Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T22:27:54.342Z Has data issue: false hasContentIssue false

Section 3 - Specific Forms of Anemia

Published online by Cambridge University Press:  18 April 2018

Edward J. Benz, Jr.
Affiliation:
Dana Farber Cancer Institute
Nancy Berliner
Affiliation:
Brigham and Women's Hospital, Boston
Fred J. Schiffman
Affiliation:
Children's Hospital, Boston
Get access
Type
Chapter
Information
Anemia
Pathophysiology, Diagnosis, and Management
, pp. 39 - 165
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

WHO. World prevalence of anaemia 1993–2005. WHO Global Database on Anaemia 2008.Google Scholar
Black, RE, Allen, LH, Bhutta, ZA, Caulfield, LE, de Onis, M, Ezzati, M, Mathers, C, et al. Maternal and child undernutrition: global and regional exposures and health consequences. Lancet. 2008; 371:243260.Google Scholar
Ganz, T, Nemeth, E. Iron metabolism: interactions with normal and disordered erythropoiesis. Cold Spring Harb Perspect Med. 2012; 2:a011668.CrossRefGoogle ScholarPubMed
Ganz, T, Nemeth, E. Hepcidin and iron homeostasis. Biochim Biophys Acta. 2012; 1823:14341443.Google Scholar
Miller, JL. Iron deficiency anemia: a common and curable disease. Cold Spring Harb Perspect Med. 2013; 3.CrossRefGoogle ScholarPubMed
Andrews, NC. Forging a field: the golden age of iron biology. Blood. 2008; 112:219230.CrossRefGoogle ScholarPubMed
Hentze, MW, Muckenthaler, MU, Andrews, NC. Balancing acts: molecular control of mammalian iron metabolism. Cell. 2004; 117:285297.Google Scholar
Pigeon, C, Ilyin, G, Courselaud, B, Leroyer, P, Turlin, B, Brissot, P, Loreal, O. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem. 2001; 276:78117819.CrossRefGoogle ScholarPubMed
Bolondi, G, Garuti, C, Corradini, E, Zoller, H, Vogel, W, Finkenstedt, A, Babitt, JL, et al. Altered hepatic BMP signaling pathway in human HFE hemochromatosis. Blood Cells Mol Dis. 2010; 45:308312.CrossRefGoogle ScholarPubMed
Kemna, E, Pickkers, P, Nemeth, E, van der Hoeven, H, Swinkels, D. Time-course analysis of hepcidin, serum iron, and plasma cytokine levels in humans injected with LPS. Blood. 2005; 106:18641866.CrossRefGoogle ScholarPubMed
Nemeth, E, Rivera, S, Gabayan, V, Keller, C, Taudorf, S, Pedersen, BK, Ganz, T. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest. 2004; 113:12711276.Google Scholar
Nicolas, G, Chauvet, C, Viatte, L, Danan, JL, Bigard, X, Devaux, I, Beaumont, C, et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest. 2002; 110:10371044.Google Scholar
Andriopoulos, B Jr., Corradini, E, Xia, Y, Faasse, SA, Chen, S, Grgurevic, L, Knutson, MD, et al. BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Nat Genet. 2009; 41:482487.Google Scholar
Verga Falzacappa, MV, Casanovas, G, Hentze, MW, Muckenthaler, MU. A bone morphogenetic protein (BMP)-responsive element in the hepcidin promoter controls HFE2-mediated hepatic hepcidin expression and its response to IL-6 in cultured cells. J Mol Med (Berl). 2008; 86:531540.CrossRefGoogle ScholarPubMed
Zhang, AS, Anderson, SA, Meyers, KR, Hernandez, C, Eisenstein, RS, Enns, CA. Evidence that inhibition of hemojuvelin shedding in response to iron is mediated through neogenin. J Biol Chem. 2007; 282:1254712556.Google Scholar
Lin, L, Nemeth, E, Goodnough, JB, Thapa, DR, Gabayan, V, Ganz, T. Soluble hemojuvelin is released by proprotein convertase-mediated cleavage at a conserved polybasic RNRR site. Blood Cells Mol Dis. 2008; 40:122131.CrossRefGoogle Scholar
Silvestri, L, Pagani, A, Camaschella, C. Furin-mediated release of soluble hemojuvelin: a new link between hypoxia and iron homeostasis. Blood. 2008; 111:924931.Google Scholar
Silvestri, L, Pagani, A, Nai, A, De Domenico, I, Kaplan, J, Camaschella, C. The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell Metab. 2008; 8:502511.Google Scholar
Lin, L, Goldberg, YP, Ganz, T. Competitive regulation of hepcidin mRNA by soluble and cell-associated hemojuvelin. Blood. 2005; 106:28842889.Google Scholar
Babitt, JL, Huang, FW, Xia, Y, Sidis, Y, Andrews, NC, Lin, HY. Modulation of bone morphogenetic protein signaling in vivo regulates systemic iron balance. J Clin Invest. 2007; 117:19331939.Google Scholar
Du, X, She, E, Gelbart, T, Truksa, J, Lee, P, Xia, Y, Khovananth, K, et al. The serine protease TMPRSS6 is required to sense iron deficiency. Science. 2008; 320:10881092.Google Scholar
Nemeth, E, Tuttle, MS, Powelson, J, Vaughn, MB, Donovan, A, Ward, DM, Ganz, T, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004; 306:20902093.CrossRefGoogle ScholarPubMed
Fraenkel, PG, Traver, D, Donovan, A, Zahrieh, D, Zon, LI. Ferroportin1 is required for normal iron cycling in zebrafish. J Clin Invest. 2005; 115:15321541.CrossRefGoogle ScholarPubMed
James, AH, Kouides, PA, Abdul-Kadir, R, Dietrich, JE, Edlund, M, Federici, AB, Halimeh, S, et al. Evaluation and management of acute menorrhagia in women with and without underlying bleeding disorders: consensus from an international expert panel. Eur J Obstet Gynecol Reprod Biol. 2011; 158:124134.CrossRefGoogle ScholarPubMed
Khalafallah, AA, Dennis, AE. Iron deficiency anaemia in pregnancy and postpartum: pathophysiology and effect of oral versus intravenous iron therapy. J Pregnancy. 2012; 2012:630519.Google Scholar
Christensen, L, Sguassero, Y, Cuesta, CB. Anemia and compliance to oral iron supplementation in a sample of children attending the public health network of Rosario, Santa Fe. Arch Argent Pediatr. 2013; 111:288294.Google Scholar
Bregman, DB, Morris, D, Koch, TA, He, A, Goodnough, LT. Hepcidin levels predict nonresponsiveness to oral iron therapy in patients with iron deficiency anemia. Am J Hematol. 2013; 88:97101.Google Scholar
Auerbach, M, Ballard, H. Clinical use of intravenous iron: administration, efficacy, and safety. Hematology Am Soc Hematol Educ Program. 2010; 2010:338347.CrossRefGoogle ScholarPubMed
Khalafallah, AA, Dennis, AE, Ogden, K, Robertson, I, Charlton, RH, Bellette, JM, Shady, JL, et al. Three-year follow-up of a randomised clinical trial of intravenous versus oral iron for anaemia in pregnancy. BMJ Open. 2012; 2.CrossRefGoogle ScholarPubMed
Vaziri, ND. Understanding iron: promoting its safe use in patients with chronic kidney failure treated by hemodialysis. Am J Kidney Dis. 2013; 61:9921000.Google Scholar

References

Bottomley, SS, Fleming, MD. Sideroblastic anemia: diagnosis and management. Hematology/Oncology Clinics of North America. 2014; 28(4):653670. Epub 2014/07/30.Google Scholar
Mufti, GJ, Bennett, JM, Goasguen, J, Bain, BJ, Baumann, I, Brunning, R, et al. Diagnosis and classification of myelodysplastic syndrome: International Working Group on Morphology of Myelodysplastic Syndrome (IWGM-MDS) consensus proposals for the definition and enumeration of myeloblasts and ring sideroblasts. Haematologica. 2008; 93(11):17121717. Epub 2008/10/08.Google Scholar
Alcindor, T, Bridges, KR. Sideroblastic anaemias. British Journal of Haematology. 2002; 116(4):733743.CrossRefGoogle ScholarPubMed
McLintock, LA, Fitzsimons, EJ. Erythroblast iron metabolism in sideroblastic and sideropenic states. Hematology. 2002; 7(3):189195. Epub 2002/09/24.CrossRefGoogle ScholarPubMed
Bottomley, SS, Healy, HM, Brandenburg, MA, May, BK. 5-Aminolevulinate synthase in sideroblastic anemias: mRNA and enzyme activity levels in bone marrow cells. American Journal of Hematology. 1992; 41(2):7683.Google Scholar
Cazzola, M, Invernizzi, R, Bergamaschi, G, Levi, S, Corsi, B, Travaglino, E, et al. Mitochondrial ferritin expression in erythroid cells from patients with sideroblastic anemia. Blood. 2003; 101(5):19962000. Epub 2002/10/31.CrossRefGoogle ScholarPubMed
Rovo, A, Stussi, G, Meyer-Monard, S, Favre, G, Tsakiris, D, Heim, D, et al. Sideroblastic changes of the bone marrow can be predicted by the erythrogram of peripheral blood. International Journal of Laboratory Hematology. 2010; 32(3):329335. Epub 2009/08/27.Google Scholar
Takagi, S, Tanaka, O, Origasa, H, Miura, Y. Prognostic significance of magnetic resonance imaging of femoral marrow in patients with myelodysplastic syndromes. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 1999; 17(1):277283. Epub 1999/08/24.Google Scholar
Zarco, MA, Feliu, E, Rozman, C, Masat, T, Aymerich, M, Jou, JM, et al. Ultrastructural study of erythrocytes containing Pappenheimer bodies in a case of congenital sideroblastic anaemia (CSA). British Journal of Haematology. 1991; 78(4):577578. Epub 1991/08/01.Google Scholar
Broseus, J, Alpermann, T, Wulfert, M, Florensa Brichs, L, Jeromin, S, Lippert, E, et al. Age, JAK2(V617F) and SF3B1 mutations are the main predicting factors for survival in refractory anaemia with ring sideroblasts and marked thrombocytosis. Leukemia. 2013; 27(9):18261831. Epub 2013/04/19.Google Scholar
Parry, GJ, Bredesen, DE. Sensory neuropathy with low-dose pyridoxine. Neurology. 1985; 35(10):14661468. Epub 1985/10/01.Google Scholar
Malcovati, L. Red blood cell transfusion therapy and iron chelation in patients with myelodysplastic syndromes. Clinical Lymphoma & Myeloma. 2009; 9 Suppl 3:S305–311. Epub 2009/09/26.Google Scholar
Broliden, PA, Dahl, IM, Hast, R, Johansson, B, Juvonen, E, Kjeldsen, L, et al. Antithymocyte globulin and cyclosporine A as combination therapy for low-risk non-sideroblastic myelodysplastic syndromes. Haematologica. 2006; 91(5):667770. Epub 2006/05/04.Google ScholarPubMed
Takeuchi, M, Tada, A, Yoshimoto, S, Takahashi, K. Anemia and neutropenia due to copper deficiency during long-term total parenteral nutrition. [Rinsho ketsueki] The Japanese Journal of Clinical Hematology. 1993; 34(2):171176. Epub 1993/02/01.Google Scholar
Iwase, O, Iwama, H, Okabe, S, Ando, K, Yaguchi, M, Miyazawa, K, et al. Refractory anemia with ringed sideroblasts with a low IPSS score progressed rapidly with de novo appearance of multiple karyotypic abnormalities and into acute erythroleukemia (AML-M6A). Leukemia Research. 2000; 24(7):597600. Epub 2000/06/27.Google Scholar
Bernasconi, P, Alessandrino, EP, Boni, M, Bonfichi, M, Morra, E, Lazzarino, M, et al. Karyotype in myelodysplastic syndromes: relations to morphology, clinical evolution, and survival. American Journal of Hematology. 1994; 46(4):270277. Epub 1994/08/01.Google Scholar

References

Weatherall, DJ, Clegg, JB. The Thalassaemia Syndromes, 4th ed. Oxford, Blackwell Science; 2001.CrossRefGoogle Scholar
Weatherall, DJ. Thalassemia as a global health problem: recent progress toward its control in the developing countries. Ann N Y Acad Sci. 2010; 1202:1723.Google Scholar
Patrinos, GP, Giardine, B, Riemer, C, et al. Improvements in the HbVar database of human hemoglobin variants and thalassemia mutations for population and sequence variation studies. Nucl Acids Res. 2004;32:D537–541. http://globin.cse.psu.edu/hbvar/menu.htmlGoogle Scholar
Thein, SL. The molecular basis of β-thalassemia. In: Weatherall, DJ, Schechter, AN, Nathan, DG, eds. Hemoglobin and Its Diseases. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2013:159182.Google Scholar
Verhovsek, MM, Shah, NR, Wilcox, I, et al. Severe fetal and neonatal hemolytic anemia due to a 198 kb deletion removing the complete β-globin gene cluster. Pediatr Blood Cancer. 2012; 59:941944.Google Scholar
Olivieri, NF. The β-Thalassemias. N Engl J Med. 1999; 341:99109.Google Scholar
Krishnamurti, L, Chui, DHK, Dallaire, M, et al. Co-inheritance of α-thalassemia-1 and hemoglobin E/β[0]-thalassemia: important implications for neonatal screening and genetic counseling. J Pediatr. 1998; 132:863865.Google Scholar
Luo, H-Y, Chui, DHK. Diverse haematological phenotypes of β-thalassemia carriers. Ann N Y Acad Sci. 2016; 1368:4955.Google Scholar
Cunningham, MJ, Macklin, EA, Neufeld, EJ, et al. Complications of β-thalassemia major in North America. Blood. 2004; 104:3439.Google Scholar
Rund, D, Rachmilewitz, EA. β-Thalassemia. N Engl J Med. 2005; 353:11351146.Google Scholar
Rachmilewitz, EA, Giardina, PJ. How I treat thalassemia. Blood. 2011; 118:34793488.Google Scholar
Higgs, DR, Engel, JD, Stamatoyannopoulos, G. Thalassemia. Lancet. 2012; 379:373383.Google Scholar
Centers for Disease Control and Prevention. Advisory Committee on Immunization Practices Recommended Immunization Schedules for Persons Aged 0 Through 18 Years and Adults Aged 19 Years and Older—United States, 2013. MMWR. 2013; 62(Suppl 1).Google Scholar
Verhovsek, M, McFarlane, A. Abnormalities in red blood cells. In: McKean, S, ed. Principles and Practice of Hospital Medicine, 1st ed. McGraw-Hill Professional; 2012.Google Scholar
Sabloff, M, Chandy, M, Wang, Z, et al. HLA-matched sibling bone marrow transplantation for β-thalassemia major. Blood. 2011; 117:17451750.Google Scholar
Locatelli, F, Kabbara, N, Ruggeri, A, et al. Outcome of patients with hemoglobinopathies given either cord blood or bone marrow transplantation from an HLA-identical sibling. Blood. 2013; 122:10721078.Google Scholar
Musallam, KM, Taher, AT, Cappellini, MD, et al. Clinical experience with fetal hemoglobin induction therapy in patients with β-thalassemia. Blood. 2013; 121:21992212.CrossRefGoogle ScholarPubMed
Canver, MC, Orkin, SH. Customizing the genome as therapy for the β-hemoglobinopathies. Blood. 2016; 127:25362545.Google Scholar
Thompson, AA, Kwiatkowski, J, Rasko, J, et al. Lentiglobin gene therapy for transfusion-dependent β-thalassemia: update from the Northstar Hgb-204 phase 1/2 clinical study. Blood. 2016; 128:Abstract 1175.CrossRefGoogle Scholar
Thompson, AA, Kim, HY, Singer, ST, et al. Pregnancy outcomes in women with thalassemia in North America and the UK. Am J Hematol. 2013; 88:771773.Google Scholar
Cao, A, Kan, YW. The prevention of thalassemia. In: Weatherall, DJ, Schechter, AN, Nathan, DG, eds. Hemoglobin and Its Diseases. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2013:285299.Google Scholar
Hvistendahl, M. China heads off deadly blood disorder. Science. 2013; 340:677678.CrossRefGoogle ScholarPubMed
Taher, AT, Musallam, KM, Cappellini, MD, et al. Optimal management of β thalassaemia intermedia. Br J Haematol. 2011; 152:512523.Google Scholar
Fucharoen, S, Weatherall, DJ. The hemoglobin E thalassemias. In: Hemoglobin and Its Diseases. Weatherall, DJ, Schechter, AN, Nathan, DG, eds. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2013:229243.Google Scholar
Cavazzana-Calvo, M, Payen, E, Negre, O, et al. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassemia. Nature. 2010; 467:318322.CrossRefGoogle Scholar
Chui, DHK, Fucharoen, S, Chan, V. Hemoglobin H disease: not necessarily a benign disorder. Blood. 2003; 101:791800.CrossRefGoogle Scholar
Chen, FE, Ooi, C, Ha, SY, et al. Genetic and clinical features of hemoglobin H disease in Chinese patients. N Engl J Med. 2000; 343:544550.Google Scholar
Lal, A, Goldrich, ML, Haines, DA, et al. Heterogeneity of hemoglobin H disease in childhood. N Engl J Med. 2011; 364:710718.CrossRefGoogle ScholarPubMed
Tongsong, T, Srisupundit, K, Luewan, S. Outcomes of pregnancies affected by hemoglobin H disease. Int J Gynaecol Obstet. 2009; 104:206208.Google Scholar
Lorey, F, Charoenkwan, P, Witkowska, HE, et al. Hb H hydrops foetalis syndrome: a case report and review of literature. Br J Haematol. 2001; 115:7278.Google Scholar
Higgs, DR, Buckle, VJ, Gibbons, R, Steensma, D. Unusual types of α thalassemia. In: Disorders of Hemoglobin Genetics, Pathophysiology, and Clinical Management, 2nd ed. Steinberg, MH, Forget, BG, Higgs, DR, Weatherall, DJ, Eds. Cambridge: Cambridge University Press; 2009:296320.Google Scholar
Steensma, DP, Gibbons, RJ, Higgs, DR. Acquired α-thalassemia in association with myelodysplastic syndrome and other hematologic malignancies. Blood. 2005; 105:443452.Google Scholar
Benz, EJ Jr., Wu, CC, Sohani, AR. Case records of the Massachusetts General Hospital. Case 25-2011. A 62-year-old woman with anemia and paraspinal masses. N Engl J Med. 2011; 365:648658.CrossRefGoogle ScholarPubMed
Chui, DHK, Waye, JS. Hydrops fetalis caused by α-thalassemia: an emerging health care problem. Blood. 1998; 91:22132222.CrossRefGoogle ScholarPubMed
Lau, Y-L, Chan, L-C, Chan, Y-YA, et al. Prevalence and genotypes of α- and β-thalassemias in Hong Kong: implications for population screening. N Engl J Med. 1997; 336:12981301.Google Scholar
Peng, CT, Liu, SC, Peng, YC, et al. Distribution of thalassemias and associated hemoglobinopathies identified by prenatal diagnosis in Taiwan. Blood Cells Mol Dis. 2013; 51:138141.CrossRefGoogle ScholarPubMed
Songdej, D, Babbs, C, Higgs, DR, et al. An international registry of survivors with Hb Bart’s hydrops fetalis syndrome. Blood. 2017; 129:12511259.Google Scholar
Leung, KY, Cheong, KB, Lee, CP, et al. Ultrasonographic prediction of homozygous α[0]-thalassemia using placental thickness, fetal cardiothoracic ratio and middle cerebral artery Doppler: alone or in combination? Ultrasound Obstet Gynecol. 2010; 35:149154.Google Scholar

References

Aslinia, F, Mazza, JJ, Yale, SH. Megaloblastic anemia and other causes of macrocytosis. Clin Med Res. 2006; 3:236241.Google Scholar
Kaferle, JK, Strzoda, CE. Evaluation of macrocytosis. Am Fam Phys. 2009; 79:203208.Google Scholar
Quadros, EV. Advances in the understanding of cobalamin assimilation and metabolism. Br J Haematol. 2010; 148:195204.Google Scholar
Andrès, E, Affenberger, S, Vinzio, S, et al. Food-cobalamin malabsorption in elderly patients: clinical manifestations and treatment. Am J Med. 2005; 118:11541159.Google Scholar
Neumann, WL, Coss, E, Rugge, M, Genta, RM. Autoimmune atrophic gastritis-pathogenesis, pathology and management. Nat Rev Gastroenterol Hepatol. 2013; 10:529540.Google Scholar
Michels, AW, Gottlieb, PA. Autoimmune polyglandular syndromes. Nat Rev Endocrinol. 2010; 6:270277.Google Scholar
Scalabrino, G, Peracchi, M. New insights into the pathophysiology of cobalamin deficiency. Trends Mol Med. 2006; 12:247254.Google Scholar
Vannella, L, Lahner, E, Osborn, J, Annibale, B. Systematic review: gastric cancer incidence in pernicious anaemia. Aliment Pharmacol Ther. 2013; 37:375382.Google Scholar
Annibale, B, Lahner, E, Fave, GD. Diagnosis and management of pernicious anemia. Curr Gastroenterol Rep. 2011; 13:518524.Google Scholar
Stabler, SP. Vitamin B12 deficiency. N Engl J Med. 2013; 368:149160.Google Scholar
Kaferle, J, Strzoda, CE. Evaluation of macrocytosis. Am Fam Physician. 2009; 79:203208.Google Scholar
Morgan, MY, Camilo, ME, Luck, W, et al. Macrocytosis in alcohol-related liver disease: its value for screening. Clin Lab Haematol. 1981; 3:3544.Google Scholar
Garcia-Pachon, E, Padilla-Navas, I. Red cell macrocytosis in COPD patients without respiratory insufficiency: a brief report. Respir Med. 2007; 101:349352.Google Scholar
Latvala, J, Parkkila, S, Niemelä, O. Excess alcohol consumption is common in patients with cytopenia: studies in blood and bone marrow cells. Alcohol Clin Exp Res. 2004; 28:619624.Google Scholar
Sims, EG. Hypothyroidism causing macrocytic anemia unresponsive to B12 and folate. J Natl Med Assoc. 1983; 75:429431.Google Scholar

References

Hassell, KL. Population estimates of sickle cell disease in the U.S. American Journal of Preventive Medicine. 2010;38(4 Suppl):S512–521.Google Scholar
Hofrichter, J. Kinetics of sickle hemoglobin polymerization. III. Nucleation rates determined from stochastic fluctuations in polymerization progress curves. Journal of Molecular Biology. 1986;189(3):553571.Google Scholar
Steinberg, MH. Genetic etiologies for phenotypic diversity in sickle cell anemia. The Scientific World Journal. 2009;9:4667.CrossRefGoogle ScholarPubMed
Ballas, SK. Pathophysiology and principles of management of the many faces of the acute vaso-occlusive crisis in patients with sickle cell disease. European Journal of Haematology. 2014.Google Scholar
Ballas, SK, Gupta, K, Adams-Graves, P. Sickle cell pain: a critical reappraisal. Blood. 2012;120(18):36473656.Google Scholar
Latremoliere, A, Woolf, CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. The Journal of Pain: Official Journal of the American Pain Society. 2009;10(9):895926.Google Scholar
Woolf, CJ. Central sensitization: uncovering the relation between pain and plasticity. Anesthesiology. 2007;106(4):864867.Google Scholar
Kohli, DR, Li, Y, Khasabov, SG, Gupta, P, Kehl, LJ, Ericson, ME, et al. Pain-related behaviors and neurochemical alterations in mice expressing sickle hemoglobin: modulation by cannabinoids. Blood. 2010;116(3):456465.Google Scholar
Davies, SC, Luce, PJ, Win, AA, Riordan, JF, Brozovic, M. Acute chest syndrome in sickle-cell disease. Lancet. 1984;1(8367):3638.Google Scholar
Vichinsky, EP, Styles, LA, Colangelo, LH, Wright, EC, Castro, O, Nickerson, B. Acute chest syndrome in sickle cell disease: clinical presentation and course. Cooperative study of sickle cell disease. Blood. 1997;89(5):17871792.Google Scholar
Gladwin, MT, Sachdev, V, Jison, ML, Shizukuda, Y, Plehn, JF, Minter, K, et al. Pulmonary hypertension as a risk factor for death in patients with sickle cell disease. The New England Journal of Medicine. 2004;350(9):886895.Google Scholar
Ataga, KI, Moore, CG, Jones, S, Olajide, O, Strayhorn, D, Hinderliter, A, et al. Pulmonary hypertension in patients with sickle cell disease: a longitudinal study. British Journal of Haematology. 2006;134(1):109115.Google Scholar
Fonseca, GH, Souza, R, Salemi, VM, Jardim, CV, Gualandro, SF. Pulmonary hypertension diagnosed by right heart catheterisation in sickle cell disease. The European Respiratory Journal. 2012;39(1):112118.Google Scholar
Kato, GJ, Martyr, S, Blackwelder, WC, Nichols, JS, Coles, WA, Hunter, LA, et al. Levels of soluble endothelium-derived adhesion molecules in patients with sickle cell disease are associated with pulmonary hypertension, organ dysfunction, and mortality. British Journal of Haematology. 2005;130(6):943953.Google Scholar
Moser, FG, Miller, ST, Bello, JA, Pegelow, CH, Zimmerman, RA, Wang, WC, et al. The spectrum of brain MR abnormalities in sickle-cell disease: a report from the Cooperative Study of Sickle Cell Disease. AJNR American Journal of Neuroradiology. 1996;17(5):965972.Google Scholar
Pegelow, CH, Macklin, EA, Moser, FG, Wang, WC, Bello, JA, Miller, ST, et al. Longitudinal changes in brain magnetic resonance imaging findings in children with sickle cell disease. Blood. 2002;99(8):30143018.Google Scholar
Berkelhammer, LD, Williamson, AL, Sanford, SD, Dirksen, CL, Sharp, WG, Margulies, AS, et al. Neurocognitive sequelae of pediatric sickle cell disease: a review of the literature. Child Neuropsychology: A Journal on Normal and Abnormal Development in Childhood and Adolescence. 2007;13(2):120131.Google Scholar
Kral, MC, Brown, RT, Connelly, M, Cure, JK, Besenski, N, Jackson, SM, et al. Radiographic predictors of neurocognitive functioning in pediatric sickle cell disease. Journal of Child Neurology. 2006;21(1):3744.Google Scholar
Steen, RG, Xiong, X, Mulhern, RK, Langston, JW, Wang, WC. Subtle brain abnormalities in children with sickle cell disease: relationship to blood hematocrit. Annals of Neurology. 1999;45(3):279286.Google Scholar
Steen, RG, Miles, MA, Helton, KJ, Strawn, S, Wang, W, Xiong, X, et al. Cognitive impairment in children with hemoglobin SS sickle cell disease: relationship to MR imaging findings and hematocrit. AJNR American Journal of Neuroradiology. 2003;24(3):382389.Google Scholar
Iampietro, M, Giovannetti, T, Tarazi, R. Hypoxia and inflammation in children with sickle cell disease: implications for hippocampal functioning and episodic memory. Neuropsychology Review. 2014;24(2):252265.Google Scholar
Ohene-Frempong, K, Weiner, SJ, Sleeper, LA, Miller, ST, Embury, S, Moohr, JW, et al. Cerebrovascular accidents in sickle cell disease: rates and risk factors. Blood. 1998;91(1):288294.Google Scholar
Lebensburger, JD, Miller, ST, Howard, TH, Casella, JF, Brown, RC, Lu, M, et al. Influence of severity of anemia on clinical findings in infants with sickle cell anemia: analyses from the BABY HUG study. Pediatric Blood & Cancer. 2012;59(4):675678.Google Scholar
Goldberg, MF. Natural history of untreated proliferative sickle retinopathy. Archives of Ophthalmology. 1971;85(4):428437.Google Scholar
Pegelow, CH, Colangelo, L, Steinberg, M, Wright, EC, Smith, J, Phillips, G, et al. Natural history of blood pressure in sickle cell disease: risks for stroke and death associated with relative hypertension in sickle cell anemia. The American Journal of Medicine. 1997;102(2):171177.Google Scholar
Sarnaik, S, Slovis, TL, Corbett, DP, Emami, A, Whitten, CF. Incidence of cholelithiasis in sickle cell anemia using the ultrasonic gray-scale technique. The Journal of Pediatrics. 1980;96(6):10051008.Google Scholar
Emond, AM, Holman, R, Hayes, RJ, Serjeant, GR. Priapism and impotence in homozygous sickle cell disease. Archives of Internal Medicine. 1980;140(11):14341437.Google Scholar
Marouf, R, Gupta, R, Haider, MZ, Al-Wazzan, H, Adekile, AD. Avascular necrosis of the femoral head in adult Kuwaiti sickle cell disease patients. Acta Haematologica 2003;110(1):1115.Google Scholar
Charache, S, Terrin, ML, Moore, RD, Dover, GJ, Barton, FB, Eckert, SV, et al. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia. The New England Journal of Medicine. 1995;332(20):13171322.Google Scholar
Vichinsky, EP, Johnson, R, Lubin, BH. Multidisciplinary approach to pain management in sickle cell disease. The American Journal of Pediatric Hematology/Oncology. 1982;4(3):328333.Google Scholar
Hagmeyer, KO, Mauro, LS, Mauro, VF. Meperidine-related seizures associated with patient-controlled analgesia pumps. The Annals of Pharmacotherapy. 1993;27(1):2932.Google Scholar
The Management of Sickle Cell Disease. In: USDoHaH, ed. Services. 4th edition. National Institutes of Health, Bethesda, MD; 2004:5974.Google Scholar
Inturrisi, CE. Pharmacology of methadone and its isomers. Minerva Anestesiologica. 2005;71(7–8):435437.Google Scholar
McCance-Katz, EF. (R)-methadone versus racemic methadone: what is best for patient care? Addiction. 2011;106(4):687688.Google Scholar
Uprety, D, Baber, A, Foy, M. Ketamine infusion for sickle cell pain crisis refractory to opioids: a case report and review of literature. Annals of Hematology. 2014;93(5):769771.Google Scholar
Tawfic, QA, Faris, AS, Kausalya, R. The role of a low-dose ketamine-midazolam regimen in the management of severe painful crisis in patients with sickle cell disease. Journal of Pain and Symptom Management. 2014;47(2):334340.Google Scholar
Aygun, B, McMurray, MA, Schultz, WH, Kwiatkowski, JL, Hilliard, L, Alvarez, O, et al. Chronic transfusion practice for children with sickle cell anaemia and stroke. British Journal of haematology. 2009;145(4):524528.Google Scholar
Enninful-Eghan, H, Moore, RH, Ichord, R, Smith-Whitley, K, Kwiatkowski, JL. Transcranial Doppler ultrasonography and prophylactic transfusion program is effective in preventing overt stroke in children with sickle cell disease. The Journal of Pediatrics. 2010;157(3):479484.Google Scholar
Ancel, D, Amiot, X, Chaslin-Ferbus, D, Hagege, I, Garioud, A, Girot, R, et al. Treatment of chronic hepatitis C in sickle cell disease and thalassaemic patients with interferon and ribavirin. European Journal of Gastroenterology & Hepatology. 2009;21(7):726729.Google Scholar
Siegel, JF, Rich, MA, Brock, WA. Association of sickle cell disease, priapism, exchange transfusion and neurological events: ASPEN syndrome. The Journal of Urology. 1993;150(5 Pt 1):14801482.Google Scholar
Roy, NB et al. Interventions for chronic kidney disease in people with sickle cell disease. Cochrane Database Syst Rev. 2017, https://www.ncbi.nlm.nih.gov/pubmed/28672087.CrossRefGoogle ScholarPubMed
Wang, WC, Ware, RE, Miller, ST, Iyer, RV, Casella, JF, Minniti, CP, et al. Hydroxycarbamide in very young children with sickle-cell anaemia: a multicentre, randomised, controlled trial (BABY HUG). Lancet. 2011;377(9778):16631672.Google Scholar
Neumayr, LD, Aguilar, C, Earles, AN, Jergesen, HE, Haberkern, CM, Kammen, BF, et al. Physical therapy alone compared with core decompression and physical therapy for femoral head osteonecrosis in sickle cell disease. Results of a multicenter study at a mean of three years after treatment. Journal of Bone and Joint Surgery. 2006;88(12):25732582.Google Scholar
Platt, OS, Brambilla, DJ, Rosse, WF, Milner, PF, Castro, O, Steinberg, MH, et al. Mortality in sickle cell disease. Life expectancy and risk factors for early death. The New England Journal of Medicine. 1994;330(23):16391644.Google Scholar

Further Reading

Bunn, HF. Sickle hemoglobin and other hemoglobin mutants. In: Stamatoyannopoulos, G, Nienhuis, AW, Majerus, PO, et al., eds. The Molecular Basis of Blood Disease. 2nd ed. Philadelphia: WB Saunders; 1993: __.Google Scholar
Bunn, HF, Forget, BG. Hemoglobin: Molecular, Cellular and Clinical Aspects. Philadelphia: WB Saunders; 1985.Google Scholar
Cortazzo, JA, Lichtman, AD. Methemoglobinemia: A review and recommendations for management. J Cardiothorac Vasc Anesth. 2014; 28:1043.Google Scholar
Dickerson, RE, Geis, I. Hemoglobin: Structure, Function, Evolution, and Pathology. Menlo Park, CA: Benjamin-Cummings; 1983.Google Scholar
Ho, C, ed. Hemoglobin and Oxygen Binding. New York: Elsevier Biomedical; 1982.Google Scholar
Perutz, MF. Molecular anatomy, physiology, and pathology of hemoglobin. In: Stamatoyannopoulos, G, Nienhuis, AW, Leder, P, et al., eds. The Molecular Basis of Blood Diseases. Philadelphia: WB Saunders; 1987:127.Google Scholar
Smith, RP, Olson, MV. Drug-induced methemoglobinemia. Semin Hematol. 1973; 10:253.Google Scholar
Wright, RO, Lewander, WJ, Woolf, AD. Methemoglobinemia: Etiology, pharmacology, and clinical management. Ann Emerg Med. 1999; 34:646.Google Scholar

References

Sokol, RJ, Booker, DJ, Stamps, R. The pathology of autoimmune haemolytic anaemia. J Clin Pathol. 1992; 45(12): 10471052.Google Scholar
Sachs, UJ, et al. Does a negative direct antiglobulin test exclude warm autoimmune haemolytic anaemia? A prospective study of 504 cases. Br J Haematol. 2006; 132(5): 655656.CrossRefGoogle ScholarPubMed
Wheeler, CA, Calhoun, L, Blackall, DP. Warm reactive autoantibodies: clinical and serologic correlations. Am J Clin Pathol. 2004; 122(5): 680685.Google Scholar
Vos, GH, Petz, L, Fudenberg, HH. Specificity of acquired haemolytic anaemia autoantibodies and their serological characteristics. Br J Haematol. 1970; 19(1): 5766.Google Scholar
Garratty, G, Arndt, PA. An update on drug-induced immune hemolytic anemia. Immunohematology. 2007; 23(3): 105119.Google Scholar
Worlledge, SM, Carstairs, KC, Dacie, JV. Autoimmune haemolytic anaemia associated with alpha-methyldopa therapy. Lancet. 1966; 2(7455): 135139.Google Scholar
Garratty, G, Petz, LD. Drug-induced immune hemolytic anemia. Am J Med. 1975; 58(3): 398407.Google Scholar
Mueller-Eckhardt, C, Salama, A. Drug-induced immune cytopenias: a unifying pathogenetic concept with special emphasis on the role of drug metabolites. Transfus Med Rev. 1990;4(1): 6977.Google Scholar
Garratty, G, Arndt, PA. Positive direct antiglobulin tests and haemolytic anaemia following therapy with beta-lactamase inhibitor containing drugs may be associated with nonimmunologic adsorption of protein onto red blood cells. Br J Haematol. 1998; 100(4): 777783.Google Scholar
Leger, RM, Garratty, G. Evaluation of methods for detecting alloantibodies underlying warm autoantibodies. Transfusion. 1999;39(1): 1116.CrossRefGoogle ScholarPubMed
Lechner, K, Jäger, U. How I treat autoimmune hemolytic anemias in adults. Blood. 2010; 116(11): 18311838.Google Scholar
Murphy, S, LoBuglio, AF. Drug therapy of autoimmune hemolytic anemia. Semin Hematol. 1976; 13(4): 323334.Google Scholar
Gehrs, BC, Friedberg, RC. Autoimmune hemolytic anemia. Am J Hematol. 2002; 69(4): 258271.Google Scholar
Akpek, G, McAneny, D, Weintraub, L. Comparative response to splenectomy in Coombs-positive autoimmune hemolytic anemia with or without associated disease. Am J Hematol. 1999; 61(2): 98102.Google Scholar
Atkinson, JP, Schreiber, AD, Frank, MM. Effects of corticosteroids and splenectomy on the immune clearance and destruction of erythrocytes. J Clin Invest. 1973; 52(6): 15091517.Google Scholar
Casaccia, M, et al. Laparoscopic splenectomy for hematologic diseases: a preliminary analysis performed on the Italian Registry of Laparoscopic Surgery of the Spleen (IRLSS). Surg Endosc. 2006; 20(8): 12141220.Google Scholar
Ikeda, M, et al. High incidence of thrombosis of the portal venous system after laparoscopic splenectomy: a prospective study with contrast-enhanced CT scan. Ann Surg. 2005; 241(2): 208216.Google Scholar
Advisory Committee on Immunization Practices (ACIP) recommended immunization schedules for persons aged 0 through 18 years and adults aged 19 years and older–United States, 2013. MMWR Surveill Summ. 2013(62 Suppl 1): 1.Google Scholar
D’Arena, G, et al. Rituximab therapy for chronic lymphocytic leukemia-associated autoimmune hemolytic anemia. Am J Hematol. 2006; 81(8): 598602.Google Scholar
Bussone, G, et al. Efficacy and safety of rituximab in adults’ warm antibody autoimmune haemolytic anemia: retrospective analysis of 27 cases. Am J Hematol. 2009; 84(3): 153157.Google Scholar
Dierickx, D, et al. Rituximab in auto-immune haemolytic anaemia and immune thrombocytopenic purpura: a Belgian retrospective multicentric study. J Intern Med. 2009; 266(5):484491.Google Scholar
Narat, S, et al. Rituximab in the treatment of refractory autoimmune cytopenias in adults. Haematologica. 2005; 90(9):12731274.Google Scholar
Anderson, D, et al. Guidelines on the use of intravenous immune globulin for hematologic conditions. Transfus Med Rev. 2007; 21(2 Suppl 1):S9–56.Google Scholar
Gertz, MA. Cold agglutinin disease and cryoglobulinemia. Clin Lymphoma. 2005; 5(4):290293.Google Scholar
Bessman, JD, Banks, D. Spurious macrocytosis, a common clue to erythrocyte cold agglutinins. Am J Clin Pathol. 1980; 74(6):797800.Google Scholar
Rosse, WF, Adams, JP. The variability of hemolysis in the cold agglutinin syndrome. Blood. 1980; 56(3):409–16.CrossRefGoogle ScholarPubMed
Feizi, T. Monotypic cold agglutinins in infection by mycoplasma pneumoniae. Nature. 1967; 215(5100):540542.Google Scholar
Horwitz, CA, et al. Cold agglutinins in infectious mononucleosis and heterophil-antibody-negative mononucleosis-like syndromes. Blood. 1977; 50(2):195202.Google Scholar
Swiecicki, PL, Hegerova, LT, Gertz, MA. Cold agglutinin disease. Blood. 2013; 122(7):11141121.Google Scholar
Nydegger, UE, Kazatchkine, MD, Miescher, PA. Immunopathologic and clinical features of hemolytic anemia due to cold agglutinins. Semin Hematol. 1991; 28(1):6677.Google Scholar
Jaffe, CJ, Atkinson, JP, Frank, MM. The role of complement in the clearance of cold agglutinin-sensitized erythrocytes in man. J Clin Invest. 1976; 58(4):942949.Google Scholar
Mickley, H, Sorensen, PG. Immune haemolytic anaemia associated with ampicillin dependent warm antibodies and high titre cold agglutinins in a patient with Mycoplasma pneumonia. Scand J Haematol. 1984; 32(3):323326.Google Scholar
Ulvestad, E. Paradoxical haemolysis in a patient with cold agglutinin disease. Eur J Haematol. 1998; 60(2):93100.Google Scholar
Berentsen, S, et al. High response rate and durable remissions following fludarabine and rituximab combination therapy for chronic cold agglutinin disease. Blood. 2010; 116(17):31803184.Google Scholar
Berentsen, S, et al. Rituximab for primary chronic cold agglutinin disease: a prospective study of 37 courses of therapy in 27 patients. Blood. 2004; 103(8):29252928.Google Scholar
Berentsen, S, et al. Primary chronic cold agglutinin disease: a population based clinical study of 86 patients. Haematologica. 2006; 91(4):460466.Google Scholar
Schollkopf, C, et al. Rituximab in chronic cold agglutinin disease: a prospective study of 20 patients. Leuk Lymphoma. 2006; 47(2):253260.Google Scholar
Ghielmini, M, et al. Effect of single-agent rituximab given at the standard schedule or as prolonged treatment in patients with mantle cell lymphoma: a study of the Swiss Group for Clinical Cancer Research (SAKK). J Clin Oncol. 2005; 23(4):705711.Google Scholar
Hoppe, B, et al. Response to intravenous immunoglobulin G in an infant with immunoglobulin A-associated autoimmune haemolytic anaemia. Vox Sang. 2004; 86(2):151153.Google Scholar
Geurs, F, et al. Successful plasmapheresis in corticosteroid-resistant hemolysis in infectious mononucleosis: role of autoantibodies against triosephosphate isomerase. Acta Haematol. 1992; 88(2–3):142146.Google Scholar
Berentsen, S. How I manage cold agglutinin disease. Br J Haematol. 2011; 153(3):309317.CrossRefGoogle Scholar
Heddle, NM. Acute paroxysmal cold hemoglobinuria. Transfus Med Rev. 1989; 3(3):219229.Google Scholar
Sivakumaran, M, et al. Paroxysmal cold haemoglobinuria caused by non-Hodgkin’s lymphoma. Br J Haematol. 1999; 105(1):278279.Google Scholar
Ries, CA, et al. Paroxysmal cold hemoglobinuria: report of a case with an exceptionally high thermal range Donath-Landsteiner antibody. Blood. 1971; 38(4):491499.Google Scholar
Rausen, AR, et al. Compatible transfusion therapy for paroxysmal cold hemoglobinuria. Pediatrics. 1975; 55(2):275278.Google Scholar
Koppel, A, et al. Rituximab as successful therapy in a patient with refractory paroxysmal cold hemoglobinuria. Transfusion. 2007; 47(10):19021904.Google Scholar
Gregory, GP, et al. Failure of eculizumab to correct paroxysmal cold hemoglobinuria. Ann Hematol. 2011; 90(8):989990.Google Scholar
Schrier, SL. Clinical Features and Diagnosis of Autoimmune Hemolytic Anemia: Warm Agglutinins. UpToDate; 2013. Retrieved April 7, 2014, from www.uptodate.com/contents/clinical-features-and-diagnosis-of-autoimmune-hemolytic-anemia-warm-agglutinins?source=search_result&search=autoimmune+hemolytic+anemia&selectedTitle=1~128.Google Scholar
Lichtman, MA, Williams, WJ. Williams hematology. 7th ed. New York: McGraw-Hill, Medical Pub. Division; 2006.Google Scholar
Kauke, T, Reininger, AJ. Images in clinical medicine. Livedo reticularis and cold agglutinins. N Engl J Med. 2007; 356(3):284.Google Scholar

References

Petz, LD GG. Immune Hemolytic Anemias. 2nd ed. Philadelphia: Churchill Livingstone; 2004.Google Scholar
Ahrens, N, Genth, R, Kiesewetter, H, Salama, A. Misdiagnosis in patients with diclofenac-induced hemolysis: new cases and a concise review. Am J Hematol. 2006; 81(2):128131.Google Scholar
Ahrens, N, Genth, R, Salama, A. Belated diagnosis in three patients with rifampicin-induced immune haemolytic anaemia. Brit J Haematol. 2002; 117(2):441443.Google Scholar
Snapper, I, Marks, D, Schwartz, L, Hollander, L. Hemolytic anemia secondary to mesantoin. Ann Intern Med. 1953; 39(3):619623.Google Scholar
Arndt, PA, Garratty, G. The changing spectrum of drug-induced immune hemolytic anemia. Semin Hematol. 2005; 42(3):137144.Google Scholar
Salama, A, Mueller-Eckhardt, C. The role of metabolite-specific antibodies in nomifensine-dependent immune hemolytic anemia. N Engl J Med. 1985; 313(8):469474.Google Scholar
Garratty, G. Immune hemolytic anemia associated with drug therapy. Blood Rev. 2010; 24(4–5):143150.Google Scholar
Johnson, ST, Fueger, JT, Gottschall, JL. One center’s experience: the serology and drugs associated with drug-induced immune hemolytic anemia—a new paradigm. Transfusion. 2007; 47(4):697702.Google Scholar
Kirtland, HH, Mohler, DN, Horwitz, DA. Methyldopa inhibition of suppressor-lymphocyte function. N Engl J Med. 1980; 302(15):825832.Google Scholar
Pierce, A, Nester, T. Pathology consultation on drug-induced hemolytic anemia. Am J Clin Pathol. 2011; 136(1):712.Google Scholar
Carstairs, KC, Breckenridge, A, Dollery, CT, Worlledge, S. Incidence of a positive direct Coombs test in patients on α-methyldopa. Lancet. 1966; 288(7455):133135.Google Scholar
Spath, P, Garratty, G, Petz, L. Studies on the immune response to penicillin and cephalothin in humans: ii. immunohematologic reactions to cephalothin administration. J Immunol. 1971; 107(3):860869.Google Scholar
Broadberry, RE, Farren, TW, Bevin, SV, Kohler, JA, Yates, S, Skidmore, I, et al. Tazobactam-induced haemolytic anaemia, possibly caused by non-immunological adsorption of IgG onto patient’s red cells. Transf Med. 2004; 14(1):5357.Google Scholar
Arndt, PA, Leger, RM, Garratty, G. Positive direct antiglobulin tests and haemolytic anaemia following therapy with the beta-lactamase inhibitor, tazobactam, may also be associated with non-immunologic adsorption of protein onto red blood cells. Vox Sanguinis. 2003; 85(1):53.Google Scholar
Arndt, P, Garratty, G, Isaak, E, Bolger, M, Lu, Q. Positive direct and indirect antiglobulin tests associated with oxaliplatin can be due to drug antibody and/or drug-induced nonimmunologic protein adsorption. Transfusion. 2009; 49(4):711718.Google Scholar
Arndt, PA, Leger, RM, Garratty, G. Serologic characteristics of ceftriaxone antibodies in 25 patients with drug-induced immune hemolytic anemia. Transfusion. 2012; 52(3):602612.Google Scholar
Kapur, G, Valentini, RP, Mattoo, TK, Warrier, I, Imam, AA. Ceftriaxone induced hemolysis complicated by acute renal failure. Pediatr Blood Cancer. 2008; 50(1):139142.Google Scholar
Garratty, G. Drug-induced immune hemolytic anemia. Hematology Am Soc Hematol Educ Program. 2009:73–79.Google Scholar
Viraraghavan, R, Chakravarty, AG, Soreth, J. Cefotetan-induced haemolytic anaemia. A review of 85 cases. Adverse Drug Reac Toxicol Rev. 2002; 21(1–2):101107.Google Scholar
Croft, JD Jr., Swisher, SN Jr., Gilliland, BC, Bakemeier, RF, Leddy, JP, Weed, RI. Coombs’-test positivity induced by drugs. Mechanisms of immunologic reactions and red cell destruction. Ann Intern Med. 1968; 68(1):176187.Google Scholar

References

Gallagher, PG. Abnormalities of the erythrocyte membrane. Pediatr Clin North Am. 2013; 60(6):13491362.Google Scholar
Perrotta, S, Gallagher, PG, Mohandas, N. Hereditary spherocytosis. Lancet. 2008; 372(9647):14111426.Google Scholar
Eber, S, Lux, SE. Hereditary spherocytosis – defects in proteins that connect the membrane skeleton to the lipid bilayer. Semi Hematol. 2004; 41(2):118141.Google Scholar
Gallagher, PG. Update on the clinical spectrum and genetics of red blood cell membrane disorders. Curr Hematol Rep. 2004; 3(2):8591.Google Scholar
Miraglia del Giudice, E, Francese, M, Nobili, B, et al. High frequency of de novo mutations in ankyrin gene (ANK1) in children with hereditary spherocytosis. J Pediatr. 1998; 132(1):117120.Google Scholar
Miraglia del Giudice, E, Lombardi, C, Francese, M, et al. Frequent de novo monoallelic expression of beta-spectrin gene (SPTB) in children with hereditary spherocytosis and isolated spectrin deficiency. Br J Haematol. 1998; 101(2):251254.Google Scholar
Mohandas, N, Gallagher, PG. Red cell membrane: past, present, and future. Blood. 2008; 112(10):39393948.Google Scholar
Lusher, JM, Barnhart, MI. The role of the spleen in the pathoophysiology of hereditary spherocytosis and hereditary elliptocytosis. Am J Pediatr Hematol Oncol. 1980; 2:3139.Google Scholar
Safeukui, I, Buffet, PA, Deplaine, G, et al. Quantitative assessment of sensing and sequestration of spherocytic erythrocytes by the human spleen. Blood. 2012; 120(2):424430.Google Scholar
Christensen, RD, Yaish, HM, Gallagher, PG. A pediatrician’s practical guide to diagnosing and treating hereditary spherocytosis in neonates. Pediatrics. 2015; 135(6):11071114.Google Scholar
Eber, SW, Armbrust, R, Schroter, W. Variable clinical severity of hereditary spherocytosis: relation to erythrocytic spectrin concentration, osmotic fragility, and autohemolysis. J Pediatr. 1990; 117(3):409416.Google Scholar
Rocha, S, Costa, E, Catarino, C, et al. Erythropoietin levels in the different clinical forms of hereditary spherocytosis. Br J Haematol. 2005; 131(4):534542.Google Scholar
Agre, P, Asimos, A, Casella, JF, McMillan, C. Inheritance pattern and clinical response to splenectomy as a reflection of erythrocyte spectrin deficiency in hereditary spherocytosis. N Engl J Med. 1986; 315(25):15791583.Google Scholar
Agre, P, Casella, JF, Zinkham, WH, McMillan, C, Bennett, V. Partial deficiency of erythrocyte spectrin in hereditary spherocytosis. Nature. 1985; 314(6009):380383.Google Scholar
Agre, P, Orringer, EP, Bennett, V. Deficient red-cell spectrin in severe, recessively inherited spherocytosis. N Engl J Med. 1982; 306(19):11551161.Google Scholar
Young, NS. Hematologic manifestations and diagnosis of parvovirus B19 infections. Clin Adv Hematol Oncol. 2006; 4(12):908910.Google Scholar
Lefrere, JJ, Courouce, AM, Girot, R, Bertrand, Y, Soulier, JP. Six cases of hereditary spherocytosis revealed by human parvovirus infection. Br J Haematol. 1986; 62(4):653658.Google Scholar
Delamore, IW, Richmond, J, Davies, SH. Megaloblastic anaemia in congenital spherocytosis. Br Med J. 1961; 1(5225):543545.Google Scholar
Smith, J, Rahilly, M, Davidson, K. Extramedullary haematopoiesis secondary to hereditary spherocytosis. Br J Haematol. 2011; 154(5):543.Google Scholar
Rabhi, S, Benjelloune, H, Meziane, M, et al. Hereditary spherocytosis with leg ulcers healing after splenectomy. South Med J. 2011; 104(2):150152.Google Scholar
Guarnone, R, Centenara, E, Zappa, M, Zanella, A, Barosi, G. Erythropoietin production and erythropoiesis in compensated and anaemic states of hereditary spherocytosis. Br J Haematol. 1996; 92(1):150154.Google Scholar
Brugnara, C, Mohandas, N. Red cell indices in classification and treatment of anemias: from M.M. Wintrobes’s original 1934 classification to the third millennium. Curr Opin Hematol. 2013; 20(3):222230.Google Scholar
Michaels, LA, Cohen, AR, Zhao, H, Raphael, RI, Manno, CS. Screening for hereditary spherocytosis by use of automated erythrocyte indexes. J Pediatr. 1997; 130(6):957960.Google Scholar
Cynober, T, Mohandas, N, Tchernia, G. Red cell abnormalities in hereditary spherocytosis: relevance to diagnosis and understanding of the variable expression of clinical severity. J Lab Clin Med. 1996; 128(3):259269.Google Scholar
Bolton-Maggs, PH, Langer, JC, Iolascon, A, Tittensor, P, King, MJ, General Haematology Task Force of the British Committee for Standards in H. Guidelines for the diagnosis and management of hereditary spherocytosis–2011 update. Br J Haematol. 2012; 156(1):3749.Google Scholar
Iolascon, A, Andolfo, I, Barcellini, W, et al. Recommendations for splenectomy in hereditary hemolytic anemias. Haematologica. 2017; 102(8):13041313.Google Scholar
Baird, RN, Macpherson, AI, Richmond, J. Red-blood-cell survival after splenectomy in congenital spherocytosis. Lancet. 1971; 2(7733):10601061.Google Scholar
Schilling, RF. Risks and benefits of splenectomy versus no splenectomy for hereditary spherocytosis – a personal view. Br J Haematol. 2009; 145(6):728732.Google Scholar
Crary, SE, Ramaciotti, C, Buchanan, GR. Prevalence of pulmonary hypertension in hereditary spherocytosis. Am J Hematol. 2011; 86(12):E73–76.Google Scholar
Hayag-Barin, JE, Smith, RE, Tucker, FC Jr. Hereditary spherocytosis, thrombocytosis, and chronic pulmonary emboli: a case report and review of the literature. Am J Hematol. 1998; 57(1):8284.Google Scholar
Schilling, RF, Gangnon, RE, Traver, MI. Delayed adverse vascular events after splenectomy in hereditary spherocytosis. J Thromb Haemost. 2008; 6(8):12891295.Google Scholar
Casale, M, Perrotta, S. Splenectomy for hereditary spherocytosis: complete, partial or not at all? Expert Rev Hematol. 2011; 4(6):627635.Google Scholar
Schilling, RF. Risks and benefits of splenectomy versus no splenectomy for hereditary spherocytosis – a personal view. Br J Haematol. 2009; 145(6):728732.Google Scholar
Wood, JH, Partrick, DA, Hays, T, Sauaia, A, Karrer, FM, Ziegler, MM. Contemporary pediatric splenectomy: continuing controversies. Pediatr Surg Int. 2011; 27(11):11651171.Google Scholar
Rescorla, FJ, Engum, SA, West, KW, Tres Scherer, LR, 3rd, Rouse, TM, Grosfeld, JL. Laparoscopic splenectomy has become the gold standard in children. Am Surg. 2002; 68(3):297301.Google Scholar
Buesing, KL, Tracy, ET, Kiernan, C, et al. Partial splenectomy for hereditary spherocytosis: a multi-institutional review. J Pediatr Surg. 2011; 46(1):178183.Google Scholar
Guizzetti, L. Total versus partial splenectomy in pediatric hereditary spherocytosis: A systematic review and meta-analysis. Pediatr Blood Cancer. 2016; 63(10):17131722.Google Scholar
Grace, RF, Mednick, RE, Neufeld, EJ. Compliance with immunizations in splenectomized individuals with hereditary spherocytosis. Pediatr Blood Cancer. 2009; 52(7):865867.Google Scholar
Dhermy, D, Garbarz, M, Lecomte, MC, et al. Hereditary elliptocytosis: clinical, morphological and biochemical studies of 38 cases. Nouv Rev Fr Hematol. 1986; 28(3):129140.Google Scholar
Gallagher, PG. Hereditary elliptocytosis: spectrin and protein 4.1R. Semin Hematol. 2004; 41(2):142164.Google Scholar
Dhermy, D, Schrevel, J, Lecomte, MC. Spectrin-based skeleton in red blood cells and malaria. Curr Opin Hematol. 2007; 14(3):198202.Google Scholar
Glele-Kakai, C, Garbarz, M, Lecomte, MC, et al. Epidemiological studies of spectrin mutations related to hereditary elliptocytosis and spectrin polymorphisms in Benin. Br J Haematol. 1996; 95(1):5766.Google Scholar
Morrow, JS, Rimm, DL, Kennedy, SP, Cianci, CD, Sinard, JH, Weed, SA. Of membrane stability and mosaics: the spectrin cytoskeleton. In: Hoffman, J, Jamieson, J, eds. Handbook of Physiology. London: Oxford; 1997:485540.Google Scholar
Gaetani, M, Mootien, S, Harper, S, Gallagher, PG, Speicher, DW. Structural and functional effects of hereditary hemolytic anemia-associated point mutations in the alpha spectrin tetramer site. Blood. 2008; 111(12):57125720.Google Scholar
Ipsaro, JJ, Harper, SL, Messick, TE, Marmorstein, R, Mondragon, A, Speicher, DW. Crystal structure and functional interpretation of the erythrocyte spectrin tetramerization domain complex. Blood. 2010; 115(23):48434852.Google Scholar
Coetzer, T, Lawler, J, Prchal, JT, Palek, J. Molecular determinants of clinical expression of hereditary elliptocytosis and pyropoikilocytosis. Blood. 1987; 70(3):766772.Google Scholar
Coetzer, T, Palek, J, Lawler, J, et al. Structural and functional heterogeneity of alpha spectrin mutations involving the spectrin heterodimer self-association site: relationships to hematologic expression of homozygous hereditary elliptocytosis and hereditary pyropoikilocytosis. Blood. 1990; 75(11):22352244.Google Scholar
Gallagher, PG. Red cell membrane disorders. Hematology Am Soc Hematol Educ Program. 2005; 2005(1):1318.Google Scholar
Zarkowsky, HS, Mohandas, N, Speaker, CB, Shohet, SB. A congenital haemolytic anaemia with thermal sensitivity of the erythrocyte membrane. Br J Haematol. 1975; 29(4):537543.Google Scholar
Gallagher, PG. Disorders of red cell volume regulation. Curr Opin Hematol. 2013; 20(3):201207.Google Scholar
Andolfo, I, Russo, R, Gambale, A, Iolascon, A. New insights on hereditary erythrocyte membrane defects. Haematologica. 2016; 101(11):12841294.Google Scholar
Zarychanski, R, Schulz, VP, Houston, BL, et al. Mutations in the mechanotransduction protein PIEZO1 are associated with hereditary xerocytosis. Blood. 2012; 120(9):19081915.Google Scholar
Bruce, LJ, Robinson, HC, Guizouarn, H, et al. Monovalent cation leaks in human red cells caused by single amino-acid substitutions in the transport domain of the band 3 chloride-bicarbonate exchanger, AE1. Nat Genet. 2005; 37(11):12581263.Google Scholar
Guizouarn, H, Martial, S, Gabillat, N, Borgese, F. Point mutations involved in red cell stomatocytosis convert the electroneutral anion exchanger 1 to a non-selective cation conductance. Blood. 2007; 110(6):21582165.Google Scholar

References

Murray, CJ, Rosenfeld, LC, Lim, SS, Andrews, KG, Foreman, KJ, Haring, D, Fullman, N, Naghavi, M, Lozano, R, Lopez, AD. Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet. 2012; 379:413431.Google Scholar
McDevitt, M, Xie, J, Gordeuk, V, Bucala, R. The anemia of malaria infection: role of inflammatory cytokines. Curr Hematol Rep. 2004; 3:97106.Google Scholar
Haldar, K, Mohandas, N. Malaria, erythrocytic infection, and anemia. Hematology Am Soc Hematol Educ Program. 2009:87–93.Google Scholar
Jakeman, PH, Saul, A, Hogarth, WL, Collins, WE. Anaemia of acute malaria infections in non-immune patients primarily results from destruction of uninfected erythrocytes. Parasitology. 2004; 119:127133.Google Scholar
Waitumbi, J, Opollo, M, Muga, R, Misore, A, Stoute, J. Red cell surface changes and erythrophagocytosis in children with severe Plasmodium falciparum anemia. Blood. 2000;95:14811486.Google Scholar
Stoute, JA, Odindo, AO, Owuor, BO, Mibei, EK, Opollo, MO, Waitumbi, JN. Loss of red blood cell-complement regulatory proteins and increased levels of circulating immune complexes are associated with severe malarial anemia. J Infect Dis. 2003; 187:522525.Google Scholar
Weatherall, D, Kwiatkowski, D, Roberts, D. Hematologic manifestations of systemic disease in children of the developing world. In: Orkin, SH, Ginsburg, D, Nathan, DG, Look, TA, Fisher, DE, Lux, SE, editors, Nathan and Oski?s Hematology and Oncology of Infancy and Childhood, 8th edition, Amsterdam: Elsevier; 2008.Google Scholar
Wickramasinghe, S, Abdalla, S. Blood and bone marrow changes in malaria. Baillieres Best Pract Res Clin Haematol. 2003; 13:277299.Google Scholar
Abdalla, SH. Hematopoiesis in human malaria. Blood Cells. 1990; 16:401416.Google Scholar
Srichaikul, T, Wasanasomsithi, M, Poshyachinda, V, Panikbutr, N, Rabieb, T. Ferrokinetic studies and erythropoiesis in malaria. Arch Intern Med. 1969; 124:623628.Google Scholar
Biemba, G, Gordeuk, V, Thuma, P, Mabeza, GF, Weiss, G. Prolonged macrophage activation and persistent anemia in children with complicated malaria. Trop Med Int Health. 1998; 3:6065.Google Scholar
Das, B, Nanda, N, Rath, P, Satapathy, R, Das, D. Anaemia in acute Plasmodium falciparum malaria in children from the Orissa state, India. Ann Trop Med Parasitol. 1999; 93:109118.Google Scholar
Lamikanra, AA, Theron, M, Kooij, TW, Roberts, DJ. Hemozoin (malarial pigment) directly promotes apoptosis of erythroid precursors. PLoS One. 2009;4:e8446.Google Scholar
Kremsner, PG, Valim, C, Missinou, MA, Olola, C, Krishna, S, Issifou, S, Kombila, M, Bwanaisa, L, Mithwani, S, Newton, CR, Agbenyega, T, Pnder, M, Bojang, K, Wypij, D, Taylor, T. Prognostic value of circulating pigmented cells in African children with malaria. J Infect Dis. 2009; 199:142150.Google Scholar
Stevenson, MM, Riley, EM. Innate Immunity to Malaria. Nat Revs Immunol. 2004; 4:169180.Google Scholar
Yap, GS, Stevenson, MM. Inhibition of in vitro erythropoiesis by soluble mediators during Plasmodium chabaudi AS malaria: lack of a major role for interleukin-1, tumor necrosis factor-α, and γ-interferon. Infect Immun. 1994; 62:357362.Google Scholar
Kwiatkowski, D, Cannon, JG, Manogue, KR, Cerami, A, Dinarello, CA, Greenwood, BM. Tumour necrosis factor production in Falciparum malaria and its association with schizont rupture. Clin Exp Immunol. 1989; 77:361366.Google Scholar
Thuma, PE, van Dijk, J, Bucala, R, Debebe, Z, Nekhai, S, Kuddo, T, Nouraie, M, Weiss, G, Gordeuk, VR. Distinct clinical and immunologic profiles in severe malarial anemia and cerebral malaria in Zambia. J Infect Dis. 2011; 203:211219.Google Scholar
Looareesuwan, S, Merry, AH, Phillips, RE, Pleehachinda, R, Wattanagoon, Y, Ho, M, Charoenlarp, P, Warrell, DA, Weatherall, DJ. Reduced erythrocyte survival following clearance of malarial parasitaemia in Thai patients. Br J Haematol. 1987; 67:473478.Google Scholar
Nicolas, G, Chauvet, C, Viatte, L, Danan, JL, Bigard, X, Devaux, I, Beaumont, C, Kahn, A, Vaulont, S. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest. 2002; 110:10371044.Google Scholar
Burté, F, Brown, BJ, Orimadegun, AE, Ajetunmobi, WA, Afolabi, NK, Akinkunmi, F, Kowobari, O, Omokhodion, S, Osinusi, K, Akinbami, FO, Shokunbi, WA, Sodeinde, O, Fernandez-Reyes, D. Circulatory hepcidin is associated with the anti-inflammatory response but not with iron or anemic status in childhood malaria. Blood. 2013; 121:30163022.Google Scholar
Burchard, G, Radloff, P, Philipps, J, Nkeyi, M, Knobloch, J, Kremsner, P. Increased erythropoietin production in children with severe malarial anemia. Am J Trop Med Hyg. 1995; 53:547551.Google Scholar
Burgmann, H, Looareesuwan, S, Kapiotis, S, Viravan, C, Vanijanonta, S, Hollenstein, U, Wiesinger, E, Presterl, E, Winkler, S, Graninger, W. Serum levels of erythropoietin in acute Plasmodium falciparum malaria. Am J Trop Med Hyg. 1996; 54:280283.Google Scholar
Griffith, JW, Sun, T, McIntosh, MT, Bucala, R. Pure hemozoin is inflammatory in vivo and activates the NALP3 inflammasome via release of uric acid. J Immunol. 2009; 183:52085220.Google Scholar
Dodoo, D, Omer, FM, Todd, J, Akanmori, BD, Koram, KA, Riley, EM. Absolute levels and ratios of proinflammatory and anti-inflammatory cytokine production in vitro predict clinical immunity to Plasmodium falciparum malaria. J Infect Dis. 2002; 185:971979.Google Scholar
Mohan, K, Stevenson, MM. Interleukin-12 corrects severe anemia during blood-stage Plasmodium chabaudi AS in susceptible A/J mice. Exp Hematol. 1998; 26:4552.Google Scholar
Mcguire, W, Knight, JC, Hill, AVS, Allsopp, CEM, Greenwood, BM, Kwiatkowski, D. Severe malarial anemia and cerebral malaria are associated with different tumor necrosis factor promoter alleles. J Infect Dis. 1999; 179:287290.Google Scholar
McDevitt, MA, Xie, J, Shanmugasundaram, G, Griffith, J, Liu, A, McDonald, C, Thuma, P, Gordeuk, VR, Metz, CN, Mitchell, R, Keefer, J, David, J, Leng, L, Bucala, R. A critical role for the host mediator macrophage migration inhibitory factor in the pathogenesis of malarial anemia. J Exp Med. 2006; 203:11851196.Google Scholar
Zhong, XB, Leng, L, Beitin, A, Chen, R, McDonald, C, Hsiao, B, Jenison, RD, Kang, I, Park, SH, Lee, A, Gregersen, P, Thuma, P, Bray-Ward, P, Ward, DC, Bucala, R. Simultaneous detection of microsatellite repeats and SNPs in the macrophage migration inhibitory factor (MIF) gene by thin-film biosensor chips and application to rural field studies. Nucleic Acids Res. 2005;33:121129.Google Scholar
Awandare, GA, Martinson, JJ, Were, T, Ouma, C, Davenport, GC, Ong’echa, JM, Wang, WK, Leng, L, Ferrell, RE, Bucala, R, Perkins, DJ. MIF promoter polymorphisms and susceptibility to severe malarial anemia. J Infect Dis. 2009; 15:629637.Google Scholar
Jha, AN, Sundaradival, P, Pati, SS, Patra, PK, Thandaraj, K. Variations in ncRNA gene LOC284889 and MIF-794CATT repeats are associated with malaria susceptibility in Indian populations. Malar J. 2013;12:345353.Google Scholar
Published Reports of Delayed Hemolytic Anemia After Treatment with Artesunate for Severe Malaria – Worldwide, 2010–2012. Morb Mortal Wkly Rep. 2013;62(1):5–8.Google Scholar
Akinosoglou, KS, Solomou, EE, Gogos, CA. Malaria: a haematological disease. Hematology. 2012; 17:106114.Google Scholar
English, M, Ahmed, M, Ngando, C, Berkley, J, Ross, A. Blood transfusion for severe anaemia in children in a Kenyan hospital. Lancet. 2002; 359:494495.Google Scholar
van Genderen, PJ, Hesselink, DA, Bezemer, JM, Wismans, PJ, Overbosch, D. efficacy and safety of exchange transfusion as adjunct therapy for severe Plasmodium falciparum malaria in nonimmune travelers: a 10 year single-center experience with a standardized treatments protocol. Transfusion. 2010; 50:787794.Google Scholar
Nieuwenhuis, JA, Meertens, JH, Zijlstra, JG, Ligtenberg, JJ, Tulleken, JE, van der Werf, TS. Automated erythrocytapheresis in severe falciparum malaria: a critical appraisal. Acta Trop. 2006; 98:201206.Google Scholar

References

Zini, G, d’Onofrio, G, Briggs, C, Erber, W, Jou, JM, Lee, SH, et al. ICSH recommendations for identification, diagnostic value, and quantitation of schistocytes. Int J Labor Hematol. 2012; 34(2):107116.Google Scholar
Furlan, M, Robles, R, Galbusera, M, Remuzzi, G, Kyrle, PA, Brenner, B, et al. von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura and the hemolytic-uremic syndrome. N Engl J Med. 1998; 339(22):15781584.Google Scholar
Kremer Hovinga, JA, Vesely, SK, Terrell, DR, Lammle, B, George, JN. Survival and relapse in patients with thrombotic thrombocytopenic purpura. Blood. 2010; 115(8):15001511.Google Scholar
Coppo, P, Bengoufa, D, Veyradier, A, Wolf, M, Bussel, A, Millot, GA, et al. Severe ADAMTS13 deficiency in adult idiopathic thrombotic microangiopathies defines a subset of patients characterized by various autoimmune manifestations, lower platelet count, and mild renal involvement. Medicine (Baltimore). 2004; 83(4):233244.Google Scholar
Terrell, DR, Vesely, SK, Kremer Hovinga, JA, Lammle, B, George, JN. Different disparities of gender and race among the thrombotic thrombocytopenic purpura and hemolytic-uremic syndromes. Am J Hematol. 2010; 85(11):844847.Google Scholar
Terrell, DR, Williams, LA, Vesely, SK, Lammle, B, Hovinga, JA, George, JN. The incidence of thrombotic thrombocytopenic purpura-hemolytic uremic syndrome: all patients, idiopathic patients, and patients with severe ADAMTS-13 deficiency. J Thromb Haemost. 2005; 3(7):14321436.Google Scholar
Miller, DP, Kaye, JA, Shea, K, Ziyadeh, N, Cali, C, Black, C, et al. Incidence of thrombotic thrombocytopenic purpura/hemolytic uremic syndrome. Epidemiology. 2004; 15(2):208215.Google Scholar
Miyata, T, Kokame, K, Matsumoto, M, Fujimura, Y. ADAMTS13 activity and genetic mutations in Japan. Hamostaseologie. 2013; 33(2):131137.Google Scholar
Tarr, PI, Gordon, CA, Chandler, WL. Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet. 2005; 365(9464):10731086.Google Scholar
Frank, C, Werber, D, Cramer, JP, Askar, M, Faber, M, an der Heiden, M, et al. Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany. N Engl J Med. 2011; 365(19):17711780.Google Scholar
Lemaire, M, Fremeaux-Bacchi, V, Schaefer, F, Choi, M, Tang, WH, Le Quintrec, M, et al. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat Genet. 2013; 45(5):531536.Google Scholar
Taylor, CM, Machin, S, Wigmore, SJ, Goodship, TH, working party from the Renal Association tBCfSiH, the British Transplantation S. Clinical practice guidelines for the management of atypical haemolytic uraemic syndrome in the United Kingdom. Br J Haematol. 2010; 148(1):3747.Google Scholar
Lotta, LA, Garagiola, I, Palla, R, Cairo, A, Peyvandi, F. ADAMTS13 mutations and polymorphisms in congenital thrombotic thrombocytopenic purpura. Hum Mutat. 2010; 31(1):1119.Google Scholar
Inward, CD, Howie, AJ, Fitzpatrick, MM, Rafaat, F, Milford, DV, Taylor, CM. Renal histopathology in fatal cases of diarrhoea-associated haemolytic uraemic syndrome. British Association for Paediatric Nephrology. Pediatr Nephrol. 1997; 11(5):556559.Google Scholar
Taylor, CM, Chua, C, Howie, AJ, Risdon, RA, British Association for Paediatric N. Clinico-pathological findings in diarrhoea-negative haemolytic uraemic syndrome. Pediatr Nephrol. 2004; 19(4):419425.Google Scholar
Scully, M, Hunt, BJ, Benjamin, S, Liesner, R, Rose, P, Peyvandi, F, et al. Guidelines on the diagnosis and management of thrombotic thrombocytopenic purpura and other thrombotic microangiopathies. Br J Haematol. 2012; 158(3):323335.Google Scholar
Loirat, C, Fremeaux-Bacchi, V. Atypical hemolytic uremic syndrome. Orphanet J Rare Dis. 2011; 6:60.Google Scholar
Noris, M, Caprioli, J, Bresin, E, Mossali, C, Pianetti, G, Gamba, S, et al. Relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin J Am Soc Nephrol. 2010; 5(10):18441859.Google Scholar
Rieger, M, Mannucci, PM, Kremer Hovinga, JA, Herzog, A, Gerstenbauer, G, Konetschny, C, et al. ADAMTS13 autoantibodies in patients with thrombotic microangiopathies and other immunomediated diseases. Blood. 2005; 106(4):12621267.Google Scholar
Schwartz, J, Winters, JL, Padmanabhan, A, Balogun, RA, Delaney, M, Linenberger, ML, et al. Guidelines on the use of therapeutic apheresis in clinical practice-evidence-based approach from the Writing Committee of the American Society for Apheresis: the sixth special issue. J Clin Apher. 2013; 28(3):145284.Google Scholar
O’Brien, KL, Price, TH, Howell, C, Delaney, M. The use of 50% albumin/plasma replacement fluid in therapeutic plasma exchange for thrombotic thrombocytopenic purpura. J Clin Apher. 2013; 28(6):416421.Google Scholar
Zhan, H, Streiff, MB, King, KE, Segal, JB. Thrombotic thrombocytopenic purpura at the Johns Hopkins Hospital from 1992 to 2008: clinical outcomes and risk factors for relapse. Transfusion. 2010; 50(4):868874.Google Scholar
Westwood, JP, Webster, H, McGuckin, S, McDonald, V, Machin, SJ, Scully, M. Rituximab for thrombotic thrombocytopenic purpura: benefit of early administration during acute episodes and use of prophylaxis to prevent relapse. J Thromb Haemost. 2013; 11(3):481490.Google Scholar
Hie, M, Gay, J, Galicier, L, Provot, F, Presne, C, Poullin, P, et al. Preemptive rituximab infusions after remission efficiently prevent relapses in acquired thrombotic thrombocytopenic purpura: experience of the French Thrombotic Microangiopathies Reference Center. Blood. 2014; 124(2):204210.Google Scholar
Bharat, A, Xie, F, Baddley, JW, Beukelman, T, Chen, L, Calabrese, L, et al. Incidence and risk factors for progressive multifocal leukoencephalopathy among patients with selected rheumatic diseases. Arthr Care Res. 2012; 64(4):612615.Google Scholar
Lunel-Fabiani, F, Masson, C, Ducancelle, A. Systemic diseases and biotherapies: understanding, evaluating, and preventing the risk of hepatitis B reactivation. Joint, bone, spine: revue du rhumatisme. Joint Bone Spine. 2014; 81(6):478484.Google Scholar
Shortt, J, Oh, DH, Opat, SS. ADAMTS13 antibody depletion by bortezomib in thrombotic thrombocytopenic purpura. N Engl J Med. 2013; 368(1):9092.Google Scholar
Ahmad, HN, Thomas-Dewing, RR, Hunt, BJ. Mycophenolate mofetil in a case of relapsed, refractory thrombotic thrombocytopenic purpura. Eur J Haematol. 2007; 78(5):449452.Google Scholar
Li, GW, Rambally, S, Kamboj, J, Reilly, S, Moake, JL, Udden, MM, et al. Treatment of refractory thrombotic thrombocytopenic purpura with N-acetylcysteine: a case report. Transfusion. 2014; 54(5):12211224.Google Scholar
Cataland, SR, Peyvandi, F, Mannucci, PM, Lammle, B, Kremer Hovinga, JA, Machin, SJ, et al. Initial experience from a double-blind, placebo-controlled, clinical outcome study of ARC1779 in patients with thrombotic thrombocytopenic purpura. Am J Hematol. 2012; 87(4):430432.Google Scholar
Callewaert, F, Roodt, J, Ulrichts, H, Stohr, T, van Rensburg, WJ, Lamprecht, S, et al. Evaluation of efficacy and safety of the anti-VWF Nanobody ALX-0681 in a preclinical baboon model of acquired thrombotic thrombocytopenic purpura. Blood. 2012; 120(17):36033610.Google Scholar
Scully, M, Thomas, M, Underwood, M, Watson, H, Langley, K, Camilleri, RS, et al. Congenital and acquired thrombotic thrombocytopenic purpura and pregnancy: presentation, management and outcome of subsequent pregnancies. Blood. 2014; 124(2):211219.Google Scholar
Menne, J, Nitschke, M, Stingele, R, Abu-Tair, M, Beneke, J, Bramstedt, J, et al. Validation of treatment strategies for enterohaemorrhagic Escherichia coli O104:H4 induced haemolytic uraemic syndrome: case-control study. BMJ. 2012; 345:e4565.Google Scholar
Braune, SA, Wichmann, D, von Heinz, MC, Nierhaus, A, Becker, H, Meyer, TN, et al. Clinical features of critically ill patients with Shiga toxin-induced hemolytic uremic syndrome. Crit Care Med. 2013; 41(7):17021710.Google Scholar
Wong, CS, Mooney, JC, Brandt, JR, Staples, AO, Jelacic, S, Boster, DR, et al. Risk factors for the hemolytic uremic syndrome in children infected with Escherichia coli O157:H7: a multivariable analysis. Clin Infect Dis. 2012; 55(1):3341.Google Scholar
Legendre, CM, Licht, C, Muus, P, Greenbaum, LA, Babu, S, Bedrosian, C, et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N Engl J Med. 2013; 368(23):21692181.Google Scholar
Fremeaux-Bacchi, V, Fakhouri, F, Garnier, A, Bienaime, F, Dragon-Durey, MA, Ngo, S, et al. Genetics and outcome of atypical hemolytic uremic syndrome: a nationwide French series comparing children and adults. Clin J Am Soc Nephrol. 2013; 8(4):554562.Google Scholar
Noris, M, Remuzzi, G. Managing and preventing atypical hemolytic uremic syndrome recurrence after kidney transplantation. Curr Opin Nephrol Hypertens. 2013; 22(6):704712.Google Scholar

References

Rodgers, , et al. Hemolytic anemia following prosthetic valve replacement. Circulation. 1969; 39:155161.CrossRefGoogle ScholarPubMed
Eyster, E, et al. Chronic intravascular hemolysis after aortic valve replacement. Circulation. 1971; 44:657665.Google Scholar
Skoularigis, J, et al. Frequency and severity of intravascular hemolysis after left-sided cardiac valve replacement with Medtronic Hall and St. Jude Medical prostheses, and influence of prosthetic type, position, size and number. Am J Cardiol. 1993; 71:587591 .Google Scholar
Skoularigis, J, et al. Frequency and severity of intravascular hemolysis after left-sided cardiac valve replacement with Medtronic Hall and St. Jude Medical prostheses, and influence of prosthetic type, position, size and number. Am J Cardiol. 1993; 71:587591.Google Scholar
Chang, H, et al. Chronic intravascular hemolysis after valvular surgery. J. Formos Med Assoc. 1990; 89:880.Google Scholar
Shapira, Y, et al. Hemolysis associated with prosthetic heart valves. Cardiology in Review. 2009; 17:121124.Google Scholar
Mecozzi, G, et al. Intravascular hemolysis in patients with new-generation prosthetic heart valves: a prospective study. J Thorac Cardiovasc Surg. 2002; 123:550556.Google Scholar
Shapira, Y, et al. Hemolysis associated with prosthetic heart valves. Cardiol Rev. 2009; 17:121124.Google Scholar
Demirsoy, E, et al. Hemolysis after mitral valve repair: a report of five cases and literature review. J Heart Valve Dis. 2008; 17:2430.Google Scholar
Nevaril, CG, et al. Erythrocyte damage and destruction induced by shearing stress. J Lab Clin Med. 1968; 71:784.Google Scholar
Linde, T, et al. Aortic root compliance influences hemolysis in mechanical heart valve prostheses: an in-vitro study. Int J Artif Organs. 2012; 35:495502.Google Scholar
Sears, DA, et al. Intravascular hemolysis due to intracardiac prosthetic devices: diurnal variations related to activity. Am J Med. 1965; 39:341354.Google Scholar
Mecozzi, G, et al. Intravascular hemolysis in patients with new-generation prosthetic heart valves: a prospective study. J Thorac Cardiovasc Surg. 2002; 123:550556.Google Scholar
Shapira, Y, et al. Hemolysis associated with prosthetic heart valves. Cardiol Rev. 2009; 17:121124 .Google Scholar
Maraj, R, et al. Evaluation of hemolysis in patients with prosthetic heart valves. Clin Cardiol 1998; 21:387392.Google Scholar
Shapira, Y, et al. Hemolysis associated with prosthetic heart valves. Cardiol Rev. 2009; 17:121124.Google Scholar
Rodgers, , et al. Hemolytic anemia following prosthetic valve replacement. Circulation. 1969; 39:155161.Google Scholar
Shapira, Y, et al. Hemolysis associated with prosthetic heart valves. Cardiol Rev. 2009; 17:121124.Google Scholar
Shapira, Y, et al. Erythropoietin can obviate the need for repeated heart valve replacement in high-risk patients with severe mechanical hemolytic anemia: case reports and literature review. J Heart Valve Dis. 2001; 10:431435.Google Scholar
Golbasi, I, et al. The effect of pentoxifylline on haemolysis in patients with double cardiac prosthetic valves. Acta Cardiol. 2003; 58:379383.Google Scholar
Fleischer, R. Uber eine neue Form von Hämoglobinurie beim Menschen. Klin Wochenschr. 1881; 18:691.Google Scholar
Davidson, RJL. Exertional hemoglobinuria: a report on three cases with studies on the haemolytic mechanism. J Clin Pathol. 1964; 17:536540.Google Scholar
Gilligan, DR, et al. March hemoglobinuria in a woman. N Engl J Med. 1950; 243:944948.Google Scholar
Streeton, JA. Traumatic haemoglobinuria caused by karate exercises. Lancet. 1967; 2(7508):191192.Google Scholar
Schwartz, KA. March hemoglobinuria: report of a case after basketball and congo drum playing. Ohio State Med J. 1973; 69:448–49.Google Scholar
Ham, TH, et al. Studies on the destruction of red blood cells. Blood. 1948; 3:373403.Google Scholar
Endoh, Y, et al. Causes and time course of acute hemolysis after burn injury in the rat. J Burn Care Rehab. 1992; 13:203209.Google Scholar
Ham, TH, et al. Studies on the destruction of red blood cells. Blood. 1948; 3:373403.Google Scholar
Endoh, Y, et al. Causes and time course of acute hemolysis after burn injury in the rat. J Burn Care Rehab. 1992; 13:203209.Google Scholar
Loebl, EC, et al. The mechanism of erythrocyte destruction in the early post-burn period. Ann Surg. 1973; 178:681686.Google Scholar
Hatherill, JR, et al. Thermal injury, intravascular hemolysis and toxic oxygen products. J Clin Invest. 1986; 78:629636.Google Scholar
Wilson, RJM, et al. Invasion and growth of Plasmodium falciparum in different types of human erythrocyte. Bull WHO. 1977; 55:179185.Google Scholar
Weatherall, DJ, et al. Malaria and the red cell. Hematology(ASH Education Program). 2002; 35:3557.Google Scholar
Yuthavong, Y, et al. The relationship of phosphorylation of membrane proteins with osmotic fragility and filterability of Plasmodium berghei-infected mouse erythrocytes. Biochim Biophys Acta. 1987; 929:278287.Google Scholar
George, JN, et al. Erythrocytic abnormalities in experimental malaria. 1967; 124:1086–1090.Google Scholar
Overman, RR. Reversible cellular permeability alterations in disease. In vivo studies on sodium, potassium, and chloride concentrations in erythrocytes of the malarious monkey. 1948; 152:113–121.Google Scholar
Ricketts, WE. Bartonella bacilliformis anemia (Oroya fever). A study of thirty cases. Blood. 1948; 3:10251049.Google Scholar
Xu, YH, et al. Purification of deformin, an extracellular protein synthesized by Bartonella bacilliformis which causes deformation of erythrocyte membranes. Biochim Biophys Acta. 1995; 1234:173183.Google Scholar
Reynafarje, C, et al. The hemolytic anemia of human bartonellosis. Blood. 1961; 17:562578.Google Scholar
Van Bunderen, CC, et al. Clostridium perfringens septicaemia with massive intravascular haemolysis: a case report and review of the literature. Neth J Med. 2010; 68:343346.Google Scholar
Terebelo, H, et al. Implication of plasma free hemoglobin in massive clostridial hemolysis. JAMA. 1982 248:20282029.Google Scholar
Bätge, B, et al. Clostridial sepsis with massive intravascular hemolysis: rapid diagnosis and successful treatment. Intensive Care Med. 1992; 18:488490.Google Scholar
Paulino, C, et al. Clostridium perfringens sepsis with massive intravascular haemolysis: a rare presentation. J Med Cases. 2012; 3:207210.Google Scholar
Bätge, B, et al. Clostridial sepsis with massive intravascular hemolysis: rapid diagnosis and successful treatment. Intensive Care Med. 1992; 18:488490.Google Scholar
Klein, RL, et al. T-cryptantigen exposure in neonatal necrotizing enterocolitis. J. Pediatric Surg. 1986; 21:11551158.Google Scholar
Placzek, MM, et al. T activation haemolysis and death after blood transfusion. Arch Dis Child. 1987; 62:743744.Google Scholar
McPharlane, RG, et al. Hemolysis and production of opalescence in serum and lecitho-vitillin by a toxin of Clostridium welchii. J Pathol Bacteriol. 1941; 522:99103.Google Scholar
Bennett, JM, et al. Spherocytic hemolytic anemia and acute cholecystitis caused by Clostridium welchii. N Engl J Med. 1968; 268:10701072.Google Scholar
Hübel, W, et al. Investigation of the pathogenesis of massive hemolysis in a case of Clostridium perfringens septicemia. Ann Hematol. 1993; 67:145147.Google Scholar
Bätge, B, et al. Clostridial sepsis with massive intravascular hemolysis: rapid diagnosis and successful treatment. Intensive Care Med. 1992; 18:488490.Google Scholar
Paulino, C, et al. Clostridium Perfringens sepsis with massive intravascular haemolysis: a rare presentation. J Med Cases. 2012; 3:207210.Google Scholar
Bätge, B, et al. Clostridial sepsis with massive intravascular hemolysis: rapid diagnosis and successful treatment. Intensive Care Med. 1992; 18:488490.Google Scholar
Fairbanks, VF, et al. Copper sulfate-induced hemolytic anemia. Arch Intern Med. 1967; 120:428432.Google Scholar
Robitaille, GA, et al. Hemolytic anemia in Wilson’s Disease. JAMA. 1977; 237:24022403.Google Scholar
Valsami, S, et al. Acute copper sulphate poisoning: a forgotten cause of severe intravascular haemolysis. BJH. 2011; 156:294.Google Scholar
Fairbanks, VF, et al. Copper sulfate-induced hemolytic anemia. Arch Intern Med. 1967; 120:428432.Google Scholar
Boulard, M, et al. The effect of copper on red cell enzyme activities. J Clin Invest. 1972; 51:459461.Google Scholar
Robitaille, GA, et al. Hemolytic anemia in Wilson’s Disease. JAMA. 1977; 237:24022403.Google Scholar
Kiss, JE, et al. Effective removal of copper by plasma exchange in fulminant Wilson’s disease. Transfusion. 1998; 38:327331.Google Scholar
Asfaha, S, et al. Plasmapheresis for hemolytic crisis and impending acute liver failure in Wilson disease. J Clin Apher. 2007; 22:295298.Google Scholar
Matsumura, K, et al. Plasma exchange for hemolytic crisis in Wilson disease. Ann of Int Med. 1999; 131:866.Google Scholar
Vallee, BL, et al. Biochemical effects of mercury, cadmium, and lead. Ann Rev Biochem. 1972; 41:91128.Google Scholar
Champe, PC, Harvey, RA, eds. Biochemistry, 4th ed. Baltimore: Lippincott Williams and Wilkins; 2008:279.Google Scholar
Lachant, NA, et al. Inhibition of the pentose phosphate shunt by lead: a potential mechanism of hemolysis in lead poisoning. Blood. 1984; 63:518524.Google Scholar
Lachant, NA, et al. Inhibition of the pentose phosphate shunt by lead: a potential mechanism of hemolysis in lead poisoning. Blood. 1984; 63:518524.Google Scholar
Osband, M, et al. The hemolytic effect of lead on glucose-6-phosphate dehydrogenase deficient erythrocytes. Ped Res. 1981; 15:583.Google Scholar
Aly, MH, et al. Hemolytic anemia associated with lead poisoning from shotgun pellets and the response to Succimer treatment. Am J Hematol. 1993; 44:280283.Google Scholar
Gelfand, EW, et al. Intravenous immune globulin in autoimmune and inflammatory diseases. NEJM. 2012; 367:20152025.Google Scholar
Simon, TL, et al. eds. Rossi’s Principles of Transfusion Medicine. Oxford: Blackwell Publishing, Ltd; 2009:262.Google Scholar
Kahwaji, J, et al. Acute hemolysis after high-dose intravenous immunoglobulin therapy in highly HLA sensitized patients. Clin J Am Soc Nephrol. 2009; 4:19931997.Google Scholar
Pintova, S, et al. IVIG—A hemolytic culprit. NEJM. 2012; 367:974976.Google Scholar
Thomas, MJ, et al. Hemolysis after high-dose intravenous Ig. Blood. 1993; 82:3789.Google Scholar
Pintova, S, et al. IVIG—A hemolytic culprit. NEJM. 2012; 367:974976.Google Scholar
Pintova, S, et al. IVIG—A hemolytic culprit. NEJM. 2012; 367:974976.Google Scholar
Crosby, WH. Normal functions of the spleen relative to red blood cells: a review. Blood. 1959; 14:399408.Google Scholar
Cooper, RA, et al. An analysis of lipoproteins, bile acids, and red cell membranes associated with target cells and spur cells in patients with liver disease. J Clin Invest. 1972; 51:3182.Google Scholar
Morse, EE. Mechanisms of hemolysis in liver disease. Ann Clin Lab Sci. 1990; 20:169174.Google Scholar
Cooper, RA. Anemia with spur cells: a red cell defect acquired in serum and modified in the circulation. J Clin Invest. 1969; 48:18201831.Google Scholar
Cooper, RA, et al. Role of the spleen in membrane conditioning and hemolysis of spur cells in liver disease. NEJM. 1974; 290:12791284.Google Scholar
Morse, EE. Mechanisms of hemolysis in liver disease. Ann Clin Lab Sci. 1990; 20:169174.Google Scholar
Hilgard, P, et al. Asialoglycoprotein receptor facilitates hemolysis in patients with alcoholic liver cirrhosis. Hepatology. 2004; 39:13981407.Google Scholar
Ricard, MP. Spur cell hemolytic anemia of severe liver disease. Haematologica. 84:654 1999.Google Scholar

References

Young, NS, Kaufman, DW. The epidemiology of acquired aplastic anemia. Haematologica. 2008; 93(4):489492.Google Scholar
Zaimoku, Y, Takamatsu, H, Hosomichi, K, Ozawa, T, Nakagawa, N, Imi, T, et al. Identification of an HLA class I allele closely involved in the autoantigen presentation in acquired aplastic anemia. Blood. 2017; 129(21):29082916.Google Scholar
Babushok, DV, Duke, JL, Xie, HM, Stanley, N, Atienza, J, Perdigones, N, et al. Somatic HLA mutations expose the role of class I-mediated autoimmunity in aplastic anemia and its clonal complications. Blood Adv. 2017; 1:19001910.Google Scholar
Nakao, S, Takamatsu, H, Chuhjo, T, Ueda, M, Shiobara, S, Matsuda, T, et al. Identification of a specific HLA class II haplotype strongly associated with susceptibility to cyclosporine-dependent aplastic anemia. Blood. 1994; 84(12):42574261.Google Scholar
Young, NS, Calado, RT, Scheinberg, P. Current concepts in the pathophysiology and treatment of aplastic anemia. Blood. 2006; 108(8):25092519.Google Scholar
Ehrlich, P. Uber einen Fall von Anamie mit Bemerkungen uber regenerative Veranderungen des Knochenmarks. Charite-Annalen. 1888; 13:300.Google Scholar
Pegg, DE, Fleming, WJ, Compston, N. A case of aplastic anaemia treated by isologous bone marrow infusion. Postgrad Med J. 1964; 40:213216.Google Scholar
Thomas, ED, Storb, R, Giblett, ER, Longpre, B, Weiden, PL, Fefer, A, et al. Recovery from aplastic anemia following attempted marrow transplantation. Exp Hematol. 1976; 4(2):97102.Google Scholar
Ascensao, J, Pahwa, R, Kagan, W, Hansen, J, Moore, M, Good, R. Aplastic anaemia: evidence for an immunological mechanism. Lancet. 1976; 1(7961):669671.Google Scholar
Dunn, DE, Tanawattanacharoen, P, Boccuni, P, Nagakura, S, Green, SW, Kirby, MR, et al. Paroxysmal nocturnal hemoglobinuria cells in patients with bone marrow failure syndromes. Ann Intern Med. 1999; 131(6):401408.Google Scholar
Katagiri, T, Sato-Otsubo, A, Kashiwase, K, Morishima, S, Sato, Y, Mori, Y, et al. Frequent loss of HLA alleles associated with copy number-neutral 6pLOH in acquired aplastic anemia. Blood. 2011; 118(25):66019660.Google Scholar
Socie, G, Rosenfeld, S, Frickhofen, N, Gluckman, E, Tichelli, A. Late clonal diseases of treated aplastic anemia. Semin Hematol. 2000; 37(1):91101.Google Scholar
Gupta, V, Eapen, M, Brazauskas, R, Carreras, J, Aljurf, M, Gale, RP, et al. Impact of age on outcomes after bone marrow transplantation for acquired aplastic anemia using HLA-matched sibling donors. Haematologica. 2010; 95(12):21192125.Google Scholar
Locasciulli, A, Oneto, R, Bacigalupo, A, Socie, G, Korthof, E, Bekassy, A, et al. Outcome of patients with acquired aplastic anemia given first line bone marrow transplantation or immunosuppressive treatment in the last decade: a report from the European Group for Blood and Marrow Transplantation (EBMT). Haematologica. 2007; 92(1):1118.Google Scholar
Storb, R, Etzioni, R, Anasetti, C, Appelbaum, FR, Buckner, CD, Bensinger, W, et al. Cyclophosphamide combined with antithymocyte globulin in preparation for allogeneic marrow transplants in patients with aplastic anemia. Blood. 1994; 84(3):941949.Google Scholar
Maury, S, Bacigalupo, A, Anderlini, P, Aljurf, M, Marsh, J, Socie, G, et al. Improved outcome of patients older than 30 years receiving HLA-identical sibling hematopoietic stem cell transplantation for severe acquired aplastic anemia using fludarabine-based conditioning: a comparison with conventional conditioning regimen. Haematologica. 2009; 94(9):13121315.Google Scholar
Bacigalupo, A, Socie, G, Schrezenmeier, H, Tichelli, A, Locasciulli, A, Fuehrer, M, et al. Bone marrow versus peripheral blood as the stem cell source for sibling transplants in acquired aplastic anemia: survival advantage for bone marrow in all age groups. Haematologica. 2012; 97(8):11421148.Google Scholar
Bacigalupo, A, Marsh, JC. Unrelated donor search and unrelated donor transplantation in the adult aplastic anaemia patient aged 18–40 years without an HLA-identical sibling and failing immunosuppression. Bone Marrow Transplant. 2013; 48(2):198200.Google Scholar
DeZern, AE, Zahurak, M, Symons, H, Cooke, K, Jones, RJ, Brodsky, RA. Alternative donor transplantation with high-dose post-transplantation cyclophosphamide for refractory severe aplastic anemia. Biol Blood Marrow Transplant. 2017; 23(3):498504.Google Scholar
Esteves, I, Bonfim, C, Pasquini, R, Funke, V, Pereira, NF, Rocha, V, et al. Haploidentical BMT and post-transplant Cy for severe aplastic anemia: a multicenter retrospective study. Bone Marrow Transplant. 2015; 50(5):685689.Google Scholar
Frickhofen, N, Kaltwasser, JP, Schrezenmeier, H, Raghavachar, A, Vogt, HG, Herrmann, F, et al. Treatment of aplastic anemia with antilymphocyte globulin and methylprednisolone with or without cyclosporine. The German Aplastic Anemia Study Group. N Engl J Med. 1991; 324(19):12971304.Google Scholar
Scheinberg, P, Nunez, O, Weinstein, B, Biancotto, A, Wu, CO, Young, NS. Horse versus rabbit antithymocyte globulin in acquired aplastic anemia. N Engl J Med. 2011; 365(5):430438.Google Scholar
Hochsmann, B, Moicean, A, Risitano, A, Ljungman, P, Schrezenmeier, H. Supportive care in severe and very severe aplastic anemia. Bone Marrow Transplant. 2013; 48(2):168–73.Google Scholar
Young, NS, Bacigalupo, A, Marsh, JC. Aplastic anemia: pathophysiology and treatment. Biol Blood Marrow Transplant. 2010; 16(1 Suppl):S119–125.Google Scholar
Saracco, P, Quarello, P, Iori, AP, Zecca, M, Longoni, D, Svahn, J, et al. Cyclosporin A response and dependence in children with acquired aplastic anaemia: a multicentre retrospective study with long-term observation follow-up. Br J Haematol. 2008; 140(2):197205.Google Scholar
Townsley, DM, Scheinberg, P, Winkler, T, Desmond, R, Dumitriu, B, Rios, O, et al. Eltrombopag added to standard immunosuppression for aplastic anemia. N Engl J Med. 2017; 376(16):15401550.Google Scholar
Fureder, W, Valent, P. Treatment of refractory or relapsed acquired aplastic anemia: review of established and experimental approaches. Leuk Lymphoma. 2011; 52(8):14351445.Google Scholar
Shahani, S, Braga-Basaria, M, Maggio, M, Basaria, S. Androgens and erythropoiesis: past and present. J Endocrinol Invest. 2009; 32(8):704716.Google Scholar
Olnes, MJ, Scheinberg, P, Calvo, KR, Desmond, R, Tang, Y, Dumitriu, B, et al. Eltrombopag and improved hematopoiesis in refractory aplastic anemia. N Engl J Med. 2012; 367(1):1119.Google Scholar
Desmond, R, Townsley, DM, Dumitriu, B, Olnes, MJ, Scheinberg, P, Bevans, M, et al. Eltrombopag restores trilineage hematopoiesis in refractory severe aplastic anemia that can be sustained on discontinuation of drug. Blood. 2014; 123(12):18181825.Google Scholar
Sawada, K, Hirokawa, M, Fujishima, N. Diagnosis and management of acquired pure red cell aplasia. Hematol Oncol Clin North Am. 2009; 23(2):249259.Google Scholar
Brown, KE, Anderson, SM, Young, NS. Erythrocyte P antigen: cellular receptor for B19 parvovirus. Science. 1993; 262(5130):114117.Google Scholar
Macdougall, IC. Antibody-mediated pure red cell aplasia (PRCA): epidemiology, immunogenicity and risks. Nephrol Dial Transplant. 2005; 20 Suppl 4:iv9–15.Google Scholar
Bolan, CD, Leitman, SF, Griffith, LM, Wesley, RA, Procter, JL, Stroncek, DF, et al. Delayed donor red cell chimerism and pure red cell aplasia following major ABO-incompatible nonmyeloablative hematopoietic stem cell transplantation. Blood. 2001; 98(6):16871694.Google Scholar
Kurtzman, G, Frickhofen, N, Kimball, J, Jenkins, DW, Nienhuis, AW, Young, NS. Pure red-cell aplasia of 10 years’ duration due to persistent parvovirus B19 infection and its cure with immunoglobulin therapy. N Engl J Med. 1989; 321(8):519523.Google Scholar
Sawada, K, Fujishima, N, Hirokawa, M. Acquired pure red cell aplasia: updated review of treatment. Br J Haematol. 2008; 142(4):505514.Google Scholar
Macdougall, IC, Rossert, J, Casadevall, N, Stead, RB, Duliege, AM, Froissart, M, et al. A peptide-based erythropoietin-receptor agonist for pure red-cell aplasia. N Engl J Med. 2009; 361(19):18481855.Google Scholar
Clark, DA, Dessypris, EN, Krantz, SB. Studies on pure red cell aplasia. XI. Results of immunosuppressive treatment of 37 patients. Blood. 1984; 63(2):277286.Google Scholar
Sawada, K, Hirokawa, M, Fujishima, N, Teramura, M, Bessho, M, Dan, K, et al. Long-term outcome of patients with acquired primary idiopathic pure red cell aplasia receiving cyclosporine A. A nationwide cohort study in Japan for the PRCA Collaborative Study Group. Haematologica. 2007; 92(8):10211028.Google Scholar
Risitano, AM, Selleri, C, Serio, B, Torelli, GF, Kulagin, A, Maury, S, et al. Alemtuzumab is safe and effective as immunosuppressive treatment for aplastic anaemia and single-lineage marrow failure: a pilot study and a survey from the EBMT WPSAA. Br J Haematol. 2010; 148(5):791796.Google Scholar

References

Hillmen, P, Lewis, SM, Bessler, M, Luzzatto, L, Dacie, JV. Natural history of paroxysmal nocturnal hemoglobinuria. N Engl J Med. 1995; 333:12531258.Google Scholar
Socie, G, Mary, JY, de Gramont, A, Rio, B, Leporrier, M, Rose, C, et al. Paroxysmal nocturnal haemoglobinuria: long-term follow-up and prognostic factors. Lancet. 1996 Aug 31; 348(9027):573577.Google Scholar
Moyo, VM, Mukhina, GL, Garrett, ES, Brodsky, RA. Natural history of paroxysmal nocturnal hemoglobinuria using modern diagnostic assays. Brit J Haematol. 2004; 126:133138.Google Scholar
Brodsky, RA. Narrative review: paroxysmal nocturnal hemoglobinuria: the physiology of complement-related hemolytic anemia. Ann Intern Med. 2008 Apr 15; 148(8):587595.Google Scholar
Miyata, T, Takeda, J, Iida, Y, Yamada, N, Inoue, N, Takahashi, M, et al. The cloning of PIG-A, a component in the early step of GPI-anchor biosynthesis. Science. 1993; 259:13181320.Google Scholar
Miyata, T, Yamada, N, Iida, Y, Nishimura, J, Takeda, J, Kitani, T, et al. Abnormalities of PIG-A transcripts in granulocytes from patients with paroxysmal nocturnal hemoglobinuria. N Engl J Med. 1994; 330:249255.Google Scholar
Nagarajan, S, Brodsky, R, Young, NS, Medof, ME. Genetic defects underlying paroxysmal nocturnal hemoglobinuria that arises out of aplastic anemia. Blood. 1995; 86:46564661.Google Scholar
Mukhina, GL, Buckley, JT, Barber, JP, Jones, RJ, Brodsky, RA. Multilineage glycosylphosphatidylinositol anchor deficient hematopoiesis in untreated aplastic anemia. Br J Haematol. 2001; 115:476482.Google Scholar
Luzzatto, L, Bessler, M, Rotoli, B. Somatic mutations in paroxysmal nocturnal hemoglobinuria: A blessing in disguise? Cell. 1997; 88(January 10):14.Google Scholar
Medof, ME, Kinoshita, T, Nussenzweig, V. Inhibition of complement activation on the surface of cells after incorporation of decay-accelerating factor (DAF) into their membranes. J Exp Med. 1984; 160:15581578.Google Scholar
Rollins, SA, Sims, PJ. The complement-inhibitory activity of CD59 resides in its capacity to block incorporation of C9 into membrane C5b-9. J Immunol. 1990 May 1; 144(9):34783483.Google Scholar
Rother, RP, Bell, L, Hillmen, P, Gladwin, MT. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA. 2005 Apr 6; 293(13):16531662.Google Scholar
Hall, SE, Rosse, WF. The use of monoclonal antibodies and flow cytometry in the diagnosis of paroxysmal nocturnal hemoglobinuria. Blood. 1996; 87:53325340.Google Scholar
Borowitz, MJ, Craig, FE, DiGiuseppe, JA, Illingworth, AJ, Rosse, W, Sutherland, DR, et al. Guidelines for the diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria and related disorders by flow cytometry. Cytometry B Clin Cytom. 2010;78(4):211230.Google Scholar
Brodsky, RA, Mukhina, GL, Nelson, KL, Lawrence, TS, Jones, RJ, Buckley, JT. Resistance of paroxysmal nocturnal hemoglobinuria cells to the glycosylphosphatidylinositol-binding toxin aerolysin. Blood. 1999; 93(5):17491756.Google Scholar
Brodsky, RA, Mukhina, GL, Li, S, Nelson, KL, Chiurazzi, PL, Buckley, JT, et al. Improved detection and characterization of paroxysmal nocturnal hemoglobinuria using fluorescent aerolysin. Am J Clin Pathol. 2000 Sep;114(3):459466.Google Scholar
Araten, DJ, Nafa, K, Pakdeesuwan, K, Luzzatto, L. Clonal populations of hematopoietic cells with paroxysmal nocturnal hemoglobinuria genotype and phenotype are present in normal individuals. Proc Natl Acad Sci USA. 1999 Apr 27; 96(9):52095214.Google Scholar
Hu, R, Mukhina, GL, Piantadosi, S, Barber, JP, Jones, RJ, Brodsky, RA. PIG-A mutations in normal hematopoiesis. Blood. 2005 May 15; 105(10):38483854.Google Scholar
Pu, JJ, Hu, R, Mukhina, GL, Carraway, HE, McDevitt, MA, Brodsky, RA. The small population of PIG-A mutant cells in myelodysplastic syndromes do not arise from multipotent hematopoietic stem cells. Haematologica. 2012; 97(8):12251233.Google Scholar
Pu, JJ, Mukhina, G, Wang, H, Savage, WJ, Brodsky, RA. Natural history of paroxysmal nocturnal hemoglobinuria clones in patients presenting as aplastic anemia. Eur J Haematol. 2011 Jul;87(1):3745.Google Scholar
Wiedmer, T, Hall, SE, Ortel, TL, Kane, WH, Rosse, WF, Sims, PJ. Complement-induced vesiculation and exposure of membrane prothrombinase sites in platelets of paroxysmal nocturnal hemoglobinuria. Blood. 1993; 82(4):11921196.Google Scholar
Hugel, B, Socie, G, Vu, T, Toti, F, Gluckman, E, Freyssinet, JM, et al. Elevated levels of circulating procoagulant microparticles in patients with paroxysmal nocturnal hemoglobinuria and aplastic anemia. Blood. 1999 May 15; 93(10):34513456.Google Scholar
Ploug, M, Plesner, T, Ronne, E, Ellis, V, Hoyer-Hansen, G, Hansen, NE, et al. The receptor for urokinase-type plasminogen activator is deficient on peripheral blood leukocytes in patients with paroxysmal nocturnal hemoglobinuria. Blood. 1992 Mar 15; 79(6):14471455.Google Scholar
Maroney, SA, Cunningham, AC, Ferrel, J, Hu, R, Haberichter, S, Mansbach, CM, et al. A GPI-anchored co-receptor for tissue factor pathway inhibitor controls its intracellular trafficking and cell surface expression. J Thromb Haemost. 2006 May;4(5):11141124.Google Scholar
Hillmen, P, Elebute, M, Kelly, R, Urbano-Ispizua, A, Hill, A, Rother, RP, et al. Long-term effect of the complement inhibitor eculizumab on kidney function in patients with paroxysmal nocturnal hemoglobinuria. Am J Hematol. 2010 Aug;85(8):553559.Google Scholar
Hillmen, P, Young, NS, Schubert, J, Brodsky, RA, Socie, G, Muus, P, et al. The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N Engl J Med. 2006 Sep 21; 355(12):12331243.Google Scholar
Brodsky, RA, Young, NS, Antonioli, E, Risitano, AM, Schrezenmeier, H, Schubert, J, et al. Multicenter phase 3 study of the complement inhibitor eculizumab for the treatment of patients with paroxysmal nocturnal hemoglobinuria. Blood. 2008 Feb 15; 111(4):18401847.Google Scholar
Hillmen, P, Muus, P, Duhrsen, U, Risitano, AM, Schubert, J, Young, NS, et al. The terminal complement inhibitor eculizumab reduces thrombosis in patients with paroxysmal nocturnal hemoglobinuria (abstract). Blood. 2006; 106:40a41a.Google Scholar
Saso, R, Marsh, J, Cevreska, L, Szer, J, Gale, RP, Rowlings, PA, et al. Bone marrow transplants for paroxysmal nocturnal haemoglobinuria. Br J Haematol. 1999 Feb;104(2):392396.Google Scholar
Suenaga, K, Kanda, Y, Niiya, H, Nakai, K, Saito, T, Saito, A, et al. Successful application of nonmyeloablative transplantation for paroxysmal nocturnal hemoglobinuria. Exp Hematol. 2001 May;29(5):639642.Google Scholar
Brodsky, RA, Luznik, L, Bolanos-Meade, J, Leffell, MS, Jones, RJ, Fuchs, EJ. Reduced intensity HLA-haploidentical BMT with post transplantation cyclophosphamide in nonmalignant hematologic diseases. Bone Marrow Transplant. 2008 Oct;42(8):523527.Google Scholar

References

Diamond, LK, Blackfan, KD. Hypoplastic anemia. Am J Dis Child. 1938; 15:307.Google Scholar
Lipton, JM, Ellis, SR. Diamond-Blackfan anemia: diagnosis, treatment, and molecular pathogenesis. Hematol Oncol Clin North Am. 2009; 23(2):261282.Google Scholar
Narla, A, Ebert, BL. Ribosomopathies: human disorders of ribosome dysfunction. Blood. 2010; 115(16):3196–205.Google Scholar
Sankaran, V, Chazvinian, R, Do, R, et al. Exome sequencing identifies GATA1 mutations resulting in Diamond-Blackfan anemia. J Clin Invest. 2012; 122(7):24392443.Google Scholar
Fumagalli, S, Thomas, G. The role of p53 in ribosomopathies. Semin Hematol. 2011; 48(2):97105.Google Scholar
Narla, A, Vlachos, A, Nathan, DG. Diamond Blackfan anemia treatment: past, present, and future. Semin Hematol. 2011; 48(2):117123.Google Scholar
Zinsser, F. Atrophia cutis reticularis cum pigmentations, dystrophia unguium et leukoplakis oris (Poikioodermia atrophicans vascularis Jacobi). Ikonogr. Dermatol. 1910; 5:219233.Google Scholar
Savage, SA, Alter, BP. Dyskeratosis congenita. Hematol Oncol Clin North Am. 2009; 23(2):215231.Google Scholar
Ballew, BJ, Savage, SA. Updates on the biology and management of dyskeratosis congenital and related telomere biology disorders. Expert Rev Hematol. 2013; 6(3):327337.Google Scholar
Alter, B, Giri, N, Savage, S, et al. Malignancies and survival patters in the National Cancer Institute inherited bone marrow failure syndromes cohort study. Br J Haematol. 2010; 150(2):179188.Google Scholar
Lobitz, S, Velleuer, E. Guido Fanconi: a jack of all trades. Nat Rev Cancer. 2006; 6(11):893898.Google Scholar
Bagby, GC, Alter, BP. Fanconi anemia. Semin Hematol. 2006; 43(3):147156.Google Scholar
Garaycoechea, J, Patel, KJ. Why does the bone marrow fail in Fanconi anemia. Blood. 2014; 123(1):2634.Google Scholar
Kupfer, GM. Fanconi anemia: a signal transduction and DNA repair pathway. Yale J Biol Med. 2013; 60(6):12911310.Google Scholar
Kee, Y, D’Andrea, D. Molecular pathogenesis and clinical management of Fanconi anemia. J Clin Invest. 2012; 122(11):37993806.Google Scholar
Schwachman, H, Diamond, LK, Oski, FA, Khaw, KT. The syndrome of pancreatic insufficiency and bone marrow dysfunction. J Pediatr. 1964; 65:645663.Google Scholar
Myers, KC, Davies, SM, Shimamura, A. Clinical and molecular pathophysiology of Schwachman-Diamond syndrome: an update. Hematol Oncol Clin N Am. 2013;(27):117128.Google Scholar
Boocock, GR, Morrioson, JA, Popvic, M, et al. Mutations in SBDS are associated with Schwachman-Diamond Syndrome. Nat Genet. 2003; 33(1):97101.Google Scholar
Wong, CC, Traynor, D, Basse, N, et al. Defective ribosome assembly in Shwachman-Diamond syndrome. Blood. 2011; 118(16):43054312.Google Scholar
Ballmaier, M, Germeshausen, M. Congenital amegakaryocytic thrombocytopenia: clinical presentation, diagnosis, and treatment. Semin Thromb Hemost. 2011; 37(6):673681.Google Scholar
Ballmaier, M, Germeshausen, M, Schulze, H, et al. C-MPL mutations are the cause of congenital amegakaryocytic thrombocytopenia. Blood. 2001; 97:139146.Google Scholar
Al-Qahtani, . Congenital amegakaryocytic thrombocytopenia: a brief review of the literature. Clin Med Insights Pathol. 2010; 3:2530.Google Scholar
DiMauro, S, Hirano, M. Mitochondrial DNA Deletion Syndromes. 2003 Dec 17 [Updated 2011 May 3]. In: Pagon RA, Adam MP, Bird TD, et al., editors. GeneReviews® [Internet]. Seattle, WA: University of Washington; 1993–2014. Available from: www.ncbi.nlm.nih.gov/books/NBK1203/Google Scholar
Rotig, A, Colonna, M, Bonnefont, JP, et al. A mitochondrial DNA deletion in Pearson’s marrow pancreas syndrome. Lancet. 1989; 333:902903.Google Scholar
Cherry, AB, Gagne, KE, McLoughlin, EM, et al. Induced pluripotent stem cells with a mitochondrial DNA deletion. Stem Cells. 2013; 31(7):12871297.Google Scholar
Boxer, LA. Severe congenital neutropenia: genetics and pathogenesis. Trans Am Clin Climatol Assoc. 2006; 117:1332.Google Scholar
Horwitz, MS, Corey, SJ, Grimes, HL, et al. ELANE mutations in cyclic and severe congenital neutropenia. Hematol Oncol Clin N Am. 2013; 27:1941.Google Scholar
Khincha, PP, Savage, SA. Genomic characterization of the inherited bone marrow failure syndromes. Semin Hematol. 2013; 50(4):333347.Google Scholar
Albers, CA, Newbury-Ecob, R, Ouwehand, WH, et al. New insights into the genetic basis of TAR (thrombocytopenia-absent radii syndrome). Curr Opin Genet Dev. 2013; 23(3):316323.Google Scholar

References

Weiss, G, Goodnough, LT. Anemia of chronic disease. N Engl J Med. 2005; 352(10):10111023.Google Scholar
Cartwright, GE, Lauritsen, MA, Jones, PJ, Merrill, IM, Wintrobe, MM. The anemia of infection. I. Hypoferremia, hypercupremia, and alterations in porphyrin metabolism in patients. J Clin Invest. 1946; 25(1):6580.Google Scholar
Blanc, B, et al. Nutritional anaemias. Report of a WHO scientific group. World Health Organization Technical Report Series. 1968; 405:537.Google Scholar
Yip, R, Dallman, PR. The roles of inflammation and iron deficiency as causes of anemia. Am J Clin Nutr. 1988; 48(5):12951300. Epub 1988/11/01.Google Scholar
Guralnik, JM, Eisenstaedt, RS, Ferrucci, L, Klein, HG, and Woodman, RC. Prevalence of anemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anemia. Blood. 2004; 104(8):22632268.Google Scholar
Masson, C. Rheumatoid anemia. Joint Bone Spine. 2011; 78(2):131137. Epub 2010/09/21.Google Scholar
Wilson, A, Reyes, E, Ofman, J. Prevalence and outcomes of anemia in inflammatory bowel disease: a systematic review of the literature. Am J Med. 2004; 116 Suppl 7A:44S49S.Google Scholar
Piagnerelli, M, Vincent, JL. The use of erythropoiesis-stimulating agents in the intensive care unit. Crit Care Clin. 2012; 28(3):345362, v. Epub 2012/06/21.Google Scholar
van Iperen, CE, van de Wiel, A, Marx, JJ. Acute event-related anaemia. Br J Haematol. 2001; 115(4):739743. Epub 2002/02/15.Google Scholar
Sihler, KC, Napolitano, LM. Anemia of inflammation in critically ill patients. J Intensive Care Med. 2008; 23(5):295302. Epub 2008/08/15.Google Scholar
Baer, AN, Dessypris, EN, Goldwasser, E, Krantz, SB. Blunted erythropoietin response to anaemia in rheumatoid arthritis. Br J Haematol. 1987; 66(4):559564.Google Scholar
Means, RT Jr., Krantz, SB. Progress in understanding the pathogenesis of the anemia of chronic disease. Blood. 1992; 80(7):16391647.Google Scholar
Koury, MJ, Ponka, P. New insights into erythropoiesis: the roles of folate, vitamin B12, and iron. Annu Rev Nutr. 2004; 24:105131.Google Scholar
Cartwright, GE, Lee, GR. The anaemia of chronic disorders. Br J Haematol. 1971; 21(2):147152. Epub 1971/08/01.Google Scholar
Nemeth, E, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004; 306(5704):20902093.Google Scholar
Qiao, B, et al. Hepcidin-induced endocytosis of ferroportin is dependent on ferroportin ubiquitination. Cell Metab. 2012; 15(6):918924. Epub 2012/06/12.Google Scholar
Ross, SL, et al. Molecular mechanism of hepcidin-mediated ferroportin internalization requires ferroportin lysines, not tyrosines or JAK-STAT. Cell Metab. 2012; 15(6):905917. Epub 2012/06/12.Google Scholar
Ganz, T, Nemeth, E. The hepcidin-ferroportin system as a therapeutic target in anemias and iron overload disorders. Hematol Am Soc Hematol Educ Program. 2011; 2011:538542. Epub 2011/12/14.Google Scholar
Schwoebel, F, et al. The effects of the anti-hepcidin Spiegelmer NOX H94 on inflammation-induced anemia in cynomolgus monkeys. Blood. 2013; 121(12):23112315. Epub 2013/01/26.Google Scholar
Wang, W, Knovich, MA, Coffman, LG, Torti, FM, Torti, SV. Serum ferritin: past, present and future. Biochim Biophys Acta. 2010; 1800(8):760769. Epub 2010/03/23.Google Scholar
Cash, JM, Sears, DA. The anemia of chronic disease: spectrum of associated diseases in a series of unselected hospitalized patients. Am J Med. 1989; 87(6):638644.Google Scholar
Roy, CN. Anemia of inflammation. Hematology Am Soc Hematol Educ Program. 2010; 30:276280.Google Scholar
Skikne, BS. Serum transferrin receptor. Am J Hematol. 2008; 83(11):872–85.Google Scholar
Marti-Carvajal, AJ, Agreda-Perez, LH, Sola, I, Simancas-Racines, D. Erythropoiesis-stimulating agents for anemia in rheumatoid arthritis. Cochrane Database Syst Rev. 2013; 2:CD000332. Epub 2013/03/02.Google Scholar
Dallman, PR, Yip, R, Johnson, C. Prevalence and causes of anemia in the United States, 1976 to 1980. Am J Clin Nutr. 1984; 39(3):437445. Epub 1984/03/01.Google Scholar
Price, EA, Mehra, R, Holmes, TH, Schrier, SL. Anemia in older persons: etiology and evaluation. Blood Cells Mol Dis. 2011; 46(2):159165. Epub 2011/01/07.Google Scholar
Artz, AS, Thirman, MJ. Unexplained anemia predominates despite an intensive evaluation in a racially diverse cohort of older adults from a referral anemia clinic. J Gerontol A Biol Sci Med Sci. 2011; 66(8):925932. Epub 2011 Jun 9.Google Scholar
Voulgarelis, M, Kokori, SI, Ioannidis, JP, Tzioufas, AG, Kyriaki, D, Moutsopoulos, HM. Anaemia in systemic lupus erythematosus: aetiological profile and the role of erythropoietin. Ann Rheum Dis. 2000; 59(3):217222.Google Scholar
Martinez-Lado, L, et al. Relapses and recurrences in giant cell arteritis: a population-based study of patients with biopsy-proven disease from northwestern Spain. Medicine (Baltimore). 2011; 90(3):186193. Epub 2011/04/23.Google Scholar
Vincent, JL, et al. Anemia and blood transfusion in critically ill patients. J Am Med Assoc. 2002; 288(12):14991507. Epub 2002/09/24.Google Scholar

References

Sekeres, MA, Schoonen, WM, Kantarjian, H, List, A, Fryzek, J, Paquette, R, et al. Characteristics of US patients with myelodysplastic syndromes: results of six cross-sectional physician surveys. Journal of the National Cancer Institute. 2008; 100(21):15421551.Google Scholar
Rollison, DE, Howlader, N, Smith, MT, Strom, SS, Merritt, WD, Ries, LA, et al. Epidemiology of myelodysplastic syndromes and chronic myeloproliferative disorders in the United States, 2001–2004, using data from the NAACCR and SEER programs. Blood. 2008; 112(1):4552.Google Scholar
Goldberg, SL, Chen, E, Corral, M, Guo, A, Mody-Patel, N, Pecora, AL, et al. Incidence and clinical complications of myelodysplastic syndromes among United States Medicare beneficiaries. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2010; 28(17):28472852.Google Scholar
Pedersen-Bjergaard, J, Daugaard, G, Hansen, SW, Philip, P, Larsen, SO, Rorth, M. Increased risk of myelodysplasia and leukaemia after etoposide, cisplatin, and bleomycin for germ-cell tumours. Lancet. 1991; 338(8763):359363.Google Scholar
Liew, E, Owen, C. Familial myelodysplastic syndromes: a review of the literature. Haematologica. 2011; 96(10):15361542.Google Scholar
Hoffman, R. Hematology: Basic Principles and Practice. 5th ed. Philadelphia, PA: Churchill Livingstone/Elsevier; 2009:xxvii, 2523.Google Scholar
Hsu, AP, Sampaio, EP, Khan, J, Calvo, KR, Lemieux, JE, Patel, SY, et al. Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood. 2011; 118(10):26532655.Google Scholar
Bejar, R, Levine, R, Ebert, BL. Unraveling the molecular pathophysiology of myelodysplastic syndromes. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2011; 29(5):504515.Google Scholar
Walter, MJ, Shen, D, Ding, L, Shao, J, Koboldt, DC, Chen, K, et al. Clonal architecture of secondary acute myeloid leukemia. The New England Journal of Medicine. 2012; 366(12):10901098.Google Scholar
Haase, D, Germing, U, Schanz, J, Pfeilstocker, M, Nosslinger, T, Hildebrandt, B, et al. New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. Blood. 2007; 110(13):43854395.Google Scholar
List, A, Dewald, G, Bennett, J, Giagounidis, A, Raza, A, Feldman, E, et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. The New England Journal of Medicine. 2006; 355(14):14561465.Google Scholar
Bejar, R, Stevenson, KE, Caughey, BA, Abdel-Wahab, O, Steensma, DP, Galili, N, et al. Validation of a prognostic model and the impact of mutations in patients with lower-risk myelodysplastic syndromes. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2012; 30(27):33763382.Google Scholar
Papaemmanuil, E, Gerstung, M, Malcovati, L, Tauro, S, Gundem, G, Van Loo, P, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013; 122(22):36163627; quiz 99.Google Scholar
Haferlach, T, Nagata, Y, Grossmann, V, Okuno, Y, Bacher, U, Nagae, G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014; 28(2):241247.Google Scholar
Bejar, R, Stevenson, K, Abdel-Wahab, O, Galili, N, Nilsson, B, Garcia-Manero, G, et al. Clinical effect of point mutations in myelodysplastic syndromes. The New England Journal of Medicine. 2011; 364(26):24962506.Google Scholar
Yoshida, K, Sanada, M, Shiraishi, Y, Nowak, D, Nagata, Y, Yamamoto, R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011; 478(7367):6469.Google Scholar
Christiansen, DH, Andersen, MK, Pedersen-Bjergaard, J. Mutations with loss of heterozygosity of p53 are common in therapy-related myelodysplasia and acute myeloid leukemia after exposure to alkylating agents and significantly associated with deletion or loss of 5q, a complex karyotype, and a poor prognosis. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2001; 19(5):14051413.Google Scholar
Greenberg, PL, Tuechler, H, Schanz, J, Sanz, G, Garcia-Manero, G, Sole, F, et al. Cytopenia levels for aiding establishment of the diagnosis of myelodysplastic syndromes. Blood. 2016; 128(16):20962067.Google Scholar
Valent, P. Low blood counts: immune mediated, idiopathic, or myelodysplasia. Hematology/the Education Program of the American Society of Hematology American Society of Hematology Education Program. 2012; 2012:485491.Google Scholar
Arber, DA, Orazi, A, Hasserjian, R, Thiele, J, Borowitz, MJ, Le Beau, MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016; 127(20):23912405.Google Scholar
Bejar, R, Greenberg, PL. The impact of somatic and germline mutations in myelodysplastic syndromes and related disorders. Journal of the National Comprehensive Cancer Network. 2017; 15(1):131135.Google Scholar
Network NCC. National Comprehensive Cancer Network Guidelines: Myelodysplatic Syndromes Version 2.2014 275 Commerce Drive, Suite 300, Fort Washington, PA 190342013 Version 2.2014: Available from: www.nccn.org.Google Scholar
Cargo, CA, Rowbotham, N, Evans, PA, Barrans, SL, Bowen, DT, Crouch, S, et al. Targeted sequencing identifies patients with preclinical MDS at high risk of disease progression. Blood. 2015; 126(21):23622365.Google Scholar
Kwok, B, Hall, JM, Witte, JS, Xu, Y, Reddy, P, Lin, K, et al. MDS-associated somatic mutations and clonal hematopoiesis are common in idiopathic cytopenias of undetermined significance. Blood. 2015; 126(21):23552361.Google Scholar
Greenberg, P, Cox, C, LeBeau, MM, Fenaux, P, Morel, P, Sanz, G, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997; 89(6):20792088.Google Scholar
Garcia-Manero, G, Shan, J, Faderl, S, Cortes, J, Ravandi, F, Borthakur, G, et al. A prognostic score for patients with lower risk myelodysplastic syndrome. Leukemia: Official Journal of the Leukemia Society of America, Leukemia Research Fund, UK. 2008; 22(3):538543.Google Scholar
Bejar, R, Stevenson, KE, Caughey, BA, Abdel-Wahab, O, Steensma, DP, Galili, N, et al. Validation of a prognostic model and the impact of mutations in patients with lower-risk myelodysplastic syndromes. Journal of Clinical Oncology. 2012; 30(27):33763382.Google Scholar
Greenberg, PL, Tuechler, H, Schanz, J, Sanz, G, Garcia-Manero, G, Sole, F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012; 120(12):24542465.Google Scholar
Greenberg, PL, Stone, RM, Al-Kali, A, Barta, SK, Bejar, R, Bennett, JM, et al. Myelodysplastic Syndromes, Version 2.2017, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network. 2017; 15(1):6087.Google Scholar
Hellstrom-Lindberg, E, Gulbrandsen, N, Lindberg, G, Ahlgren, T, Dahl, IM, Dybedal, I, et al. A validated decision model for treating the anaemia of myelodysplastic syndromes with erythropoietin + granulocyte colony-stimulating factor: significant effects on quality of life. British Journal of Haematology. 2003; 120(6):10371046.Google Scholar
Greenberg, PL, Sun, Z, Miller, KB, Bennett, JM, Tallman, MS, Dewald, G, et al. Treatment of myelodysplastic syndrome patients with erythropoietin with or without granulocyte colony-stimulating factor: results of a prospective randomized phase 3 trial by the Eastern Cooperative Oncology Group (E1996). Blood. 2009; 114(12):23932400.Google Scholar
Passweg, JR, Giagounidis, AA, Simcock, M, Aul, C, Dobbelstein, C, Stadler, M, et al. Immunosuppressive therapy for patients with myelodysplastic syndrome: a prospective randomized multicenter phase III trial comparing antithymocyte globulin plus cyclosporine with best supportive care–SAKK 33/99. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2011; 29(3):303309.Google Scholar
Malcovati, L, Porta, MG, Pascutto, C, Invernizzi, R, Boni, M, Travaglino, E, et al. Prognostic factors and life expectancy in myelodysplastic syndromes classified according to WHO criteria: a basis for clinical decision making. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2005; 23(30):75947603.Google Scholar
Cutler, CS, Lee, SJ, Greenberg, P, Deeg, HJ, Perez, WS, Anasetti, C, et al. A decision analysis of allogeneic bone marrow transplantation for the myelodysplastic syndromes: delayed transplantation for low-risk myelodysplasia is associated with improved outcome. Blood. 2004; 104(2):579585.Google Scholar
Koreth, J, Pidala, J, Perez, WS, Deeg, HJ, Garcia-Manero, G, Malcovati, L, et al. Role of reduced-intensity conditioning allogeneic hematopoietic stem-cell transplantation in older patients with de novo myelodysplastic syndromes: an international collaborative decision analysis. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2013; 31(21):26622670.Google Scholar
Silverman, LR, Demakos, EP, Peterson, BL, Kornblith, AB, Holland, JC, Odchimar-Reissig, R, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2002; 20(10):24292440.Google Scholar
Kadia, TM, Jabbour, E, Kantarjian, H. Failure of hypomethylating agent-based therapy in myelodysplastic syndromes. Seminars in Oncology. 2011; 38(5):682692.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×