Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T10:33:34.367Z Has data issue: false hasContentIssue false

Chapter 10 - Emerging Technologies: The Bright Future of Fluorescence

Published online by Cambridge University Press:  05 June 2012

Eric J. Devor
Affiliation:
Integrated DNA Technologies
Michael H. Crawford
Affiliation:
University of Kansas
Get access

Summary

Introduction

Oligonucleotide-driven, polymerase-catalyzed in vitro molecular reactions, specifically the polymerase chain reaction (PCR) and chain-termination DNA sequencing, have revolutionized our access to and understanding of genetics. Born less than three decades ago, these two techniques have together led to the phenomena of whole-genome sequencing, mass gene expression analyses, high-throughput drug discovery, and ‘disease-of-the-week’ mutation mapping – to name but a few. Major players in these advances range from the very small, like the bacterium Thermus aquaticus, that gave us thermal-stable DNA polymerase, to almost larger than life, like H. Gobind Khorana, under whose guidance the basic chemistries of oligonucleotide synthesis were developed. No less important is the smallest player of all, the fluorescent molecule. Appreciation for the potential of fluorescence as a tool in molecular biology pre-dates the advent of both chain-termination DNA sequencing and PCR, but it is only in the past few years that specific applications have begun to flower and pay huge dividends.

In this chapter I will present the basics of fluorescence relevant to molecular biology, including fluorescence resonance energy transfer (FRET). From there, the three applications in which fluorescence has made a significant contribution will be discussed. These are: chain-termination DNA sequencing, kinetic (real-time) PCR, and DNA microarrays. Finally, I will assess the role of fluorescence-aided molecular tools in Anthropological Genetics in the future as well as preview potential new fluorescence tools on the horizon.

Type
Chapter
Information
Anthropological Genetics
Theory, Methods and Applications
, pp. 277 - 305
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, S., Bankier, A. T., Barrell, B. G., Bruijn, M. H. L., Couson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A, Sanger, F., Schreier, P. H, Smith, A. J. H., Staden, R. and Young, I. G. (1981). Sequence and organization of the human mitochondrial genome. Nature, 290, 457–65CrossRefGoogle ScholarPubMed
Bengtsson, M., Karlsson, H. J., Westman, G. and Kubista, M. (2003). A new minor groove binding asymmetric cyanine reporter dye for real-time PCR. Nucleic Acids Research, 31, e45.CrossRefGoogle ScholarPubMed
Bestmann, L., Helmy, N., Garofalo, F., Demirtas, A., Vonderschmitt, D. and Maly, F. E. (2002). LightCycler PCR for the polymorphisms –308 and –238 in the TNF Alpha gene and for the TNFB1/B2 polymorphism in the LT Alpha gene. In Rapid Cycle Real-Time PCR- Methods and Applications, ed. Dietmaier, W., Wittwer, C. and Sivasubramanian, N., Berlin: Springer.CrossRefGoogle Scholar
Bonnet, G., Tyagi, S., Libchaber, A. and Kramer, F. R. (1999). Thermodynamic basis of the chemical specificity of structured DNA probes. Proceedings of the National Academy of Sciences USA, 96, 6171–6CrossRefGoogle ScholarPubMed
Breathnach, R., Mandel, J. L. and Chambon, P. (1977). Ovalbumin gene is split in chicken DNA. Nature, 270, 314–19CrossRefGoogle ScholarPubMed
Breathnach, R., Benoist, C., O'Hare, K., Gannon, F. and Chambon, P. (1978). Ovalbumin gene: evidence for a leader sequence in mRNA and DNA sequences at the exon-intron boundaries. Proceedings of the National Academy of Sciences USA, 75, 4853–7CrossRefGoogle ScholarPubMed
Bustin, S. A. (2000). Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction. Journal of Molecular Endocrinology, 25, 169–93CrossRefGoogle ScholarPubMed
Bustin, S. A. (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. Journal of Molecular Endocrinology, 29, 23–39CrossRefGoogle ScholarPubMed
Caceres, M., Lachuer, J., Zapala, M. A., Redmond, J. C., Kudo, L., Geschwind, D. H., Lockhart, D. J., Preuss, T. M. and Barlow, C. (2003). Elevated gene expression levels distinguish human from non-human primate brains. Proceedings of the National Academy of Sciences USA, 100, 13030–5CrossRefGoogle ScholarPubMed
Cann, R. L., Stoneking, M. and Wilson, A. C. (1987). Mitochondrial DNA and human evolution. Nature, 325, 31–6CrossRefGoogle ScholarPubMed
Cheung, V. G., Morley, M., Aguilar, F., Massimi, A., Kucherlapati, R. and Childs, G. (1999). Making and reading microarrays. Nature Genetics Supplement, 21, 15–19CrossRefGoogle ScholarPubMed
Dore, K., Dubus, S., Ho, H.-A., Levesque, I., Brunette, M., Corbeil, G., Boissinot, M., Boivin, G., Bergeron, M. G., Boubreau, D. and Leclerc, M. (2004). Fluorescent polymeric transducer for the rapid, simple, and specific detection of nucleic acids at the zeptomole level. Journal of the American Chemical Society, 126, 4240–4CrossRefGoogle ScholarPubMed
Dovichi, N. J. and Zhang, J. (2000). How capillary electrophoresis sequenced the human genome. Angew Chemistry International Edition, 39, 4463–83.0.CO;2-8>CrossRefGoogle ScholarPubMed
Enard, W., Khaitovich, P., Klose, J., Zollner, S., Heissig, F., Giavalisco, P., Nieselt-Struwe, K., Muchmore, E., Varki, A., Ravid, R., Doxiadis, G. M., Bontrop, R. E. and Paabo, S. (2002). Intra- and interspecific variation in primate gene expression patterns. Science, 296, 340–3CrossRefGoogle ScholarPubMed
Enard, W., Fassbender, A., Model, F., Adorjan, P., Paabo, S. and Olek, A. (2004). Differences in DNA methylation patterns between humans and chimpanzees. Current Biology, 14, R148–R149CrossRefGoogle ScholarPubMed
Fodor, S. P. A., Read, J. L., Pirrung, M. C., Stryer, L., Lu, A. T. and Solas, D. (1991). Light-directed, spatially addressable parallel chemical synthesis. Science, 251, 767–73CrossRefGoogle ScholarPubMed
Förster, T. (1948). Zwischenmolekulare energiewnaderung und fluoreszenz. Annals of Physics, 2, 55–75CrossRefGoogle Scholar
Higuchi, R., Dollinger, G., Walsh, P. S. and Griffith, R. (1992). Simultaneous amplification and detection of specific DNA sequences. Bio Technology, 10, 413–17CrossRefGoogle ScholarPubMed
Higuchi, R., Fockler, C., Dollinger, G. and Watson, R. (1993). Kinetic PCR analysis: Real-time monitoring of DNA amplification reactions. Bio Technology, 11, 1026–30Google ScholarPubMed
Holland, P. M., Abramson, R. D., Watson, R. and Gelfand, D. H. (1991). Detection of specific polymerase chain reaction product by utilizing the 5′ to 3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proceedings of the National Academy of Sciences USA, 88, 7276–80CrossRefGoogle ScholarPubMed
Jazin, E., Soodyall, H., Jalonen, P., Lindholm, E., Stoneking, M. and Gyllensten, U. (1998). Mitochondrial mutation rate revisited: hot spots and polymorphism. Nature Genetics, 18, 109–10CrossRefGoogle ScholarPubMed
Jeffries, A. J. and Flavell, R. A. (1977). The rabbit β-globin gene contains a large insert in the coding sequence. Cell, 12, 1097–1108CrossRefGoogle Scholar
Kainz, P. (2000). The PCR plateau phase – towards an understanding of its limitations. Biochemistry and Biophysics Acta, 1494, 23–7Google ScholarPubMed
Kennedy, G. C., Matsuzaki, H., Dong, S., Liu, W.-M., Huang, J., Liu, G., Su, X., Cao, M., Chen, W., Zhang, J., Liu, W., Yang, G., Di, X., Ryder, T., He, Z., Surti, U., Phillips, M. S., Boyce-Jacino, M. T., Fodor, S. P. A. and Jones, K. W. (2003). Large-scale genotyping of complex DNA. Nature Biotechnology, 21, 1233–7CrossRefGoogle ScholarPubMed
Kutyavin, I. V., Afonia, I. A., Mills, A., Gorn, V. V., Lukhtanov, E. A., Belousov, E. S., Singer, M. J., Walburger, D. K., Lokhov, S. G., Gall, A. A., Dempcy, R., Reed, M. W., Meyer, R. B. and Hedgpeth, J. (2000). 3′-minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures. Nucleic Acids Research, 28, 655–61CrossRefGoogle ScholarPubMed
Livak, K., Flood, S., Marmaro, J., Giusti, W. and Deetz, K. (1995). Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods and Applications, 4, 357–62CrossRefGoogle ScholarPubMed
Marras, S. A. E., Kramer, F. R. and Tyagi, S. (1999). Multiplex detection of single-nucleotide variation using molecular beacons. Genetic Analysis: Biomolecular Engineering, 14, 151–6CrossRefGoogle ScholarPubMed
Maxam, A. M. and Gilbert, W. (1977). A new method for sequencing DNA. Proceedings of the National Academy of Sciences USA, 74, 560–4CrossRefGoogle ScholarPubMed
Morrison, T. B., Weis, J. J. and Wittwer, C. T. (1998). Quantification of low-copy transcripts by continuous SYBR green I monitoring during amplification. Biotechniques, 24, 954–62Google ScholarPubMed
Nygren, J., Svanik, N. and Kubista, M. (1998). The interactions between fluorescent dye thiazole orange and DNA. Biopolymers, 46, 39–513.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Pruvost, M. and Geigl, E.-M. (2004). Real-time quantitative PCR to assess the authenticity of ancient DNA amplification. Journal of Archaeological Science, 31, 1191–7CrossRefGoogle Scholar
Relethford, J. H. (2001). Genetics and the Search for Modern Human Origins. New York: Wiley-Liss.Google Scholar
Ruiz-Martinez, M. C., Berka, J., Belenkii, A., Foret, F., Miller, A. W. and Karger, B. L. (1993). DNA sequencing by capillary electrophoresis with replaceable linear polyacrylamide and laser-induced fluorescence detection. Analytical Chemistry, 65, 2851–8CrossRefGoogle ScholarPubMed
Sanger, F., Micklen, S. and Coulson, A. R. (1977). DNA sequencing and chain-terminating inhibitors. Proceedings of the National Academy of Sciences USA, 74, 5463–7CrossRefGoogle ScholarPubMed
Schena, M. (ed.) (1999). DNA Microarrays: A Practical Approach. Oxford: Oxford University Press.Google Scholar
Smith, L. M., Sanders, J. Z., Kaiser, R. J., Hughes, P., Dodd, C., Connell, C. R., Heiner, C., Kent, S. B. H. and Hood, L. E. (1986). Fluorescence detection in automated DNA sequence analysis. Nature, 321, 674–9CrossRefGoogle ScholarPubMed
Snijder, E. J., Bredenbeek, P. J., Dobbe, J. C., Thiel, V., Ziebuhr, J., Poon, L. L. M., Guan, Y., Rozanov, M., Spaan, W. J. M. and Gorbalenya, A. E. (2003). Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the Coronavirus Group 2 lineage. Journal of Molecular Biology, 33, 991–1004CrossRefGoogle Scholar
Swerdlow, H., Wu, S. L., Harke, H. and Dovichi, N. J. (1990). Capillary gel electrophoresis for DNA sequencing. Laser-induced fluorescence detection with the sheath flow cuvette. Journal of Chromatography, 516, 61–7CrossRefGoogle ScholarPubMed
Swerdlow, H., Zhang, J. Z., Chen, D. Y., Harke, H. R., Grey, R., Wu, S. L., Dovichi, N. J. and Fuller, C. (1991). Three DNA sequencing methods using capillary gel electrophoresis and laser-induced fluorescence. Analytical Chemistry, 63, 2835–41CrossRefGoogle ScholarPubMed
Tyagi, S. and Kramer, F. R. (1996). Molecular beacons: probes that fluoresce upon hybridization. Nature Biotechnology, 14, 303–8CrossRefGoogle ScholarPubMed
Vandesompele, J., Paepe, A. and Speleman, F. (2002). Elimination of primer-dimer artifacts and genomic coamplification using a two-step SYBR green I real-time RT-PCR. Analytical Biochemistry, 303, 95–8CrossRefGoogle ScholarPubMed
Vet, J. A. M., Majithia, A. R., Marras, S. A. E., Tyagi, S., Dube, S., Poiesz, B. J. and Kramer, F. R. (1999). Multiplex detection of four pathogenic retroviruses using molecular beacons. Proceedings of the National Academy of Sciences USA, 96, 6394–9CrossRefGoogle ScholarPubMed
Vigilant, L., Stoneking, M., Harpending, H., Hawkes, K. and Wilson, A. C. (1991). African populations and the evolution of human mitochondrial DNA. Science, 253, 1503–7CrossRefGoogle ScholarPubMed
Whitcombe, D., Theaker, J., Guy, T., Brown, S. P. and Little, S. (1999). Detection of PCR products using self-probing amplicons and fluorescence. Nature Biotechnology, 17, 804–7CrossRefGoogle ScholarPubMed
Wittwer, C. T., Herrmann, M. G., Moss, A. A. and Rasmussen, R. P. (1997). Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques, 22, 130–8Google ScholarPubMed
Zhang, J. Z., Fang, Y., Hou, J. Y., Ren, H. J., Jiang, R., Roos, P. and Dovichi, N. J. (1995). Use of non-cross-linked polyacrylamide for four-color DNA sequencing by capillary electrophoresis separation of fragments up to 640 bases in length in two hours. Analytical Chemistry, 67, 4589–93CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×