Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T12:59:59.253Z Has data issue: false hasContentIssue false

Part IV - Effect of Invasive Ants on Plants and Their Mutualists

Published online by Cambridge University Press:  01 September 2017

Paulo S. Oliveira
Affiliation:
Universidade Estadual de Campinas, Brazil
Suzanne Koptur
Affiliation:
Florida International University
Get access
Type
Chapter
Information
Ant-Plant Interactions
Impacts of Humans on Terrestrial Ecosystems
, pp. 247 - 330
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Ackerman, J. D., Falcon, W., Molinari, J., Vega, C., Espino, I., & Cuevas, A. A. (2014). Biotic resistance and invasional meltdown: consequences of acquired interspecific interactions for an invasive orchid, Spathoglottis plicata in Puerto Rico. Biological Invasions, 16, 24352447.CrossRefGoogle Scholar
Addison, P., & Samways, M. J. (2000). A survey of ants (Hymenoptera: Formicidae) that forage in vineyards in the Western Cape Province, South Africa. African Entomology, 8, 251260.Google Scholar
Allen, C., Forys, E., Rice, K., & Wojcik, D. (2001). Effects of fire ants (Hymenoptera: Formicidae) on hatching turtles and prevalence of fire ants on sea turtle nesting beaches in Florida. Florida Entomologist, 84, 250253.CrossRefGoogle Scholar
Baker, H. G., Opler, P. A., & Baker, I. (1978). A comparison of the amino acid complements of floral and extrafloral nectars. Botanical Gazette, 139, 322332.CrossRefGoogle Scholar
Barrios, B., Arellano, G., & Koptur, S. (2011). The effects of fire and fragmentation on occurrence and flowering of a rare perennial plant. Plant Ecology, 212, 10571067.CrossRefGoogle Scholar
Becerra, J. X. I., & Venable, D. L. (1989). Extrafloral nectaries a defense against ant-homoptera mutualism. Oikos, 55, 276280.Google Scholar
Bentley, B. L. (1977a). Extrafloral nectaries and protection by pugnacious bodyguards. Annual Review of Ecology and Systematics, 88, 407427.Google Scholar
Bentley, B. L. (1977b). The protective function of ants visiting the extrafloral nectaries of Bixa orellana (Bixaceae). Journal of Ecology, 65, 2738.Google Scholar
Billick, I., & Price, M. V. (eds.). (2010). The Ecology of Place: Contributions of Place-Based Research to Ecological Understanding. Chicago: University of Chicago Press.Google Scholar
Bleil, R., Blüthgen, N., & Junker, R. R. (2011). Ant-plant mutualism in Hawaii? Invasive ants reduce flower parasitism but also exploit floral nectar of the endemic shrub Vaccinium reticulatum (Ericaceae). Pacific Science, 65, 291300.Google Scholar
Blossey, B., & Notzold, R. (1995). Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. Journal of Ecology, 83, 887889.Google Scholar
Carrillo, J., Wang, Y., Ding, J., Klootwyk, K., & Siemann, E. (2012a). Decreased indirect defense in the invasive tree, Triadica sebifera. Plant Ecology, 213, 945954.CrossRefGoogle Scholar
Carrillo, J., Wang, Y., Ding, J., & Siemann, E. (2012b). Induction of extrafloral nectar depends on herbivore type in invasive and native Chinese tallow seedlings. Basic and Applied Ecology, 13, 449457.CrossRefGoogle Scholar
Dattilo, W., Rico-Gray, V., Rodrigues, D. J., & Izzo, T. J. (2013). Soil and vegetation features determine the nested pattern of ant–plant networks in a tropical rainforest. Ecological Entomology, 38(4), 374380.CrossRefGoogle Scholar
Davidson, D. W. (1998). Resource discovery versus resource domination in ants: a functional mechanism for breaking the trade-off. Ecological Entomology, 23, 484490.Google Scholar
de la Fuente, M. A. S., & Marquis, R. J. (1999). The role of ant-tended extrafloral nectaries in the protection and benefit of a neotropical rainforest tree. Oecologia, 118, 192202.Google Scholar
Diaz-Castelazo, C., Guimarães, P. R., Jordano, P., Thompson, J. N., Marquis, R. J., & Rico-Gray, V. (2010). Changes of a mutualistic network over time: reanalysis over a 10-year period. Ecology, 91, 793801.Google Scholar
Dormann, C. F., Frund, J., Blüthgen, N., & Gruber, B. (2009). Indices, graphs, and null models: analyzing bipartite ecological networks. The Open Ecology Journal, 2, 724.Google Scholar
Eubanks, M. D. (2001). Estimates of the direct and indirect effects of red imported fire ants on biological control in field crops. Biological Control, 21, 3543.Google Scholar
Fleet, R. R., & Young, B. L. (2000). Facultative mutualism between imported fire ants (Solenopsis invicta) and a legume (Senna occidentalis). Southwestern Naturalist, 45, 289298.Google Scholar
Gonzalez-Teuber, M., & Heil, M. (2009). The role of extrafloral nectar amino acids for the preferences of facultative and obligate ant mutualists. Journal of Chemical Ecology, 35, 459468.Google Scholar
Gotelli, N. J., & Arnett, A. E. (2000). Biogeographic effects of red fire ant invasion. Ecological Letters, 3, 257261.Google Scholar
Green, P. T., O’Dowd, D. J., & Lake, P. S. (1999). Alien ant invasion and ecosystem collapse on Christmas Island, Indian Ocean. Aliens, 9, 24.Google Scholar
Guimarães, P. R., & Guimarães, P. (2006). Improving the analyses of nestedness for large sets of matrices. Environmental Modelling and Software, 21, 15121513.CrossRefGoogle Scholar
Guimarães, P. R., Rico-Gray, V., dos Reis, S. F., & Thompson, J. N. (2006). Asymmetries in specialization in ant-plant mutualistic networks. Proceedings of the Royal Society of London, Series B, Biological Sciences, 273, 20412047.Google ScholarPubMed
Guimarães, P. R., Rico-Gray, V., Oliveira, P. S., Izzo, T. J., dos Reis, S. F., & Thompson, J. N. (2007). Interaction intimacy affects structure and coevolutionary dynamics in mutualistic networks. Current Biology, 17(20), 17971803.Google Scholar
Haddad, N. M., Bowne, D. R., Cunningham, A., Danielson, B. J., Levey, D. J., Sargent, S., & Spira, T. (2003). Corridor use by diverse taxa. Ecology, 84, 609615.Google Scholar
Heil, M. (2011). Nectar: generation, regulation and ecological functions. Trends in Plant Science, 16, 191200.Google Scholar
Heil, M. (2015). Extrafloral nectar at the plant-insect interface: a spotlight on chemical ecology, phenotypic plasticity, and food webs. Annual Review of Entomology, 60, 213232.CrossRefGoogle ScholarPubMed
Heil, M., Koch, T., Hilpert, A., Fiala, B., Boland, W., & Linsenmair, K. E. (2001). Extrafloral nectar production of the ant-associated plant, Macaranga tanarius, is an induced, indirect, defensive response elicited by jasmonic acid. Proceedings of the National Academy of Sciences of the United States of America, 98, 10831088.Google Scholar
Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D., & Case, T. J. (2002). The causes and consequences of ant invasions. Annual Review of Ecology and Systematics, 33, 181233.Google Scholar
Horvitz, C. C., & Schemske, D. W. (1984). Effects of ants and an ant-tended herbivore on seed production of a neotropical herb. Ecology, 65, 13691378.Google Scholar
Inouye, D. W., & Taylor, O. R. (1979). A temperate region plant-ant-seed predator system: consequences of extrafloral nectar secretion by Helianthella quinquenervis. Ecology, 60, 18.Google Scholar
Ivens, A. B. F., Beeren, C. V., Blüthgen, N., & Kronauer, D. J. C. (2016). Studying the complex communities of ants and their symbionts using ecological network analysis. Annual Review of Entomology, 61, 353371.Google Scholar
Janzen, D. H. (1966). Coevolution between ants and acacias in Central America. Evolution, 20, 249275.Google Scholar
Jezorek, H., Stiling, P., & Carpenter, J. (2011). Ant predation on an invasive herbivore: can an extrafloral nectar-producing plant provide associational resistance to Opuntia individuals? Biological Invasions, 13, 22612273.Google Scholar
Jones, I. M., Koptur, S., Gallegos, H. R., Tardanico, J. P, Trainer, P. A., & Peña, J. (2016). Changing light conditions in pine rockland habitats affect the intensity and outcome of ant-plant interactions. Biotropica, 49, 8391.Google Scholar
Junker, R. R., Daehler, C. C., Doetterl, S., Keller, A., & Blüthgen, N. (2011). Hawaiian ant-flower networks: nectar-thieving ants prefer undefended native over introduced plants with floral defenses. Ecological Monographs, 81, 295311.Google Scholar
Kaakeh, W., & Dutcher, J. D. (1992). Foraging preference of red imported fire ants (Hymenoptera: Formicidae) among three species of summer cover crops and their extracts. Journal of Economic Entomology, 85, 389394.Google Scholar
Kautz, S., Lumbsch, H. T., Ward, P. S., & Heil, M. (2009). How to prevent cheating: a digestive specialization ties mutualistic plant-ants to their ant-plant partners. Evolution, 6, 839853.CrossRefGoogle Scholar
Keeler, K. H. (1985). Extrafloral nectaries on plants in communities without ants: Hawaii. Oikos, 44, 407414.Google Scholar
Koi, S., & Daniel, J. (2015). New and revised life history of the Florida hairstreak Eumaeus atala (Lepidoptera: Lycaenidae) with notes on its current conservation status. Florida Entomologist, 98(4), 11341147.Google Scholar
Koptur, S. (1979). Facultative mutualism between weedy vetches bearing extrafloral nectaries and weedy ants in California. American Journal of Botany, 66, 10161020.Google Scholar
Koptur, S. (1984). Experimental evidence for defense of Inga (Mimosoideae) saplings by ants. Ecology, 65, 17871793.Google Scholar
Koptur, S. (1992). Plants with extrafloral nectaries and ants in Everglades habitats. The Florida Entomologist, 75(1), 3850.Google Scholar
Koptur, S., Jones, I. M., & Peña, J. E. (2015). The influence of host plant extrafloral nectaries on multitrophic interactions: An experimental investigation. PLOSone, 10(9), e0138157.Google Scholar
Koptur, S., & Lawton, J.H. (1988). Interactions among vetches bearing extrafloral nectaries, their biotic protective agents, and herbivores. Ecology, 69, 278293.Google Scholar
Krushelnycky, P. D., Loope, L. L., & Reimer, N. J. (2005). The ecology, policy, and management of ants in Hawaii. Proceedings of the Hawaiian Entomological Society, 37, 125.Google Scholar
Lach, L. (2003). Invasive ants: unwanted partners in ant-plant interactions? Annals of the Missouri Botanical Garden, 90, 91108.Google Scholar
Lach, L. (2007). A mutualism with a native membracid facilitates pollinator displacement by Argentine ants. Ecology, 88, 19942004.Google Scholar
Lach, L., & Hoffmann, B. D. (2011). Are invasive ants better plant-defense mutualists? A comparison of foliage patrolling and herbivory in sites with invasive yellow crazy ants and native weaver ants. Oikos, 120, 916.Google Scholar
Lach, L., Tillberg, C. V., & Suarez, A. V. (2010). Contrasting effects of an invasive ant on a native and an invasive plant. Biological Invasions, 12, 31233133.Google Scholar
Lewinsohn, T. M., & Inacio Prado, P. (2006). Structure in plant/animal interaction assemblages. Oikos, 113(1), 174184.Google Scholar
Lubin, Y. D. (1984). Changes in the native fauna of the Galapagos Islands following invasions by the little red fire ant, Wasmannia auropunctata. Biological Journal of the Linnean Society, 21, 229242.Google Scholar
Marazzi, B., Conti, E., Sanderson, M. J., McMahon, M. M., & Bronstein, J. L. (2013). Diversity and evolution of a trait mediating ant-plant interactions: Insights from extrafloral nectaries in Senna (Leguminosae). Annals of Botany, 111, 12631275.Google Scholar
Maschinski, J., & Wright, S. (2006). Using ecological theory to plan restorations of the endangered Beach jacquemontia (Convolvulaceae) in fragmented habitats. Journal for Nature Conservation, 14, 180189.Google Scholar
Mathew, G., & Anto, M. (2007). In situ conservation of butterflies through establishment of butterfly gardens: A case study at Peechi, Kerala, India. Current Science, 93(3), 337347.Google Scholar
McLain, D. K. (1983). Ants, extrafloral nectaries, and herbivory on the passion vine Passiflora incarnata. American Midland Naturalist, 110, 433439.CrossRefGoogle Scholar
Minno, M., & Minno, M. (1999). Florida Butterfly Gardening: A Complete Guide to Attracting, Identifying, and Enjoying Butterflies. Gainesville, FL: University Press of Florida.Google Scholar
Ness, J. H. (2003). Contrasting exotic Solenopsis invicta and native Forelius pruinosus ants as mutualists with Catalpa bignonioides, a native plant. Ecological Entomology, 28, 247251.Google Scholar
Ness, J. H., & Bronstein, I. L. (2004). The effects of invasive ants on prospective ant mutualists. Biological Invasions, 6, 445461.Google Scholar
Ness, J. H., Morris, W. F., & Bronstein, J. L. (2006). Integrating quality and quantity of mutualistic service to contrast ant species protecting Ferocactus wislizeni. Ecology, 87, 912921.Google Scholar
Oliveira, P. S., Rico-Gray, V., Diaz-Castelazo, C., & Castillo-Guevara, C. (1999). Interactions between ants, extrafloral nectaries, and insect herbivores in Neotropical sand dunes: herbivore deterrence by visiting ants increases fruit set in Opuntia stricta (Cactaceae). Functional Ecology, 13, 623631.CrossRefGoogle Scholar
Rios, R. S., Marquis, R. J., & Flunker, J. C. (2008). Population variation in plant traits associated with ant attraction and herbivory in Chamaecrista fasciculata (Fabaceae). Oecologia, 156(3), 577588.Google Scholar
Rosumek, F. B., Silveira, F. A. O., Neves, F. d. S., Barbosa, N. P. d. U., Diniz, L., Oki, Y., Pezzini, F., Fernandes, G. W., & Cornelissen, T. (2009). Ants on plants: a meta-analysis of the role of ants as plant biotic defenses. Oecologia, 160, 537549.Google Scholar
Savage, A. M., Rudgers, J. A., & Whitney, K. D. (2009). Elevated dominance of extrafloral nectary-bearing plants is associated with increased abundances of an invasive ant and reduced native ant richness. Diversity and Distributions, 15, 751761.Google Scholar
Savage, A. M., & Whitney, K.D. (2011). Trait-mediated indirect interactions in invasions: unique behavioral responses of an invasive ant to plant nectar. Ecosphere, 2, 106.Google Scholar
Sendoya, S. F., Blüthgen, N., Tamashiro, J. Y., Fernandez, F., & Oliveira, P. S. (2016). Foliage-dwelling ants in a neotropical savanna: effects of plant and insect exudates on ant communities. Arthropod-Plant Interactions, 10, 183195.Google Scholar
Soberon Mainero, J., & Martinez del Rio, C. (1985). Cheating and taking advantage in mutualistic associations. In The Biology of Mutualism, ed. Boucher, D. A.. New York: Oxford University Press, pp. 192216.Google Scholar
Torres-Hernandez, L., Rico-Gray, V., Castillo-Guevara, C., & Vergara, J. A. (2000). Effect of nectar-foraging ants and wasps on the reproductive fitness of Turnera ulmifolia (Turneraceae) in a coastal sand dune in Mexico. Acta Zoologica Mexicana, 81, 1321.Google Scholar
Wagner, D., & Kay, A. (2002). Do extrafloral nectaries distract ants from visiting flowers? An experimental test of an overlooked hypothesis. Evolutionary Ecology Research, 4, 293305.Google Scholar
Warren, A. D., & Calhoun, J. V. (2011). Notes on the historical occurrence of Aphrissa neleis in Southern Florida, USA (Lepidoptera: Pieridae: Coliadinae). News of the Lepidopterists’ Society, 53(1), 37.Google Scholar
Weber, M. G., & Keeler, K. H. (2013). The phylogenetic distribution of extrafloral nectaries in plants. Annals of Botany, 111(6), 12511261.Google Scholar
Wetterer, J. K. (2010). Worldwide spread of the graceful twig ant, Pseudomyrmex gracilis (Hymenoptera: Formicidae). Florida Entomologist, 93, 535540.CrossRefGoogle Scholar
Whitcomb, W. H., Denmark, H. A., Buren, W. F., & Carroll, J. F. (1972). Habits and present distribution in Florida of the exotic ant, Pseudomyrmex mexicanus (Hymenoptera: Formicidae). Florida Entomologist, 55, 3133.Google Scholar
Wild Ones® Natural Landscapers Ltd. (2004). Wild Ones: Native Plants, Natural Landscapes – Landscaping with Native Plants, 4th edition. Downloaded from US Environmental Protection Agency website (https://archive.epa.gov/greenacres/web/pdf/wo_2004b.pdf).Google Scholar
Wilder, S. M., Holway, D. A., Suarez, A. V., LeBrun, E. G., & Eubanks, M. D. (2011). Intercontinental differences in resource use reveal the importance of mutualisms in fire ant invasions. Proceedings of the National Academy of Sciences of the USA, 108, 2063920644.Google Scholar
Xu, F. F., & Chen, J. (2009). Comparison of the differences in response to the change of the extrafloral nectar-ant–herbivore interaction system between a native and an introduced Passiflora species. Acta Botanica Yunnanica, 31, 543550.Google Scholar
Zettler, J. A., Taylor, M. D., Allen, C. R., & Spira, T. P. (2004). Consequences of forest clear-cuts for native and non-indigenous ants (Hymenoptera: Formicidae). Annals of the Entomological Society of America, 97, 513518.Google Scholar
Zimmerman, E. C. (1970). Adaptive radiation in Hawaii with special reference to insects. Biotropica, 2, 3238.Google Scholar

References

Abbott, K. L. & Green, P. T.. (2007). Collapse of an ant-scale mutualism in a rainforest on Christmas Island. Oikos 116: 12381246.Google Scholar
Abbott, K. L., Green, P. T. & O’Dowd, D.. (2014). Seasonal shifts in macronutrient preferences in supercolonies of the invasive yellow crazy ant Anoplolepis gracilipes (Smith, 1857) (Hymenoptera: Formicidae) on Christmas Island, Indian Ocean. Austal Entomology 53: 337346.Google Scholar
Altshuler, D. L. (1999). Novel interactions of non-pollinating ants with pollinators and fruit consumers in a tropical forest. Oecologia 119: 600606.Google Scholar
Anderson, G. J., Bernardello, G., Stuessy, T. F. & Crawford, D. J.. (2001). Breeding system and pollination of selected plants endemic to Juan Fernández Islands. American Journal of Botany 88: 220233.Google Scholar
Armbruster, W., Pelabon, C., Hansen, T. & Mulder, C.. (2004). Floral integration and modularity: distinguishing complex adaptations from genetic constraints. In Pigliucci, M. & Preston, K., eds. Phenotypic integration: studying the ecology and evolution of complex phenotypes. Oxford: Oxford University Press, pp. 2349.Google Scholar
Baker, H. G. (1967). Support for Baker’s law – as a rule. Evolution 21: 853856.Google Scholar
Barrett, S. C. H. (1996). The reproductive biology and genetics of island plants. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 351: 725733.Google Scholar
Bawa, K. S. (1982). Outcrossing and the incidence of dioecism in island floras. American Naturalist 119: 866871.CrossRefGoogle Scholar
Beattie, A. J. (2006). The evolution of ant pollination systems. Botanische Jahrbücher Systematik 127: 4355.Google Scholar
Bertelsmeier, C., Luque, G. M. & Courcham, F.. (2013). Global warming may freeze the invasion of big-headed ants. Biological Invasions 15: 15611572.Google Scholar
Bleil, R., Blüthgen, N. & Junker, R. R.. (2011). Ant-plant mutualism in Hawaii? Invasive ants reduce flower parasitism but also exploit floral nectar of the endemic shrub Vaccinium reticulatum (Ericaceae). Pacific Science 65: 291300.Google Scholar
Bond, W. & Slingsby, P.. (1984). Collapse of an ant-plant mutualism: the Argentine ant (Iridomyrmex humilis) and myrmeco-chorous Proteaceae. Ecology 65: 10311037.Google Scholar
Boyer, A. G. & Jetz, W.. (2014). Extinctions and the loss of ecological function in island bird communities. Global Ecology and Biogeography 23: 679688.Google Scholar
Brühl, C. A., Gunsalam, G. & Linsenmair, K. E.. (1998). Stratification of ants (Hymenoptera, Formicidae) in a primary rain forest in Sabah, Borneo. Journal of Tropical Ecology 14: 285297.Google Scholar
Carlquist, S. (1974). Island biology. New York: Columbia University Press.CrossRefGoogle Scholar
Caujape-Castells, J., Tye, A., Crawford, D. J., Santos-Guerra, A. et al. (2010). Conservation of oceanic island floras: present and future global challenges. Perspectives in Plant Ecology, Evolution and Systematics 12: 107129.Google Scholar
Chown, S. L., Gremmen, N. J. M. & Gaston, K. J.. (1998). Ecological biogeography of Southern Ocean Islands: species-area relationships, human impacts, and conservation. The American Naturalist 152: 562575.Google Scholar
Cole, F. R., Medeiros, A. C., Loope, L. L. & Zuehlke, W. W.. (1992). Effects of the Argentine ant on arthropod fauna of Hawaiian high-elevation shrubland. Ecology 73: 13131322.Google Scholar
Cooling, M., Hartley, S., Sim, D. A. & Lester, P. J.. (2012). The widespread collapse of an invasive species: Argentine ants (Linepithema humile) in New Zealand. Biology Letters 8: 430433.Google Scholar
Cooling, M. & Hoffmann, B. D.. (2015). Here today, gone tomorrow: declines and local extinctions of invasive ant populations in the absence of intervention. Biological Invasions 17: 33513357.Google Scholar
Czechowski, W., Marko, B., Erős, K. & Csata, E.. (2011). Pollenivory in ants (Hymenoptera: Formicidae) seems to be much more common than it was thought. Annales Zoologici 61: 519525.CrossRefGoogle Scholar
Daly, H. V. & Magnacca, K. N.. (2003). Insects of Hawaii. Honolulu, HI: University of Hawaii Press.Google Scholar
Davis, N. E., O’Dowd, D. J., Mac Nally, R. & Green, P. T.. (2009). Invasive ants disrupt frugivory by endemic island birds. Biology Letters: rsbl20090655.Google Scholar
Denslow, J. S. (2003). Weeds in paradise: thoughts on the invasibility of tropical islands. Annals of the Missouri Botanical Garden 90: 119127.Google Scholar
Drescher, J., Feldhaar, H. & Blüthgen, N.. (2011). Interspecific aggression, resource monopolization and ecological dominance of Anoplolepis gracilipes within an ant community in Malaysian Borneo. Biotropica 43: 9399.Google Scholar
Dupont, Y. L., Hansen, D. M. & Olesen, J. M.. (2003). Structure of a plant-flower-visitor network in the high-altitude sub-alpine desert of Tenerife, Canary Islands. Ecography 26: 301310.Google Scholar
Dupont, Y. L., Hansen, D. M., Valido, A. & Olesen, J. M.. (2004). Impact of introduced honey bees on native pollination interactions of the endemic Echium wildpretii (Boraginaceae) on Tenerife, Canary Islands. Biological Conservation 118: 301311.Google Scholar
Economo, E. P. & Sarnat, E. M.. (2012). Revisiting the ants of Melanesia and the taxon cycle: historical and human-mediated invasions of a tropical archipelago. The American Naturalist 180: E1E16.Google Scholar
Edwards, P. J., Fleischer-Dogley, F. & Kaiser-Bunbury, C. N.. (2015). The nutrient economy of Lodoicea maldivica, a monodominant palm producing the world’s largest seed. New Phytologist 206: 990999.Google Scholar
Emerson, B. C. & Kolm, N.. (2005). Species diversity can drive speciation. Nature 434: 10151017.Google Scholar
Fisher, B. L. (1997). Biogeography and ecology of the ant fauna of Madagascar (Hymenoptera: Formicidae). Journal of Natural History 31: 269302.Google Scholar
Gaigher, R. & Samways, M. J.. (2013). Strategic management of an invasive ant-scale mutualism enables recovery of a threatened tropical tree species. Biotropica 45: 128134.Google Scholar
Galen, C. & Cuba, J.. (2001). Down the tube: pollinators, predators, and the evolution of flower shape in the Alpine Skypilot, Polemonium viscosum. Evolution 55: 19631971.Google Scholar
Galen, C., Kaczorowski, R., Todd, S. L., Geib, J., et al. (2011). Dosage-dependent impacts of a floral volatile compound on pollinators, larcenists, and the potential for floral evolution in the Alpine Skypilot Polemonium viscosum. The American Naturalist 177: 258272.Google Scholar
Gaume, L., Zacharias, M. & Borges, R. M.. (2005). Ant-plant conflicts and a novel case of castration parasitism in a myrmecophyt. Evolutionary Ecology Research 7: 435452.Google Scholar
Gillespie, R. G. & Roderick, G. K.. (2002). Arthropods on islands: colonization, speciation, and conservation. Annual Review of Entomology 47: 595632.Google Scholar
Giraud, T., Pedersen, J. S. & Keller, L.. (2002). Evolution of supercolonies: the Argentine ants of southern Europe. Proceedings of the National Academy of Sciences of the United States of America 99: 60756079.Google Scholar
Gonzalvez, F. G., Santamaria, L., Corlett, R. T. & Rodriguez-Girones, M. A.. (2013). Flowers attract weaver ants that deter less effective pollinators. Journal of Ecology 101: 7885.Google Scholar
Gorb, E. & Gorb, S.. (2011). How a lack of choice can force ants to climb up waxy plant stems. Arthropod-Plant Interactions 5: 297306.Google Scholar
Gruber, M. A. M., Burne, A. R., Abbott, K. L., Pierce, R. J. et al. (2013). Population decline but increased distribution of an invasive ant genotype on a Pacific atoll. Biological Invasions 15: 599612.Google Scholar
Haber, W. A., Frankie, G. W., Baker, H. G., Baker, I. et al. (1981). Ants like flower nectar. Biotropica 13: 211214.Google Scholar
Haines, I. H. & Haines, J. B.. (1978a). Colony structure, seasonality and food-requirements of crazy ant. Ecological Entomology 3: 109118.Google Scholar
Haines, I. H. (1978b). Pest status of the crazy ant, Anoplolepis longipes (Jerdon) (Hymenoptera: Formicidae), in the Seychelles. Bulletin of Entomological Research 68: 627638.Google Scholar
Hanna, C., Foote, D. & Kremen, C.. (2013). Invasive species management restores a plant-pollinator mutualism in Hawaii. Journal of Applied Ecology 50: 147155.Google Scholar
Hanna, C., Naughton, I., Boser, C., Alarcon, R. et al. (2015). Floral visitation by the Argentine ant reduces bee visitation and plant seed set. Ecology 96: 222230.CrossRefGoogle ScholarPubMed
Hansen, D. M. (2015). Non-native megaherbivores: the case for novel function to manage plant invasions on islands. AoB Plants 7: plv085; doi:10.1093/aobpla/plv085.Google Scholar
Hansen, D. M. & Müller, C. B.. (2009). Invasive ants disrupt gecko pollination and seed dispersal of the endangered plant Roussea simplex in Mauritius. Biotropica 41: 202208.Google Scholar
Hansen, D. M., Olesen, J. M. & Jones, C. G.. (2002). Trees, birds and bees in Mauritius: exploitative competition between introduced honey bees and endemic nectarivorous birds? Journal of Biogeography 29: 721734.Google Scholar
Harley, R. (1991). The greasy pole syndrome. In Huxley, C. R. & Cutler, D. F., eds. Ant-plant interactions. Oxford: Oxford University Press, pp. 430433.Google Scholar
Harper, G. A. & Bunbury, N.. (2015). Invasive rats on tropical islands: their population biology and impacts on native species. Global Ecology and Conservation 3: 607627.Google Scholar
Hee, J. J., Holway, D. A., Suarez, A. V. & Case, T. J.. (2000). Role of propagule size in the success of incipient colonies of the invasive Argentine ant. Conservation Biology 14: 559563.Google Scholar
Herrera, C. M., Herrera, J. & Espadaler, X.. (1984). Nectar thievery by ants from southern Spanish insect-pollinated flowers. Insectes Sociaux 31: 142154.Google Scholar
Hickman, J. C. (1974). Pollination by ants – low-energy system. Science 184: 12901292.Google Scholar
Hill, M., Holm, K., Vel, T., Shah, N. J. et al. (2003). Impact of the introduced yellow crazy ant Anoplolepis gracilipes on Bird Island, Seychelles. Biodiversity and Conservation 12: 19691984.Google Scholar
Hingston, A. B. & McQuillan, P. B.. (1999). Displacement of Tasmanian native megachilid bees by the recently introduced bumblebee Bombus terrestris (Linnaeus, 1758) (Hymenoptera: Apidae). Australian Journal of Zoology 47: 5965.Google Scholar
Hölldobler, B. & Wilson, E. O.. (1990). The ants. Cambridge, MA: Harvard University Press.Google Scholar
Holway, D. A. 1999. Competitive mechanisms underlying the displacement of native ants by the invasive Argentine ant. Ecology 80: 238251.Google Scholar
Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D. et al. (2002). The causes and consequences of ant invasions. Annual Review of Ecology and Systematics 33: 181233.Google Scholar
Janicki, J., Narula, N., Ziegler, M., Guénard, B. et al. (2016). Visualizing and interacting with large-volume biodiversity data using client-server web-mapping applications: the design and implementation of antmaps.org. Ecological Informatics 32: 185193.Google Scholar
Janzen, D. H. (1977). Why don’t ants visit flowers? Biotropica 9: 252.CrossRefGoogle Scholar
Junker, R. R. (2016). Multifunctional and diverse floral scents mediate biotic interactions embedded in communities. In Blande, J. D. & Glinwood, R. T., eds. Deciphering chemical language of plant communication. Heidelberg: Springer, pp. 257282.Google Scholar
Junker, R. R., Bleil, R., Daehler, C. C. & Blüthgen, N.. (2010). Intra-floral resource partitioning between endemic and invasive flower visitors: consequences for pollinator effectiveness. Ecological Entomology 35: 760767.CrossRefGoogle Scholar
Junker, R. R. & Blüthgen, N.. (2008). Floral scents repel potentially nectar-thieving ants. Evolutionary Ecology Research 10: 295308.Google Scholar
Junker, R. R. (2010a). Dependency on floral resources determines the animals’ responses to floral scents. Plant Signaling and Behavior 5: 10141016.Google Scholar
Junker, R. R. (2010b). Floral scents repel facultative flower visitors, but attract obligate ones. Annals of Botany 105: 777782.Google Scholar
Junker, R. R., Daehler, C. C., Dötterl, S., Keller, A. et al. (2011a). Hawaiian ant-flower networks: nectar-thieving ants prefer undefended native over introduced plants with floral defenses. Ecological Monographs 81: 295311.Google Scholar
Junker, R. R., Gershenzon, J. & Unsicker, S. B.. (2011b). Floral odour bouquet loses its ant repellent properties after inhibition of terpene biosynthesis. Journal of Chemical Ecology 37: 13231331.Google Scholar
Kaiser-Bunbury, C. & Blüthgen, N.. (2015). Integrating network ecology with applied conservation: a synthesis and guide to implementation. AoB Plants 7: plv076.Google Scholar
Kaiser-Bunbury, C. N., Cuthbert, H., Fox, R., Birch, D. et al. (2014). Invasion of yellow crazy ant Anoplolepis gracilipes in a Seychelles UNESCO palm forest. Neobiota 22: 4357.CrossRefGoogle Scholar
Kaiser-Bunbury, C. N., Traveset, A. & Hansen, D. M.. (2010). Conservation and restoration of plant-animal mutualisms on oceanic islands. Perspectives in Plant Ecology Evolution and Systematics 12: 131143.Google Scholar
Kaiser-Bunbury, C. N., Valentin, T., Mougal, J., Matatiken, D. et al. (2011). The tolerance of island plant-pollinator networks to alien plants. Journal of Ecology 99: 202213.Google Scholar
Kalinganire, A., Harwood, C. E., Slee, M. U. & Simons, A. J.. (2001). Pollination and fruit-set of Grevillea robusta in western Kenya. Austral Ecology 26: 637648.Google Scholar
Karnauskas, K. B., Donnelly, J. P. & Anchukaitis, K. J.. (2016). Future freshwater stress for island populations. Nature Climate Change: doi:10.1038/nclimate2987.Google Scholar
Kato, M. & Kawakita, A.. (2004). Plant-pollinator interactions in New Caledonia influenced by introduced honey bees. American Journal of Botany 91: 18141827.Google Scholar
Kato, M., Shibata, A. & Yasui, T.. (1999). Impact of introduced honeybees, Apis mellifera, upon native bee communities in the Bonin (Ogasawara) Islands. Research of Population Ecology 41: 217228.Google Scholar
Kier, G., Kreft, H., Lee, T. M., Jetz, W. et al. (2009). A global assessment of endemism and species richness across island and mainland regions. Proceedings of the National Academy of Sciences 106: 93229327.CrossRefGoogle ScholarPubMed
Knudsen, J. T., Eriksson, R., Gershenzon, J. & Stahl, B.. (2006). Diversity and distribution of floral scent. Botanical Review 72: 1120.Google Scholar
Kreft, H., Jetz, W., Mutke, J., Kier, G. et al. (2008). Global diversity of island floras from a macroecological perspective. Ecology Letters 11: 116127.Google Scholar
Kruckeberg, A. R. & Rabinowitz, D.. (1985). Biological aspects of endemism in higher plants. Annual Review of Ecology and Systematics 16: 447479.Google Scholar
Krushelnycky, P. D. & Gillespie, R. G.. (2008). Compositional and functional stability of arthropod communities in the face of ant invasions. Ecological Applications 18: 15471562.Google Scholar
Krushelnycky, P. D., Holway, D. & LeBrun, E. G.. (2010). Invasion process and causes of success. In Lach, L., Parr, C. L. & Abbott, K. L., eds. Ant ecology. Oxford: Oxford University Press, pp. 115136.Google Scholar
Krushelnycky, P. D., Loope, L. L. & Reimer, N. J.. (2005). The ecology, policy, and management of ants in Hawaii. Proceedings of the Hawaiian Entomological Society 37: 125.Google Scholar
Lach, L. (2008a). Argentine ants displace floral arthropods in a biodiversity hotspot. Diversity and Distributions 14: 281290.Google Scholar
Lach, L. (2008b). Floral visitation patterns of two invasive ant species and their effects on other hymenopteran visitors. Ecological Entomology 33: 155160.Google Scholar
Lach, L & Hooper-Bui, L. M.. (2010). Consequences of ant invasions. In Lach, L., Parr, C. L. & Abbott, K. L., eds. Ant ecology. Oxford: Oxford University Press, pp. 261286.Google Scholar
Langkilde, T. (2009). Invasive fire ants alter behavior and morphology of native lizards. Ecology 90: 208217.Google Scholar
LeBrun, E. G., Jones, N. T. & Gilbert, L. E.. (2014). Chemical warfare among invaders: a detoxification interaction facilitates an ant invasion. Science 343: 10141017.Google Scholar
Llusia, J., Penuelas, J., Sardans, J., Owen, S. M. et al. (2010). Measurement of volatile terpene emissions in 70 dominant vascular plant species in Hawaii: aliens emit more than natives. Global Ecology and Biogeography 19: 863874.Google Scholar
Lord, J. M. (2015). Patterns in floral traits and plant breeding systems on Southern Ocean Islands. AoB Plants 7.Google Scholar
Lubin, Y. D. (1984). Changes in the native fauna of the Galapagos Islands following invasion by the little red fire ant, Wasmannia auropunctata. Biological Journal of the Linnean Society 21: 229242.Google Scholar
MacArthur, R. H. & Wilson, E. O.. (1967). The theory of island biogeography. Princeton: Princeton University Press.Google Scholar
Magnacca, K. N. (2007). Conservation status of the endemic bees of Hawai’i, Hylaeus (Nesoprosopis) (Hymenoptera: Colletidae). Pacific Science 61: 173190.Google Scholar
McGlynn, T. P. (1999). The worldwide transfer of ants: geographical distribution and ecological invasions. Journal of Biogeography 26: 535548.Google Scholar
Medeiros, A. C., Loope, L. L. & Cole, F. R.. (1986). Distribution of ants and their effects on endemic biota of Haleakala and Hawaii Volcanoes National Park: a preliminary assessment. In Smith, C. W. & Stone, C. P., eds. Proceedings 6th conference in natural sciences. Hawaii Volcanoes National Park. Honolulu. Honolulu, HI: University of Hawaii, pp. 3952.Google Scholar
Medina, F. M., Bonnaud, E., Vidal, E., Tershy, B. R. et al. (2011). A global review of the impacts of invasive cats on island endangered vertebrates. Global Change Biology 17: 35033510.Google Scholar
Moller, H. (1996). Lessons for invasion theory from social insects. Biological Conservation 78: 125142.Google Scholar
Mooney, H. A., Mack, R. N., McNeely, J. A., Neville, L. E. et al. (eds.) (2005). Invasive alien species. Washington, Covelo, London: Island Press.Google Scholar
Morrison, L. W. 2012. Biological control of Solenopsis fire ants by Pseudacteon parasitoids: theory and practice. Psyche: A Journal of Entomology : 2012: Article ID 424817, http://dx.doi.org/10.1155/2012/424817.Google Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. et al. (2000). Biodiversity hotspots for conservation priorities. Nature 403: 853858.Google Scholar
Ness, J. H. (2006). A mutualism’s indirect costs: the most aggressive plant bodyguards also deter pollinators. Oikos 113: 506514.Google Scholar
Ness, J. H. & Bronstein, J. L.. (2004). The effects of invasive ants on prospective ant mutualists. Biological Invasions 6: 445461.Google Scholar
Newstrom, L. & Robertson, A.. (2005). Progress in understanding pollination systems in New Zealand. New Zealand Journal of Botany 43: 159.Google Scholar
O’Dowd, D. J., Green, P. T. & Lake, P. S.. (2003). Invasional ‘meltdown’ on an oceanic island. Ecology Letters 6: 812817.Google Scholar
Philipp, M., Bocher, J., iegismund, H. R. & Nielsen, L. R.. (2006). Structure of a plant-pollinator network on a pahoehoe lava desert of the Galapagos Islands. Ecography 29: 531540.Google Scholar
Pijl, L. v. d. (1955). Some remarks on myrmecophytes. Phytomorphology 5: 190200.Google Scholar
Quilichini, A. & Debussche, M.. (2000). Seed dispersal and germination patternsin a rare Mediterranean island endemic (Anchusa crispa Viv., Boraginaceae). Acta Oecologica 21: 303313.Google Scholar
Rambuda, T. D. & Johnson, S. D.. (2004). Breeding systems of invasive alien plants in South Africa: does Baker’s rule apply? Diversity & Distributions 10: 409416.Google Scholar
Rodriguez-Girones, M. A., Gonzalvez, F. G., Llandres, A. L., Corlett, R. T. et al. (2013). Possible role of weaver ants, Oecophylla smaragdina, in shaping plant-pollinator interactions in South-East Asia. Journal of Ecology 101: 10001006.Google Scholar
Sakai, A. K., Wagner, W. L., Ferguson, D. M. & Herbst, D. R.. (1995). Biogeographical and ecological correlates of dioecy in the Hawaiian flora. Ecology 76: 25302543.Google Scholar
Sarnat, E. M. & Economo, E. P.. (2012). The ants of Fiji. Berkeley: University of California Press.Google Scholar
Simberloff, D. & Gibbons, L.. (2004). Now you see them, now you don’t! – population crashes of established introduced species Biological Invasions 6: 161172.Google Scholar
Stang, M., Klinkhamer, P. G. & Van Der Meijden, E.. (2006). Size constraints and flower abundance determine the number of interactions in a plant-flower visitor web. Oikos 112: 111121.Google Scholar
Taylor, C. M. & Hastings, A.. (2005). Allee effects in biological invasions. Ecology Letters 8: 895908.Google Scholar
Traveset, A. & Richardson, D. M.. (2006). Biological invasions as disruptors of plant reproductive mutualisms. Trends in Ecology & Evolution 21: 208216.Google Scholar
Tsuji, K., Hasyim, A., Harlion, & Nakamura, K.. (2004). Asian weaver ants, Oecophylla smaragdina, and their repelling of pollinators. Ecological Research 19: 669673.Google Scholar
Tsutsui, N. D. & Suarez, A. V.. 2003. The colony structure and population biology of invasive ants. Conservation Biology 17: 4858.Google Scholar
Vogel, V., Pederson, J. S., d’Ettorre, P., Lehmann, L. et al. (2009). Dynamics and genetic structure of Argentine ant supercolonies in their native range. Evolution 63: 16271639.Google Scholar
Vogel, V., Pederson, J. S., Giraud, T., Krieger, M. et al. (2010). The worldwide expansion of the Argentine ant. Diversity and Distributions 16: 170186.Google Scholar
Webb, C. J. & Kelly, D.. (1993). The reproductive biology of the New Zealand flora. Trends in Ecology & Evolution 8: 442447.Google Scholar
Whittaker, R. J. & Fernández-Palacios, J. M.. (2007). Island biogeography: ecology, evolution, and conservation. Oxford: Oxford University Press.Google Scholar
Willmer, P. G., Nuttman, C. V., Raine, N. E., Stone, G. N. et al. (2009). Floral volatiles controlling ant behaviour. Functional Ecology 23: 888900.Google Scholar
Wilson, E. O. (1961). The nature of the taxon cycle in the Malanesian ant fauna. The American Naturalist 95: 169193.Google Scholar

References

Abbott, K. L. and Green, P. T. (2007). Collapse of an ant-scale mutualism in a rainforest on Christmas Island. Oikos, 116, 12381246.Google Scholar
Blancafort, X. and Gomez, C. (2005). Consequences of the Argentine ant, Linepithema humile (Mayr), invasion on pollination of Euphorbia characias (L.) (Euphorbiaceae). Acta Oecologia, 28, 4955.Google Scholar
Bleil, R., Bluthgen, N. and Junker, R. R. (2011). Ant-plant mutualism in Hawaii? Invasive ants reduce flower parasitism but also exploit floral nectar of the endemic shrub Vaccinium reticulatum. Pacific Science, 65, 291300.Google Scholar
Bond, W and Slingsby, P. (1984). Collapse of an ant-plant mutualism: the Argentine ant (Iridomyrmex humilis) and myrmecochorous Proteaceae. Ecology, 65, 10311037.Google Scholar
Brightwell, R. J. and Silverman, J. (2011). The Argentine ant persists through unfavorable winters via a mutualism facilitated by a native tree. Environmental Entomology, 40, 10191026.Google Scholar
Christian, C. E. (2001). Consequences of a biological invasion reveal the importance of mutualism for plant communities. Nature, 413, 635639.Google Scholar
Cooling, M., Hartley, S. and Lester, P. J. (2012). The widespread collapse of an invasive ant species: Argentine ants (Linepithema humile) in New Zealand. Biology Letters, 8, 430433.Google Scholar
Cooling, M. and Hoffman, B. D. (2015). Here today, gone tomorrow: declines and local extinctions of invasive ant populations in the absence of intervention. Biological Invasions, 17, 33513357.Google Scholar
Davis, N. E., O’Dowd, D. J., Green, P. T. et al. (2008). Effects of an alien ant invasion on abundance, behavior, and reproductive success of endemic island birds. Conservation Biology, 22, 11651176.Google Scholar
Davis, N. E., O’Dowd, D. J., MacNally, R. et al. (2010). Invasive ants disrupt frugivory by endemic island birds. Biology Letters, 6, 8588.Google Scholar
Eddy, T. A. (1961). Foods and feeding patterns of the collared peccary in southern Arizona. Journal of Wildlife Management, 25, 248257.Google Scholar
Field, H. C., Evans, W. E., Hartley, R. et al. (2007). A survey of structural ant pests in the Southwestern U.S.A (Hymenoptera: Formicidae). Sociobiology, 49, 114.Google Scholar
Fitzpatrick, G., Lanan, M. C. and Bronstein, J. L. (2014). Thermal tolerance affects mutualist attendance in an ant-plant mutualism. Oecologia, 176, 129138.Google Scholar
Gaigher, R., Samways, M. J., Henwood, J. et al. (2011). Impact of a mutualism between an invasive ant and honeydew-producing insects on a functionally important tree on a tropical island. Biological Invasions, 13, 17171721.Google Scholar
Green, P. T., O’Dowd, D. J., Abbott, K. L. et al. (2011). Invasional meltdown: Invader-invader mutualism facilitates secondary invasion. Ecology, 92, 17581768.Google Scholar
Green, P. T., O’Dowd, D. J. and Lake, P. S. (2008). Recruitment dynamics in a rainforest seedling community: context- independent impact of a keystone consumer. Oecologia, 156, 373385.Google Scholar
Haines, I. H. and Haines, J. B. (1978). Pest status of the crazy ant, Anoplepis longipes (Jerdon) (Hymenoptera: Formicidae), in the Seychelles. Bulletin of Entomological Research, 68, 627638.Google Scholar
Hanna, C., Naughton, I., Boser, C., Alarcón, R., Hung, K.-L. J. and Holway, D. (2015). Floral visitation by the Argentine ant reduces bee visitation and plant seed set. Ecology, 96: 222230.Google Scholar
Hansen, D. M. and Müller, C. B. (2009). Invasive ants disrupt gecko pollination and seed dispersal of the endangered plant Roussea simplex in Mauritius. Biotropica, 41, 202208.Google Scholar
Helms, K. R. (2013). Mutualisms between ants (Hymenoptera: Formicidae) and honeydew-producing insects: Are they important to invasions? Myrmecological News, 8, 6171.Google Scholar
Helms, K. R. and Vinson, S. B. (2002). Widespread association of the invasive Solenopsis invicta with an invasive mealybug. Ecology, 83, 24252438.Google Scholar
Hill, M., Holm, K., Vel, T. et al. (2003). Impact of the introduced yellow crazy ant Anoplolepis gracilipes on Bird Island, Seychelles. Biodiversity and Conservation, 12, 19691984.Google Scholar
Hoffman, B. D., Andersen, A. N. and Hill, G. E. (1999). Impact of an introduced ant on native rain forest invertebrates: Pheidole megacephala in monsoonal Australia. Oecologia, 120, 595604.Google Scholar
Hoffman, B. D. and Parr, C. L. (2006). An invasion revisited: the African big-headed ant (Pheidole megacephala) in northern Australia. Biological Invasions, 10, 11711181.Google Scholar
Holway, D. A. (1995). Distribution of the Argentine ant (Linepithema humile) in northern California. Conservation Biology, 9, 16341637.Google Scholar
Holway, D. A., Lach, L., Suarez, A. V. et al. (2002). The causes and consequences of ant invasions. Annual Review of Ecology and Systematics, 33, 181233.Google Scholar
Hooper, L. M. and Rust, M. K. (1997). Food preference and patterns of foraging activity of the southern fire ant (Hymenoptera: Formicidae). Annals of the Entomological Society, 90, 246253.Google Scholar
Kerley, G. I. H. and Whitford, W. G. (2000). Impact of grazing and desertification in the Chihuahuan Desert: plant communities, granivores and granivory. American Midland Naturalist, 144, 7891.Google Scholar
Knight, R. L. and Rust, M. K. (1990). The urban ants of California with distribution notes of imported species. Southwestern Entomologist, 15, 167178.Google Scholar
Lach, L. (2003). Invasive ants: unwanted partners in ant-plant interactions? Annals of the Missouri Botanical Garden, 90, 91108.Google Scholar
Lach, L. (2005). Interference and exploitation competition of three nectar-thieving invasive ant species. Insectes Sociaux, 52, 257262.Google Scholar
Lach, L. (2007). A mutualism with a native membracid facilitates pollinator displacement by Argentine ants. Ecology, 88, 19942004.Google Scholar
Lach, L. (2008a). Argentine ants displace floral arthropods in a biodiversity hotspot. Diversity and Distributions, 14, 281290.Google Scholar
Lach, L. (2008b). Floral visitation patterns of two invasive ant species and their effects on other hymenopteran visitors. Ecological Entomology, 33, 155160.Google Scholar
Lach, L. and Hoffmann, B. D. (2011). Are invasive ants better plant-defense mutualists? A comparison of foliage patrolling and herbivory in sites with invasive yellow crazy ants and native weaver ants. Oikos, 120, 916.Google Scholar
Lach, L. and Hooper-Bui, L. M. (2010). Consequences of ant invasions. In Lach, L., Parr, C. L. and Abbott, K. (eds.). Ant ecology. Oxford: Oxford University Press, pp. 261286.Google Scholar
Lanan, M. C. and Bronstein, J. L. (2013). An ant’s-eye view of an ant-plant protection mutualism. Oecologia, 172, 779790.Google Scholar
Lester, P. J. and Tavite, A. (2004). Long-legged ants, Anoplolepis gracilipes (Hymenoptera: Formicidae), have invaded Tokelau, changing composition and dynamics of ant and invertebrate communities. Pacific Science, 58, 391401.Google Scholar
LeVan, K. E. and Holway, D. A. (2015). Ant-aphid interactions increase ant floral visitation and reduce plant reproduction via decreased pollinator visitation. Ecology, 96, 16201630.Google Scholar
LeVan, K. E., Hung, K. J., McCann, K. R. et al. (2014). Floral visitation by the Argentine ant reduces pollinator visitation and seed set in the coast barrel cactus, Ferocactus viridescens. Oecologia, 174, 163171.Google Scholar
Ludka, J., LeVan, K. E. and Holway, D. A. (2015). Infiltration of a facultative ant–plant mutualism by the introduced Argentine ant: effects on mutualist diversity and mutualism benefits. Ecological Entomology, 174, 163171.Google Scholar
Majer, J. D. and De Kock, A. E. (1992). Ant recolonization of sand mines near Richards Bay, South Africa: an evaluation of progress with rehabilitation. South African Journal of Science, 88, 3136.Google Scholar
Menke, S. B., Suarez, A. V., Tillberg, C. V. et al. (2010). Trophic ecology of the invasive argentine ant: spatio-temporal variation in resource assimilation and isotopic enrichment. Oecologia, 164, 763771.Google Scholar
Morris, W. F., Wilson, W. G., Bronstein, J. L. et al. (2005). Environmental forcing and the competitive dynamics of a guild of cactus-tending ant mutualists. Ecology, 86, 31903199.Google Scholar
Morrison, L. W. (2002). Long-term impacts of an arthropod-community invasion by the imported fire ant, Solenopsis invicta. Ecology, 83, 23372345.Google Scholar
Ness, J. H. (2003). Contrasting exotic Solenopsis invicta and native Forelius pruinosus ants as mutualists with Catalpa bignoniodes, a native plant. Ecological Entomology, 28, 247251.Google Scholar
Ness, J. H. (2006). A mutualism’s indirect costs: the most aggressive plant bodyguards also deter pollinators. Oikos, 113, 506514.Google Scholar
Ness, J. H. and Bronstein, J. L. (2004). The effects of invasive ants on prospective ant mutualists. Biological Invasions, 6, 445461.Google Scholar
Ness, J. H., Bronstein, J. L., Andersen, A. N. et al. (2004). Ant body size predicts dispersal distance of ant-adapted seeds: implications of small-ant invasions. Ecology, 85, 12441250.Google Scholar
Ness, J. H., Morales, M. A., Kenison, E. et al. (2012). Reciprocally beneficial interactions between introduced plants & ants induced by the presence of a third introduced species. Oikos, 122, 695704.Google Scholar
Ness, J.H., Morris, W. F. and Bronstein, J. L. (2006). Integrating quality and quantity of mutualistic service to contrast ant species protecting Ferocactus wislizeni. Ecology, 87, 912921.Google Scholar
Ness, J. H., Pfeffer, M., Stark, J., Guest, A., Combs, L. J. and Nathan, E. (2016). In an arid urban matrix, fragment size predicts access to frugivory and rain necessary for plant population persistence. Ecosphere, 7: 119 (e01284).Google Scholar
O’Dowd, D. J., Green, P. T. and Lake, P. S. (2003). Invasional ‘meltdown’ on an oceanic island. Ecology Letters, 9, 812817.Google Scholar
Palmer, T. M., Doak, D. F., Stanton, M. L. et al. (2010). Synergy of multiple partners, including freeloaders, increases host fitness in a multispecies mutualism. Proceedings of the National Academy of Sciences, USA, 107, 1723417239.Google Scholar
Palmer, T. M., Young, T. P., Stanton, M. L. et al. (2000). Short-term dynamics of an acacia ant community in Laikipia, Kenya. Oecologia, 123, 425435.Google Scholar
Riginos, C., Karande, M. A., Rubenstein, D. I. et al. (2015). Disruption of a protective ant-plant mutualism by an invasive ant increases elephant damage to savanna trees. Ecology, 96, 654661.Google Scholar
Savage, A. M., Johnson, S. D., Whitney, K. D. et al. (2011). Do invasive ants respond more strongly to carbohydrate availability than co-occurring non-invasive ants? A test along an active Anoplolepis gracilipes invasion front. Austral Ecology, 36, 310319.Google Scholar
Savage, A. M., Rudgers, J. A. and Whitney, K. D. (2009). Elevated dominance of extrafloral nectary-bearing plants is associated with increased abundances of an invasive ant and reduced native ant richness. Diversity and Distributions, 15, 751761.Google Scholar
Savage, A. M. and Whitney, K. D. (2011). Trait-mediated indirect interactions in invasions: unique behavioral responses of an invasive ant to plant nectar. Ecosphere, 2, article 106.Google Scholar
Sax, D. F., Stachowicz, J. J. and Gaines, S. D. (2005). Species invasions: insights into ecology, evolution, and biogeography. Sunderland, MA: Sinauer.Google Scholar
Schilman, P. E., Lighton, J. B. and Holway, D. A. (2007). Water balance in the Argentine ant (Linepithema humile) compared with five common native ant species from southern California. Physiological Entomology, 32, 17.Google Scholar
Schooley, R. L., Bestelymeyer, B. T. and Kelly, J. F. (2000). Influence of small-scale disturbances by kangaroo rats on Chihuahuan Desert ants. Oecologia, 125, 142149.Google Scholar
Simberloff, D. and Gibbons, L. (2004). Now you see them, now you don’t! – population crashes of established introduced species. Biological Invasions, 6, 161172.Google Scholar
Smith, M. R. (1936). Consideration of the fire ant Solenopsis xyloni as an important southern pest. Journal of Economic Entomology, 29, 120122.Google Scholar
Strayer, D. L. (2012). Eight questions about invasions and ecosystem functioning. Ecology Letters, 15, 11991210.Google Scholar
Styrsky, J. D. and Eubanks, M. D. (2010). A facultative mutualism between aphids and an invasive ant increases plant reproduction. Ecological Entomology, 35, 190199.Google Scholar
Tanaka, H., Ohnishi, H., Tatsuta, H. et al. (2011). An analysis of mutualistic interactions between exotic ants and honeydew producers in the Yanbaru district of Okinawa Island, Japan. Ecological Research, 26, 931941.Google Scholar
Tragust, S., Feldhaar, H., Espadaler, X. et al. (2015). Rapid increase of the parasitic fungus Laboulbenia formicarum in supercolonies of the invasive garden ant Lasius neglectus. Biological Invasions, 17, 27952801.Google Scholar
Vessels, H. K., Bundy, C. S. and McPherson, J. E. (2013). Life history and laboratory rearing of Narnia femorata (Hemiptera: Coreidae) with descriptions of immature stages. Annals of the Entomological Society of America, 106, 575585.Google Scholar
Wetterer, J. K. and Wetterer, A. L. (2003). Ants (Hymenoptera: Formicidae) on non-native neotropical ant-acacias (Fabales: Fabaceae) in Florida. Florida Entomologist, 85, 460463.Google Scholar

References

Abbott, K. L. and Green, P. T.. (2007). Collapse of an ant-scale mutualism in a rainforest on Christmas Island. Oikos 116, 12381246.Google Scholar
Abbott, K. L., Green, P. T., and O’Dowd, D. J.. (2014). Seasonal shifts in macronutrient preferences in supercolonies of the invasive yellow crazy ant Anoplolepis gracilipes (Smith, 1857) (Hymenoptera: Formicidae) on Christmas Island, Indian Ocean. Austral Entomology 53, 337346.Google Scholar
Altfeld, L. and Stiling, P.. (2006). Argentine ants strongly affect some but not all common insects on Baccharis halimifolia. Environmental Entomology 35, 3136.Google Scholar
Andersen, A. N. (1990). The use of ant communities to evaluate change in Australian terrestrial ecosystems: a review and a recipe. Proceedings of the Ecological Society of Australia 16, 347357.Google Scholar
Andersen, A. N. (2003). Ant biodiversity in arid Australia: productivity, species richness and community organisation. Records of the South Australian Museum Monograph Series 7, 7992.Google Scholar
Andersen, A. N. (2007). Ant diversity in arid Australia: a systematic overview. In Advances in ant systematics (Hymenoptera: Formicidae): homage to E.O. Wilson–50 years of contributions, ed. Snelling, R. R., Fisher, B. L., and Ward, P. S.. Gainesville, FL: Memories of the American Entomological Institute, pp. 1951.Google Scholar
AntWiki. (2010). Australian ant distribution patterns. Available from www.antwiki.org/wiki/Australian_Ant_Distribution_Patterns. Accessed 22 January 2016.Google Scholar
Asfiya, W., Yeeles, P., Lach, L., Majer, J. D., Heterick, B., and Didham, R. K.. (2016). Abiotic factors affecting the foraging activity and potential displacement of native ants by the invasive African big-headed ant Pheidole megacephala (FABRICIUS, 1793) (Hymenoptera: Formicidae). Myrmecological News 22, 4354.Google Scholar
Austin, A. D., Yeates, D. K., Cassis, G., Fletcher, M. J., La Salle, J., Lawrence, J. F., McQuillan, P. B., Mound, L. A., Bickel, D. J., Gullan, P. J., Hales, D. F., and Taylor, G. S.. (2004). Insects ‘down under’ – diversity, endemism and evolution of the Australian insect fauna: examples from select orders. Australian Journal of Entomology 43, 216234.Google Scholar
Australian Bureau of Statistics. How many people live in Australia’s coastal areas? Available from www.abs.gov.au/ausstats/abs@.nsf/Previousproducts/1301.0Feature%20Article32004. Accessed 15 March 2016.Google Scholar
Australian Floral Estimates. (2009). Available from www.anbg.gov.au/aust-veg/australian-flora-statistics.html. Accessed 1 February 2016.Google Scholar
Barrett, C. (1928). Ant-house plants and their tenants. Victorian Naturalist, 133137.Google Scholar
Bentley, B. L. (1977). Extrafloral nectaries and protection by pugnacious bodyguards. Annual Review of Ecology and Systematics 8, 407427.Google Scholar
Berg, R. (1975). Myrmecochorous plants in Australia and their dispersal by ants. Australian Journal of Botany 23, 475508.Google Scholar
Blancafort, X. and Gomez, C.. (2005). Consequences of the Argentine ant, Linepithema humile (Mayr), invasion on pollination of Euphorbia characias (L.) (Euphorbiaceae). Acta Oecologica-International Journal of Ecology 28, 4955.Google Scholar
Blatrix, R., Djieto-Lordon, C., Mondolot, L., La Fisca, P., Voglmayr, H., and McKey, D.. (2012). Plant-ants use symbiotic fungi as a food source: new insight into the nutritional ecology of ant-plant interactions. Proceedings of the Royal Society B-Biological Sciences 279,39403947.Google Scholar
Blüthgen, N. and Reifenrath, K.. (2003). Extrafloral nectaries in an Australian rainforest: structure and distribution. Australian Journal of Botany 51, 515527.Google Scholar
Blüthgen, N., Stork, N. E., and Fiedler, K.. (2004). Bottom-up control and co-occurrence in complex communities: honeydew and nectar determine a rainforest ant mosaic. Oikos 106, 344358.Google Scholar
Brinkhoff, Thomas. 2015. City population: World Map. Available from http://world.bymap.org/LandArea.html. Accessed 15 March 2016.Google Scholar
Burwell, C. J., Nakamura, A., McDougall, A., and Neldner, V. J.. (2012). Invasive African big-headed ants, Pheidole megacephala, on coral cays of the southern Great Barrier Reef: distribution and impacts on other ants. Journal of Insect Conservation 16, 777789.Google Scholar
Callan, S. K. and Majer, J. D.. (2009). Impacts of an incursion of African big-headed ants, Pheidole megacephala (Fabricius), in urban bushland in Perth, Western Australia. Pacific Conservation Biology 15, 102115.Google Scholar
Chamberlain, S. A. and Holland, J. N.. (2009). Quantitative synthesis of context dependency in ant–plant protection mutualisms. Ecology 90, 23842392.Google Scholar
Chapman, A. D. (2009). Numbers of living species in Australia and the world. Australian Biological Resources Study, Canberra. Available at www.environment.gov.au/biodiversity/abrs/publications/other/species-numbers/2009/index.html.Google Scholar
Chomicki, G. and Renner, S. S.. (2015). Phylogenetics and molecular clocks reveal the repeated evolution of ant-plants after the late Miocene in Africa and the early Miocene in Australasia and the Neotropics. New Phytologist 207, 411424.Google Scholar
Christian, C. E. (2001). Consequences of a biological invasion reveal the importance of mutualism for plant communities. Nature 413, 635639.Google Scholar
Commons, I. F. B. and Waterhouse, D. F.. (1981). Butterflies of Australia. East Melbourne, Victoria: CSIRO.Google Scholar
Davidson, D. W., Cook, S. C., Snelling, R. R., and Chua, T. H.. (2003). Explaining the abundance of ants in lowland tropical rainforest canopies. Science 300, 969972.Google Scholar
Defossez, E., Djieto-Lordon, C., McKey, D., Selosse, M. A., and Blatrix, R.. (2011). Plant-ants feed their host plant, but above all a fungal symbiont to recycle nitrogen. Proceedings of the Royal Society B-Biological Sciences 278, 14191426.Google Scholar
Department of the Environment. 2016. Where do weeds come from? Available from www.environment.gov.au/biodiversity/invasive/weeds/weeds/where/index.html. Accessed 22 January 2016.Google Scholar
Eastwood, R. and Fraser, A. M.. (1999). Associations between lycaenid butterflies and ants in Australia. Australian Journal of Ecology 24, 503537.Google Scholar
Economo, E. P. and Guenard, B.. (2016). Overall species richness. Available from antmaps.org/? Accessed 1 February 2016.Google Scholar
Environmental Resources Information Network. (2012). Interim biogeographic regionalization for Australia (IBRA), version 7. Department of Sustainability, Environment, Water, Population and Communities, Canberra.Google Scholar
Gaigher, R. and Samways, M. J.. (2013). Strategic management of an invasive ant-scale mutualism enables recovery of a threatened tropical tree species. Biotropica 45, 128134.Google Scholar
Gibb, H. and Cunningham, S. A.. (2009). Does the availability of arboreal honeydew determine the prevalence of ecologically dominant ants in restored habitats? Insectes Sociaux 56,405412.Google Scholar
Gove, A. D., Majer, J. D., and Dunn, R. R.. (2007). A keystone ant species promotes seed dispersal in a “diffuse” mutualism. Oecologia 153, 687697.Google Scholar
Greenslade, P. (2008). Climate variability, biological control and an insect pest outbreak on Australia’s Coral Sea islets: lessons for invertebrate conservation. Journal of Insect Conservation 12, 333342.Google Scholar
Grover, C. D., Kay, A. D., Monson, J. A., Marsh, T. C., and Holway, D. A.. (2007). Linking nutrition and behavioural dominance: carbohydrate scarcity limits aggression and activity in Argentine ants. Proceedings of the Royal Society B-Biological Sciences 274,29512957.Google Scholar
Heil, M. (2013). Let the best one stay: screening of ant defenders by acacia host plants functions independently of partner choice or host sanctions. Journal of Ecology 101, 684688.Google Scholar
Heil, M. (2015). Extrafloral nectar at the plant-insect interface: a spotlight on chemical ecology, phenotypic plasticity, and food webs. In Annual Review of Entomology, Vol. 60, ed. M. R. Berenbaum, pp. 213–232.Google Scholar
Helms, K. R. (2013). Mutualisms between ants (Hymenoptera: Formicidae) and honeydew-producing insects: are they important in ant invasions? Myrmecological News 18, 6171.Google Scholar
Hoffmann, B. D. (2015). Integrating biology into invasive species management is a key principle for eradication success: the case of yellow crazy ant Anoplolepis gracilipes in northern Australia. Bulletin of Entomological Research 105, 141151.Google Scholar
Hoffmann, B. D. and Kay, A.. (2009). Pisonia grandis monocultures limit the spread of an invasive ant-a case of carbohydrate quality? Biological Invasions 11, 14031410.Google Scholar
Hoffmann, B. D. and Saul, W. C.. (2010). Yellow crazy ant (Anoplolepis gracilipes) invasions within undisturbed mainland Australian habitats: no support for biotic resistance hypothesis. Biological Invasions 12, 30933108.Google Scholar
Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D., and Case, T. J.. (2002). The causes and consequences of ant invasions. Annual Review of Ecology and Systematics 33, 181233.Google Scholar
Huxley, C. R. (1978). The ant-plants Myrmecodia and Hydnophytum (Rubiaceae), and the relationships between their morphology, ant occupants, physiology and ecology. New Phytologist 80, 231268.Google Scholar
Huxley, C. R. (1980). Symbiosis between ants and epiphytes. Biological Reviews of the Cambridge Philosophical Society 55, 321340.Google Scholar
Huxley, C. R. (1982). Ant-epiphytes of Australia. In Ant-plant interactions in Australia, ed. Buckley, R. C.. The Hague: Dr W. Junk Publishers, pp. 63–73.Google Scholar
Janzen, D. H. (1974). Epiphytic myrmecophytes in Sarawak: mutualism through the feeding of plants by ants. Biotropica 6, 237259.Google Scholar
Kaiser-Bunbury, C. N., Cuthbert, H., Fox, R., Birch, D., and Bunbury, N.. (2014). Invasion of yellow crazy ant Anoplolepis gracilipes in a Seychelles UNESCO palm forest. NeoBiota 22, 4357.Google Scholar
Kaspari, M., Donoso, D., Lucas, J. A., Zumbusch, T., and Kay, A. D.. (2012). Using nutritional ecology to predict community structure: a field test in Neotropical ants. Ecosphere 3(11), 93.Google Scholar
Kay, A. D., Zumbusch, T., Heinen, J. L., Marsh, T. C., and Holway, D. A.. (2010). Nutrition and interference competition have interactive effects on the behavior and performance of Argentine ants. Ecology 91, 5764.Google Scholar
Lach, L. (2003). Invasive ants: unwanted partners in ant-plant interactions? Annals of the Missouri Botanical Garden 90, 91108.Google Scholar
Lach, L. (2007). A mutualism with a native membracid facilitates pollinator displacement by Argentine ants. Ecology 88, 19942004.Google Scholar
Lach, L. and Barker, G.. (2013). Assessing the effectiveness of tramp ant projects to reduce impacts on biodiversity. Australian Government Department of Sustainability, Water, Population and Communities, Canberra. Available at www.environment.gov.au/biodiversity/invasive/publications/tramp-ant-projects.Google Scholar
Lach, L., Hobbs, R. J., and Majer, J. D.. (2009). Herbivory-induced extrafloral nectar increases native and invasive ant worker survival. Population Ecology 51, 237243.Google Scholar
Lach, L. and Hoffmann, B. D.. (2011). Are invasive ants better plant-defense mutualists? A comparison of foliage patrolling and herbivory in sites with invasive yellow crazy ants and native weaver ants. Oikos 120,916.Google Scholar
Lach, L. and Hooper-Bùi, L. M.. (2010). Consequences of ant invasions. In Ant ecology, ed. Lach, L., Parr, C. L., and Abbott, K. L.. Oxford: Oxford University Press, pp. 261286.Google Scholar
Lach, L. and Hoskin, C.. (2015). Too much to lose: yellow crazy ants in the Wet Tropics. Wildlife Australia 52, 3741.Google Scholar
Lach, L. and Thomas, M. L.. (2008). Invasive ants in Australia: documented and potential ecological consequences. Australian Journal of Entomology 47, 275288.Google Scholar
Lach, L., Tillberg, C. V., and Suarez, A. V.. (2010). Contrasting effects of an invasive ant on a native and an invasive plant. Biological Invasions 12, 31233133.Google Scholar
Lach, L., Volp, T. M., Greenwood, T. A., and Rose, A.. (2016). High invasive ant activity drives predation of a native butterfly larva. Biotropica 48, 146149.Google Scholar
Lengyel, S., Gove, A. D., Latimer, A. M., Majer, J. D., and Dunn, R. R.. (2010). Convergent evolution of seed dispersal by ants, and phylogeny and biogeography in flowering plants: a global survey. Perspectives in Plant Ecology Evolution and Systematics 12, 4355.Google Scholar
Leroy, C., Sejalon-Delmas, N., Jauneau, A., Ruiz-Gonzalez, M. X., Gryta, H., Jargeat, P., Corbara, B., Dejean, A., and Orivel, J.. (2011). Trophic mediation by a fungus in an ant-plant mutualism. Journal of Ecology 99, 583590.Google Scholar
LeVan, K. E., Hung, K.-L. J., McCann, K. R., Ludka, J. T., and Holway, D. A.. (2014). Floral visitation by the Argentine ant reduces pollinator visitation and seed set in the coast barrel cactus, Ferocactus viridescens. Oecologia 174, 163171.Google Scholar
Loope, L. L. and Krushelnycky, P. D.. (2007). Current and potential ant impacts in the Pacific region. Proceedings of the Hawaiian Entomological Society 39, 6973.Google Scholar
Lubertazzi, D., Lubertazzi, M. A. A., McCoy, N., Gove, A. D., Majer, J. D., and Dunn, R. R.. (2010). The ecology of a keystone seed disperser, the ant Rhytidoponera violacea. Journal of Insect Science 10, Article number 158; doi: http://dx.doi.org/10.1673/031.010.14118.Google Scholar
Ludka, J., Levan, K. E., and Holway, D. A.. (2015). Infiltration of a facultative ant-plant mutualism by the introduced Argentine ant: effects on mutualist diversity and mutualism benefits. Ecological Entomology 40, 437443.Google Scholar
Majer, J. D., Gove, A. D., Sochacki, S., Searle, P., and Portlock, C.. (2011). A comparison of the autecology of two seed-taking ant genera, Rhytidoponera and Melophorus. Insectes Sociaux 58, 115125.Google Scholar
Majer, J. D. and Heterick, B. E.. 2015. Invasive ants on the Australia mainland: the other 24 species. Anais XXII Simpósio de Mirmecologia: An International Meeting, Bahia, Ilhéus, Brazil.Google Scholar
Marazzi, B., Bronstein, J. L., and Koptur, S.. (2013). The diversity, ecology and evolution of extrafloral nectaries: current perspectives and future challenges. Annals of Botany 111, 12431250.Google Scholar
Mayer, V. E., Frederickson, M. E., McKey, D., and Blatrix, R.. (2014). Current issues in the evolutionary ecology of ant-plant symbioses. New Phytologist 202, 749764.Google Scholar
Mesler, M. R. and Lu, K. L.. (1983). Seed dispersal of Trillium ovatum (Liliaceae) in second-growth redwood forests. American Journal of Botany 70, 14601467.Google Scholar
Morton, S. R., Smith, D. M. S., Dickman, C. R., Dunkerley, D. L., Friedel, M. H., McAllister, R. R. J., Reid, J. R. W., Roshier, D. A., Smith, M. A., Walsh, F. J., Wardle, G. M., Watson, I. W., and Westoby, M.. (2011). A fresh framework for the ecology of arid Australia. Journal of Arid Environments 75, 313329.Google Scholar
Ness, J. H. and Bronstein, J. L.. (2004). The effects of invasive ants on prospective ant mutualists. Biological Invasions 6, 445461.Google Scholar
Ness, J. H., Bronstein, J. L., Andersen, A. N., and Holland, J. N.. (2004). Ant body size predicts dispersal distance of ant-adapted seeds: Implications of small-ant invasions. Ecology 85, 12441250.Google Scholar
Neumann, G., O’Dowd, D. J., Gullan, P. J., and Green, P. T.. (2016). Diversity, endemism and origins of scale insects on a tropical oceanic island: Implications for management of an invasive ant. Journal of Asia-Pacific Entomology 19, 159166.Google Scholar
O’Dowd, D. J., Green, P. T., and Lake, P. S.. (1999). Status, Impact, and Recommendations for Research and Management of Exotic Invasive Ants in Christmas Island. National Park. Center for the Analysis and Management of Biological Invasions, Monash University.Google Scholar
O’Dowd, D. J., Green, P. T., and Lake, P. S.. (2003). Invasional ‘meltdown’ on an oceanic island. Ecology Letters 6, 812817.Google Scholar
Orians, G. H. and Milewski, A. V.. (2007). Ecology of Australia: the effects of nutrient-poor soils and intense fires. Biological Reviews 82, 393423.Google Scholar
Osunkoya, O. O., Polo, C., and Andersen, A. N.. (2011). Invasion impacts on biodiversity: responses of ant communities to infestation by cat’s claw creeper vine, Macfadyena unguis-cati (Bignoniaceae) in subtropical Australia. Biological Invasions 13, 22892302.Google Scholar
Palmer, T. M. and Brody, A. K.. (2007). Mutualism as reciprocal exploitation: African plant-ants defend foliar but not reproductive structures. Ecology 88, 30043011.Google Scholar
Pringle, E. G., Novo, A., Ableson, I., Barbehenn, R. V., and Vannette, R. L.. (2014). Plant-derived differences in the composition of aphid honeydew and their effects on colonies of aphid-tending ants. Ecology and Evolution 4, 40654079.Google Scholar
Rickson, F. R. (1979). Absorption of animal tissue breakdown products into a plant stem – feeding of a plant by ants. American Journal of Botany 66, 8790.Google Scholar
Rodriguez-Cabal, M. A., Stuble, K. L., Nunez, M. A., and Sanders, N. J.. (2009). Quantitative analysis of the effects of the exotic Argentine ant on seed-dispersal mutualisms. Biology Letters 5, 499502.Google Scholar
Rosumek, F. B., Silveira, F. A. O., Neves, F. D., Barbosa, N. P. D., Diniz, L., Oki, Y., Pezzini, F., Fernandes, G. W., and Cornelissen, T.. (2009). Ants on plants: a meta-analysis of the role of ants as plant biotic defenses. Oecologia 160, 537549.Google Scholar
Rowles, A. D. and O’Dowd, D. J.. (2009a). Impacts of the invasive Argentine ant on native ants and other invertebrates in coastal scrub in south-eastern Australia. Austral Ecology 34, 239248.Google Scholar
Rowles, A. D. and O’Dowd, D. J.. (2009b). New mutualism for old: indirect disruption and direct facilitation of seed dispersal following Argentine ant invasion. Oecologia 158, 709716.Google Scholar
Rowles, A. D. and Silverman, J.. (2009). Carbohydrate supply limits invasion of natural communities by Argentine ants. Oecologia 161, 161171.Google Scholar
Savage, A. M., Rudgers, J. A., and Whitney, K. D.. (2009). Elevated dominance of extrafloral nectary-bearing plants is associated with increased abundances of an invasive ant and reduced native ant richness. Diversity and Distributions 15, 751761.Google Scholar
Savage, A. M. and Whitney, K. D.. (2011). Trait-mediated indirect interactions in invasions: unique behavioral responses of an invasive ant to plant nectar. Ecosphere 2(9), 106.Google Scholar
Simmons, M. (2009). Distinctive features of Acacia. Available from http://anpsa.org.au/aca-feat.html. Accessed 1 February 2016.Google Scholar
Smith, D. P., Haliam, D, and Smith, J. (2004). Biological control of ‘Pulvinaria urbicola’ (Cockerell) (Homoptera: Coccidae) in a ‘Pisonia grandis’ forest on North East Herald Cay in the Coral Sea [online]. General and Applied Entomology: The Journal of the Entomological Society of New South Wales 33, 6168.Google Scholar
State of Queensland. (2010). Managing scale insect outbreaks in the Capricornia Cays. Queensland Parks and Wildlife Service, State of Queensland, Brisbane. Available at www.nprsr.qld.gov.au/parks/capricornia-cays/pdf/scale-insect.pdf.Google Scholar
Stone, G. N., Raine, N. E., Prescott, M., and Willmer, P. G.. (2003). Pollination ecology of acacias (Fabaceae, Mimosoideae). Australian Systematic Botany 16, 103118.Google Scholar
Styrsky, J. D. and Eubanks, M. D.. (2007). Ecological consequences of interactions between ants and honeydew-producing insects. Proceedings of the Royal Society B-Biological Sciences 274, 151164.Google Scholar
Styrsky, J. D. and Eubanks, M. D.. (2010). A facultative mutualism between aphids and an invasive ant increases plant reproduction. Ecological Entomology 35, 190199.Google Scholar
Thomas, M. L. and Holway, D. A.. (2005). Condition-specific competition between invasive Argentine ants and Australian Iridomyrmex. Journal of Animal Ecology 74, 532542.Google Scholar
Trager, M. D., Bhotika, S., Hostetler, J. A., Andrade, G. V., Rodriguez-Cabal, M. A., McKeon, C. S., Osenberg, C. W., and Bolker, B. M.. (2010). Benefits for plants in ant-plant protective mutualisms: a meta-analysis. PLoS ONE 5,e14308.Google Scholar
Volp, T. M. (2015). Interactions between the epiphytic ant-plant Myrmecodia beccarii and its ant inhabitants. Honours thesis. James Cook University, Cairns.Google Scholar
Warren, R. J. and Giladi, I.. (2014). Ant-mediated seed dispersal: a few ant species (Hymenoptera: Formicidae) benefit many plants. Myrmecological News 20, 129140.Google Scholar
Warren, R. J., McMillan, A., King, J. R., Chick, L., and Bradford, M. A.. (2015). Forest invader replaces predation but not dispersal services by a keystone species. Biological Invasions 17, 31533162.Google Scholar
Weber, M. G., Porturas, L. D. and Keeler, K. H.. (2015). World list of plants with extrafloral nectaries. Available at www.extrafloralnectaries.org. Accessed 3 March 2016.Google Scholar
Westoby, M., French, K., Hughes, L., Rice, B., and Rodgerson, L.. (1991a). Why do more plant species use ants for dispersal on infertile compared with fertile soils? Australian Journal of Ecology 16, 445455.Google Scholar
Westoby, M., Hughes, L., and Rice, B. L.. (1991b). Seed dispersal by ants; comparing infertile soils with fertile soils. In Ant-plant interactions, ed. Huxley, C. R. and Cutler, D. F.. Oxford: Oxford University Press, pp. 434447.Google Scholar
Wetterer, J. K. (2005). Worldwide distribution and potential spread of the long-legged ant, Anoplolepis gracilipes (Hymenoptera: Formicidae). Sociobiology 45, 7797.Google Scholar
Wilder, S. M., Barnum, T. R., Holway, D. A., Suarez, A. V., and Eubanks, M. D.. (2013). Introduced fire ants can exclude native ants from critical mutualist-provided resources. Oecologia 172, 197205.Google Scholar
Wilder, S. M., Holway, D. A., Suarez, A. V., and Eubanks, M. D.. (2011a). Macronutrient content of plant-based food affects growth of a carnivorous arthropod. Ecology 92, 325332.Google Scholar
Wilder, S. M., Holway, D. A., Suarez, A. V., LeBrun, E. G., and Eubanks, M. D.. (2011b). Intercontinental differences in resource use reveal the importance of mutualisms in fire ant invasions. Proceedings of the National Academy of Sciences of the United States of America 108, 2063920644.Google Scholar
World Wide Wattle. Distribution and phytogeography of Acacia sens. lat. Available from http://worldwidewattle.com/infogallery/distribution/. Accessed 15 March 2016.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×