instruments and Methods in Physics Research B 130 289–296.CrossRefGoogle Scholar
Swann, C. P., Fleming, S. J., and Jaksic, M. (1992). Recent applications of PIXE spectrometry in archaeology. 1. Characterization of bronzes with special consideration of the influence of corrosion processes on data reliability. Nuclear Instruments and Methods in Physics Research B 64 499–504.CrossRefGoogle Scholar
Swann, C. P., McGovern, P. E., and Fleming, S. J. (1993). Recent applications of PIXE spectrometry in archaeology. 2. Observations on early glassmaking in the Near-East. Nuclear Instruments and Methods in Physics Research B 75 445–449.CrossRefGoogle Scholar
Sykes, P. (1986). A Guidebook to Mechanism in Organic Chemistry. London, Longman (6th edn.).Google Scholar
Sylvester, P. (ed.) (2001). Laser-Ablation-ICPMS in the Earth Sciences: principles and applications. Ottawa, Ont, Mineralogical Association of Canada.Google Scholar
Szabadváry, F. (1966). History of Analytical Chemistry. Oxford, Pergamon Press.Google Scholar
Talbot, J. C. and Darling, W. G. (1997). Compilation of Stable Isotope Data for Rainfall in the United Kingdom. Technical Report (British Geological Survey) Hydrogeology series, Keyworth, British Geological Survey.Google Scholar
Tamba, M. G., Del, M., Falciani, R., López, T. D., and Coedo, A. G. (1994). One-step microwave digestion procedures for the determination of aluminium in steels and iron ores by inductively coupled plasma atomic emission spectrometry. Analyst 119 2081–2085.CrossRefGoogle Scholar
Tauber, H. (1981). 13C evidence for dietary habits of prehistoric man in Denmark. Nature 292 332–333.CrossRefGoogle ScholarPubMed
Taylor, H. P. Jr., O'Neil, J. R., and Kaplan, I. R. (eds.) (1991). Stable Isotope Geochemistry: a tribute to Samuel Epstein. Special Publication No. 3. San Antonio, TX, Geochemical Society.Google Scholar
Tennent, N. H. (ed.) (1993). Conservation Science in the U.K. London, James and James.Google Scholar
Termine, J. D. and Posner, A. S. (1966). Infrared analysis of rat bone: age dependency of amorphous and crystalline components. Science 153 1523–1525.CrossRefGoogle Scholar
Terry, R. E., Hardin, P. J., Houston, S. D., et al. (2000). Quantitative phosphorus measurement: a field test procedure for archaeological site analysis at Piedras Negras, Guatemala. Geoarchaeology 15 151–166.3.0.CO;2-T>CrossRefGoogle Scholar
Thiel, B. L. (2004). Imaging and analysis in materials science by low vacuum scanning electron microscopy. International Materials Reviews 49 109–122.CrossRefGoogle Scholar
Thomas, G. R. and Young, T. P. (1999). The determination of bloomery furnace mass balance and efficiency. In Geoarchaeology: exploration, environments, resources, ed. Pollard, A. M., London, Geological Society Special Publication, pp. 155–164.Google Scholar
Thomas, R. G. (1990). Studies of Archaeological Copper Corrosion Phenomena. Unpublished Ph.D. Thesis, University of Wales, College of Cardiff, Department of Chemistry.
Thompson, M. and Walsh, J. N. (2003). Handbook of Inductively Coupled Plasma Atomic Emission Spectrometry.Woking, Viridian Publishing.Google Scholar
Thomson, J. J. (1897). Cathode rays. Philosophical Magazine 44 293–316.Google Scholar
Thomson, J. J. (1904). On the structure of the atom: an investigation of the stability and periods of oscillation of a number of corpuscles arranged at equal intervals around the circumference of a circle; with application of the results to the theory of atomic structure. Philosophical Magazine Series 6 7 237–265.CrossRefGoogle Scholar
Thorpe, J. F. and Whiteley, M. A. (eds.) (1937–1956). Thorpe's Dictionary of Applied Chemistry. New York, Wiley (4th edn., 12 vols).Google Scholar
Thurlow, K. J. (ed) (1998). Chemical Nomenclature. Amsterdam, Kluwer Academic.CrossRefGoogle Scholar
Tissot, B. P. and Welte, D. H. (1984). Petroleum Formation and Occurrence. Berlin, Springer-Verlag.CrossRefGoogle Scholar
Tite, M. S. (1972). Methods of Physical Examination in Archaeology.London, Seminar Press.Google Scholar
Tite, M. S. (1991). Archaeological science – past achievements and future prospects. Archaeometry 31 139–151.CrossRefGoogle Scholar
Tiyapongpattana, W., Pongsakul, P., Shiowatana, J., and Nacapricha, D. (2004). Sequential extraction of phosphorus in soil and sediment using a continuous-flow system. Talanta 62 765–771.CrossRefGoogle ScholarPubMed
Topping, J. (1972). Errors of Observation and their Treatment. London, Chapman and Hall (4th edn.).CrossRefGoogle Scholar
Totland, M., Jarvis, I., and Jarvis, K. E. (1992). An assessment of dissolution techniques for the analysis of geological samples by plasma spectrometry. Chemical Geology 95 35–62.CrossRefGoogle Scholar
Trickett, M., Budd, P., Montgomery, J., and Evans, J. (2003). An assessment of solubility profiling as a decontamination procedure for the 87Sr/86Sr analysis of archaeological human tissue. Applied Geochemistry 18 653–658.CrossRefGoogle Scholar
Trigger, B. G. (1988). Archaeology's relations with the physical and biological sciences: a historical review. In Proceedings of the 26th International Archaeometry Symposium, eds. Farquhar, R. M., Hancock, R. G. V., and Pavlish, L. A., Toronto, University of Toronto, pp. 1–9.Google Scholar
Trigger, B. G. (1989). A History of Archaeological Thought. Cambridge, Cambridge University Press.Google Scholar
Trueman, C. N. (1999). Rare earth element geochemistry and taphonomy of terrestrial vertebrate assemblages. Palaios 14 555–568.CrossRefGoogle Scholar
Tsalev, D. L. (2000). Vapor generation or electrothermal atomic absorption – both!Spectrochimica Acta B 55 917–933.CrossRefGoogle Scholar
Tsolakidou, A. and Kilikoglou, V. (2002). Comparative analysis of ancient ceramics by neutron activation analysis, inductively coupled plasma-optical emission spectrometry, inductively coupled plasma-mass spectrometry, and X-ray fluorescence. Analytical and Bioanalytical Chemistry 374 566–572.CrossRefGoogle ScholarPubMed
Turner, N. H. (1997). X-ray photoelectron and Auger electron spectroscopy. In Analytical Instrumentation Handbook, ed. Ewing, G. W., New York, Marcel Dekker, pp. 863–914 (2nd edn.).Google Scholar
Tykot, R. H. (1998). Mediterranean islands and multiple flows: the sources and exploitation of Sardinian obsidian. In Archaeological Obsidian Studies: method and theory, ed. Shackley, M. S., New York, Plenum Press, pp. 67–82.CrossRefGoogle Scholar
Tykot, R. H. (2002). Contribution of stable isotope analysis to understanding dietary variation among the Maya. In Archaeological Chemistry: materials, methods and meaning, ed. Jakes, K. A., ACS Symposium Series 831, Washington, DC, American Chemical Society, pp. 214–230.CrossRefGoogle Scholar
Tykot, R. H. and Young, S. M. M. (1996). Archaeological applications of inductively coupled plasma-mass spectrometry. In Archaeological Chemistry: organic, inorganic and biochemical analysis, ed. Orna, M. V., ACS Symposium Series 625, Washington, DC, American Chemical Society, pp. 116–130.CrossRefGoogle Scholar
Ubelaker, D. H., Katzenberg, M. A., and Doyon, L. G. (1995). Status and diet in precontact highland Ecuador. American Journal of Physical Anthropology 97 403–411.CrossRefGoogle ScholarPubMed
Urem-Kotsou, D., Stern, B., Heron, C., and Kotsakis, K. (2002). Birch bark tar at Neolithic Makriyalos, Greece. Antiquity 76 962–967.CrossRefGoogle Scholar
Merwe, M. J. (1982). Carbon isotopes, photosynthesis and archaeology. American Scientist 70 596–606.Google Scholar
van der Merwe, M. J. (1992). Light stable isotopes and the reconstruction of prehistoric diets. In New Developments in Archaeological Science, ed. Pollard, A. M., Proceedings of the British Academy 77, Oxford, Oxford University Press, pp. 247–264.Google Scholar
Merwe, N. J. and Vogel, J. C. (1977). 13C content of human collagen as a measure of prehistoric diet in woodland North America. Nature 276 815–816.CrossRefGoogle Scholar
Merwe, N. J., Roosevelt, A. C., and Vogel, J. C. (1981). Isotopic evidence for prehistoric subsistence change at Parmana, Venezuela. Nature 292 536–538.CrossRefGoogle Scholar
Merwe, N. J., Lee-Thorp, J. A., Thackeray, J. F., et al. (1990). Source area determination of elephant ivory by isotopic analysis. Nature 346 744–746.CrossRefGoogle Scholar
Grieken, R. E. and Markowicz, A. A. (1993). Handbook of X-ray Spectrometry: methods and techniques. New York, Marcel Dekker.Google Scholar
Klinken, G. J., Plicht, H., and Hedges, R. E. M. (1994). Bone C-13/C-12 ratios reflect (palaeo-) climatic variations. Geophysical Research Letters 21 445–448.CrossRefGoogle Scholar
Varma, A. (1985). Handbook of Atomic Absorption Analysis. Boca Raton, FLA, CRC Press.Google Scholar
Villard, P. (1900). Sur la réflexion et la refraction des rayons cathodiques et des rayons déviable du radium. Comptes Rendus hebdomadaires des Séances de l'Académie des Sciences. 130 1010–1012.Google Scholar
Vogel, A. I. (1937). A Text-book of Qualitative Chemical Analysis. London, Longmans, Green and Co.Google Scholar
Vogel, A. I. (1939). A Text-Book of Quantitative Inorganic Analysis. London, Longmans, Green and Co.Google Scholar
Vogel, J. C., Eglington, B., and Auret, J. M. (1990). Isotope fingerprints in elephant bone and ivory. Nature 346 747–749.CrossRefGoogle Scholar
Wada, E., Mizutani, H., and Minagawa, M. (1991). The use of stable isotopes for food web analysis. Critical Reviews in Food Science and Nutrition 30 361–371.CrossRefGoogle ScholarPubMed
Wadsak, M., Constantinides, I., Vittiglio, G., et al. (2000). Multianalytical study of patina formed on archaeological metal objects from Bliesbruck-Reinheim. Mikrochimica Acta 133 159–164.CrossRefGoogle Scholar
Wagner, T., Boyce, A. J., and Fallick, A. E. (2002). Laser combustion analysis of δ34S of sulfosalt minerals: determination of the fractionation systematics and some crystal-chemical considerations. Geochimica et Cosmochimica Acta 66 2855–2863.CrossRefGoogle Scholar
Walder, A. J. and Furuta, N. (1993). High-precision lead isotope ratio measurements by inductively coupled plasma multiple collector mass spectrometry. Analytical Sciences 9 675–680.CrossRefGoogle Scholar
Walters, M. A., Leung, Y. C., Blumenthal, N. C., Legeros, R. Z., and Konsker, K. A. (1990). A Raman and infrared spectroscopic investigation of biological hydroxyapatite. Journal of Inorganic Biochemistry 39 193–200.CrossRefGoogle ScholarPubMed
Wang, J. A., Sun, S. Q., Zhou, Q., et al. (1999). Nondestructive identification of ballpoint writing inks with Fourier transform infrared microscope. Chinese Journal of Analytical Chemistry 27 697–700.Google Scholar
Warashina, T. (1992). Allocation of jasper archaeological implements by means of ESR and XRF. Journal of Archaeological Science 19 357–373.CrossRefGoogle Scholar
Ward, N. I., Abou-Shakra, F. R., and Durrant, S. F. (1990). Trace element content of biological-materials – a comparison of NAA and ICP-MS analysis. Biological Trace Element Research 26 177–187.CrossRefGoogle ScholarPubMed
Watling, R. J., Lynch, B. F., and Herring, D. (1997). Use of laser ablation inductively coupled plasma mass spectrometry for fingerprinting scene of crime evidence. Journal of Analytical Atomic Spectroscopy 12 195–203.CrossRefGoogle Scholar
Watmough, S. A., Hutchinson, T. C., and Evans, R. D. (1996). Application of laser ablation inductively coupled plasma – mass spectrometry in dendrochemical analysis. Environmental Science and Technology 31 114–118.CrossRefGoogle Scholar
Watmough, S. A., Hutchinson, T. C., and Evans, R. D. (1998). Development of solid calibration standards for trace elemental analyses of tree rings by laser ablation inductively coupled plasma-mass spectrometry. Environmental Science and Technology 32 2185–2190.CrossRefGoogle Scholar
Watts, S., Pollard, A. M. and Wolff, G. A. (1999). The organic geochemistry of jet: Pyrolosis-gas chromatography/mass spectrometry (Py-GCMS) applied to identifying jet and similar black lithic materials – preliminary results. Journal of Archaeological Science 26 923–933.CrossRefGoogle Scholar
Weiner, J. S., Oakley, K. P., and Clark, Gros W. E. (1953–6). The solution of the Piltdown problem. Bulletin of the British Museum (Natural History) Geology 2 139–146.Google Scholar
Weiner, S. and Bar-Yosef, O. (1990). States of preservation of bones from prehistoric sites in the Near East: a survey. Journal of Archaeological Science 17 187–196.CrossRefGoogle Scholar
Weiner, S. and Price, P. A. (1986). Disaggregation of bone into crystals. Calcified Tissue International 39 365–375.CrossRefGoogle ScholarPubMed
Weiss, G. (ed.) (1980). Hazardous Chemicals Data Book. New Jersey, Noyes Data Corporation.Google Scholar
Wess, T. J., Drakopoulos, M., Snigirev, A., et al. (2001). The use of small-angle X-ray diffraction studies for the analysis of structural features in archaeological samples. Archaeometry 43 117–129.CrossRefGoogle Scholar
Wess, T. J., Alberts, I., Cameron, G., et al. (2002). Small angle X-ray scattering reveals changes of bone mineral habit and size in archaeological samples. Fibre Diffraction Review36–43.Google Scholar
White, C. D. and Schwarcz, H. P. (1989). Ancient Maya diet – as inferred from isotopic and elemental analysis of human-bone. Journal of Archaeological Science 16 451–474.CrossRefGoogle Scholar
White, S. R. (1981). The Provenance of Bronze Age pottery from Central and Eastern Greece. Unpublished Ph.D. Thesis, University of Bradford, UK.
Willett, F. and Sayre, E. V. (2000). The elemental composition of Benin memorial heads. Archaeometry 42 159–188.CrossRefGoogle Scholar
Williams-Thorpe, O. (1995). Obsidian in the Mediterranean and the Near East: a provenance success story. Archaeometry 37 217–248.CrossRefGoogle Scholar
Williams-Thorpe, O. and Thorpe, R. S. (1992). Geochemistry, sources and transport of the Stonehenge bluestones. In New Developments in Archaeological Science, ed. Pollard, A. M., Proceedings of the British Academy 77, Oxford, Oxford University Press, pp. 133–161.Google Scholar
Williams-Thorpe, O., Potts, P. J., and Webb, P. C. (1999). Field-portable non-destructive analysis of lithic archaeological samples by X-ray fluorescence instrumentation using a mercury iodide detector: Comparison with wavelength-dispersive XRF and a case study in British stone axe provenancing. Journal of Archaeological Science 26 215–237.CrossRefGoogle Scholar
Wilson, A. S., Dixon, R. A., Dodson, H. I., et al. (2001). Yesterday's hair – human hair in archaeology. Biologist 48 213–217.Google ScholarPubMed
Wilson, L. (2004). Geochemical Approaches to Understanding In Situ Diagenesis. Unpublished Ph.D. thesis, University of Bradford, UK.
Wilson, L. and Pollard, A. M. (2001). The provenance hypothesis. In Handbook of Archaeological Sciences, eds. Brothwell, D. and Pollard, A. M., Chichester, Wiley, pp. 507–517.
Wilson, L. and Pollard, A. M. (2002). Here today, gone tomorrow? Integrated experimentation and geochemical modeling in studies of archaeological diagenetic change. Accounts of Chemical Research 35 644–651.CrossRefGoogle ScholarPubMed
Wilson, L., Pollard, A. M., Hall, A. J., and Wilson, A. S. (in press). Assessing the influence of agrochemicals on the nature of copper corrosion in the vadose zone of arable land – Part 3: Geochemical modelling. Conservation and Management of Archaeological Sites.
Winkler, C. (1886). Germanium, Ge, a new nonmetallic element. Berichte der Deutschen Chemischen Gesellschaft 19 210–211.CrossRefGoogle Scholar
Wöhler, F. (1828). Ueber künstliche Bildung des Harnstoffs. Annalen der Physik und Chemie 12 253–256.
Woldseth, R. (1973). X-ray Energy Spectrometry. Burlingame, CA, Kevex Corporation.Google Scholar
Wolff, S. R., Liddy, D. J., Newton, G. W. A., Robinson, V. J., and Smith, R. J. (1986). Classical and Hellenistic black glaze ware in the Mediterranean – a study by epithermal neutron-activation analysis. Journal of Archaeological Science 13 245–259.CrossRefGoogle Scholar
Wright, L. E. and Schwarcz, H. P. (1996). Infrared and isotopic evidence for diagenesis of bone apatite from Dos Pilas, Guatemala: paleodietary implications. Journal of Archaeological Science 23 993–944.CrossRefGoogle Scholar
Wright, S. (ed.) (1964). Classical Scientific Papers: physics. London, Mills and Boon.Google Scholar
Xu, A. W., Wang, C. S., Chi, J. Q., et al. (2001). Preliminary provenance research on Chinese Neolithic pottery: Huating (Xinyi County) and three Yellow River Valley sites. Archaeometry 43 35–47.CrossRefGoogle Scholar
Yamada, M., Tohno, S., Tohno, Y., et al. (1995). Accumulation of mercury in excavated bones of two natives in Japan. Science of the Total Environment 162 253–256.CrossRefGoogle ScholarPubMed
Yener, K. A. and Vandiver, P. B. (1993). Tin processing at Goltepe, an Early Bronze-Age site in Anatolia. American Journal of Archaeology 97 207–238.CrossRefGoogle Scholar
Yi, W., Budd, P., McGill, R. A. R., et al. (1999). Tin isotope studies of experimental and prehistoric bronzes. In The Beginnings of Metallurgy, eds. Hauptmann, A., Pernicka, E., Rehren, T., and Yalcin, U., Der Anschnitt Beiheft 9, Bochum, Deutschen berbau-Museum, pp. 285–290.
Yoshinaga, J., Suzuki, T., Morita, M., and Hayakawa, M. (1995). Trace-elements in ribs of elderly people and elemental variation in the presence of chronic diseases. Science of the Total Environment 162 239–252.CrossRefGoogle ScholarPubMed
Yoshinaga, J., Yoneda, M., Morita, M., and Suzuki, T. (1998). Lead in prehistoric, historic and contemporary Japanese: stable isotopic study by ICP mass spectrometry. Applied Geochemistry 13 403–413.CrossRefGoogle Scholar
Young, S. M. M., Budd, P., Haggerty, R., and Pollard, A. M. (1997). Inductively coupled plasma-mass spectrometry for the analysis of ancient metals. Archaeometry 39 379–392.CrossRefGoogle Scholar
Zhang, J. Z. and Chi, J. (2002). Automated analysis of nanomolar concentrations of phosphate in natural waters with liquid waveguide. Environmental Science and Technology 36 1048–1053.CrossRefGoogle ScholarPubMed
Zheng, J., Goessler, W., Geiszinger, A., et al. (1997). Multi-element determination in earthworms with instrumental neutron activation analysis and inductively coupled plasma mass spectrometry: a comparison. Journal of Radioanalytical and Nuclear Chemistry 223 149–155.CrossRefGoogle Scholar
Zhou, Y., Parsons, P. J., Aldous, K. M., Brockman, P., and Slavin, W. (2001). Atomization of lead from whole blood using novel tungsten filaments in electrothermal atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry 16 82–89.CrossRefGoogle Scholar
Zong, Y. Y., Parsons, P. J., and Slavin, W. (1998). Background correction errors for lead in the presence of phosphate with Zeeman graphite furnace atomic absorption spectrometry. Spectrochimica Acta B 53 1031–1039.CrossRefGoogle Scholar
Zoppi, A., Signorini, G. F., Lucarelli, F., and Bachechi, L. (2002). Characterisation of painting materials from Eritrea rock art sites with non-destructive spectroscopic techniques. Journal of Cultural Heritage 3 299–308.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • A. M. Pollard, University of Oxford, C. M Batt, University of Bradford, B. Stern, University of Bradford, S. M. M. Young, Tufts University, Massachusetts
  • Book: Analytical Chemistry in Archaeology
  • Online publication: 03 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511607431.026
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • A. M. Pollard, University of Oxford, C. M Batt, University of Bradford, B. Stern, University of Bradford, S. M. M. Young, Tufts University, Massachusetts
  • Book: Analytical Chemistry in Archaeology
  • Online publication: 03 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511607431.026
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • A. M. Pollard, University of Oxford, C. M Batt, University of Bradford, B. Stern, University of Bradford, S. M. M. Young, Tufts University, Massachusetts
  • Book: Analytical Chemistry in Archaeology
  • Online publication: 03 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511607431.026
Available formats
×