Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-29T22:00:30.685Z Has data issue: false hasContentIssue false

Part I - Landscape Mosaics, Habitat Fragmentation, and Edge Effects

Published online by Cambridge University Press:  01 September 2017

Paulo S. Oliveira
Affiliation:
Universidade Estadual de Campinas, Brazil
Suzanne Koptur
Affiliation:
Florida International University
Get access
Type
Chapter
Information
Ant-Plant Interactions
Impacts of Humans on Terrestrial Ecosystems
, pp. 1 - 90
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Albrecht, M. and Gotelli, N. J. (2001). Spatial and temporal niche partitioning in grassland ants. Oecologia, 126, 134141.Google Scholar
Andersen, A. N. (1995). A classification of Australian ant communities, based on functional groups which parallel plant life-forms in relation to stress and disturbance. Journal of Biogeography, 22, 1529.CrossRefGoogle Scholar
Andersen, A. N. (1997). Functional groups and patterns of organization in North American ant communities: a comparison with Australia. Journal of Biogeography, 24, 433460.Google Scholar
Andersen, A. N. and Majer, J. D. (2004). Ants show the way down under: Invertebrates as bioindicators in land management. Frontiers in Ecology and the Environment, 2, 291298.Google Scholar
Anderson, M. J., Crist, T. O., Chase, J. M. et al. (2011). Navigating the multiple meanings of β diversity: a road map for the practicing ecologist. Ecology Letters, 14, 1928.Google Scholar
Beattie, A. J. and Culver, D. C. (1981). The guild of myrmecochores in the herbaceous flora of West Virginia forests. Ecology, 62, 107115.Google Scholar
Bestelmeyer, B. T. and Wiens, J. A. (1996). The effects of land use on the structure of ground-foraging ant communities in the Argentine Chaco. Ecological Applications, 6, 12251240.Google Scholar
Bestelmeyer, B. T. and Wiens, J. A. (2001). Ant biodiversity in semiarid landscape mosaics: the consequences of grazing vs. natural heterogeneity. Ecological Applications, 11, 11231140.CrossRefGoogle Scholar
Bolger, D. T. (2007). Spatial and temporal variation in the Argentine ant edge effect: implications for the mechanism of edge limitation. Biological Conservation, 136, 295305.Google Scholar
Campbell, K. U. and Crist, T. O. (2017). Ant species assembly in constructed grasslands is structured at the patch and landscape levels. Insect Conservation and Diversity, 10, 180191.Google Scholar
Coovert, G. A. (2005). The Ants of Ohio. Columbus, OH: Ohio Biological Survey, Inc.Google Scholar
Crist, T. O. (2009). Biodiversity, species interactions, and functional roles of ants (Hymenoptera, Formicidae) in fragmented landscapes: a review. Myrmecological News, 12, 313.Google Scholar
Dahms, H., Wellstein, C., Wolters, V., and Dauber, J. (2005). Effects of management practices on ant species richness and community composition in grasslands (Hymenoptera: Formicidae). Myrmecologische Nachrichten, 7, 916.Google Scholar
Dauber, J. and Wolters, V. (2005). Colonization of temperate grassland by ants. Basic and Applied Ecology, 6, 8391.Google Scholar
Del Toro, I., Silva, R. R., and Ellison, A. M. (2015). Predicted impacts of climate change on ant functional diversity and distributions in eastern North American forests. Diversity and Distributions, 21, 781791.Google Scholar
Dunn, R. R., Guénard, B., Weiser, M. D., and Sanders, N. J. (2010). Geographic Gradients. In: Lach, L., Parr, C. L., and Abbott (, K. L.editors). Ant Ecology. Oxford: Oxford University Press, pp. 3858.Google Scholar
Ellison, A. M. (2012). Out of Oz: opportunities and challenges for using ants (Hymenoptera: Formicidae) as biological indicators in north-temperate cold biomes. Myrmecological News, 17, 105119.Google Scholar
Ellison, A. M., Gotelli, N. J., Farnsworth, E. J., and Alpert, G. D. (2012). A Field Guide to the Ants of New England. New Haven, CT: Yale University Press.Google Scholar
Ellison, A. M., Record, S., Arguello, A., and Gotelli, N. J. (2007). Rapid inventory of the ant assemblage in a temperate hardwood forest: species composition and assessment of sampling methods. Environmental Entomology, 36, 766775.CrossRefGoogle Scholar
Eubanks, M. D. (2001). Estimates of the direct and indirect effects of red imported fire ants on biological control in field crops. Biological Control, 21(1), 3543.Google Scholar
Fiedler, K. (2001). Ants that associate with Lycaeninae butterfly larvae: diversity, ecology and biogeography. Diversity and Distributions, 7, 4560.Google Scholar
Fitzpatrick, M. C., Sanders, N. J., Ferrier, S., Longino, J. T., Weiser, M. D., and Dunn, R. (2011). Forecasting the future of biodiversity: a test of single- and multi-species models for ants in North America. Ecography, 34, 836847.Google Scholar
Friedrich, R. L. (2010). The Short Term Impacts of Burning and Mowing on Prairie Ant Communities of the Oak Openings Region. Toledo: University of Toledo.Google Scholar
General, D. and Thompson, L. (2008). Ants of Arkansas Post National Memorial: how and where collected. Journal of the Arkansas Academy of Science, 62, 5260.Google Scholar
Grimm, N. B., Foster, D., Groffman, P. et al. (2008). The changing landscape: ecosystem responses to urbanization and pollution across climatic and societal gradients. Frontiers in Ecology and the Environment, 6, 264272.Google Scholar
Guénard, B., Cardinal-De Casas, A., and Dunn, R. R. (2015). High diversity in an urban habitat: are some animal assemblages resilient to long-term anthropogenic change? Urban Ecosystems, 18, 449463.Google Scholar
Haddad, G. Q., Cividanes, F. J., and Martins, I. C. F. (2011). Species diversity of myrmecofauna and araneofauna associated with agroecosystem and forest fragments and their interaction with Carabidae and Staphylinidae (Coleoptera). Florida Entomologist, 94, 500509.Google Scholar
Henderson, G. and Jeanne, R. L. (1992). Population biology and foraging ecology of prairie ants in Southern Wisconsin (Hymenoptera: Formicidae). Journal of the Kansas Entomological Society, 65, 1629.Google Scholar
Herbert, J. J. and Horn, J. D. (2008). Effect of ant attendance by Monomorium minimum (Buckley) (Hymenoptera: Formicidae) on predation and parasitism of the soybean aphid Aphis glycines Matsumura (Hemiptera: Aphididae). Environmental Entomology, 37, 12581263.Google Scholar
Herms, D. A. and McCullough, D. G. (2014). Emerald ash borer invasion of North America: history, biology, ecology, impacts, and management. Annual Review of Entomology, 59, 1330.Google Scholar
Hill, J. G. and Brown, R. L. (2010). The ant (Hymenoptera: Formicidae) fauna of Black Belt Prairie remnants in Alabama and Mississippi. Southeastern Naturalist, 9, 7384.Google Scholar
Hill, J. G., Summerville, K. S., and Brown, R. L. (2008). Habitat associations of ant species (Hymenoptera: Formicidae) in a heterogeneous Mississippi landscape. Environmental Entomology, 37, 453463.Google Scholar
Hoehn, P., Tscharntke, T., Tylianakis, J. M., and Steffan-Dewenter, I. (2008). Functional group diversity of bee pollinators increases crop yield. Proceedings of the Royal Society B, 275, 22832291.Google Scholar
Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D., and Case, T. J. (2002). The causes and consequences of ant invasions. Annual Review of Ecology and Systematics, 33, 181233.Google Scholar
Homburg, K., Homburg, N., Schäfer, F., Schuldt, A., and Assmann, T. (2013). Carabids.org – a dynamic online database of ground beetle species traits (Coleoptera, Carabidae). Insect Conservation and Diversity, 7, 195205.Google Scholar
Homer, C. G., Dewitz, J. A., Yang, L. et al. (2015). Completion of the 2011 National Land Cover Database for the conterminous United States – representing a decade of land cover change information. Photogrammetric Engineering and Remote Sensing, 81, 345354.Google Scholar
Horton, R., Yohe, G., Easterling, W. et al. (2014). Chapter 16: Northeast. Climate Change Impacts in the United States: The Third National Climate Assessment. In: Melillo, J. M., Richmond, T. C., and Yohe, G. W., editors. US Global Change Research Program, pp. 371395.Google Scholar
House, G. J. (1989). Soil arthropods from weed and crop roots of an agroecosystem in a wheat-soybean-corn rotation: impact of tillage and herbicides. Agriculture, Ecosystems and Environment, 25, 233244.Google Scholar
House, G. J. and Stinner, B. R. (1983). Arthropods in no-tillage soybean agroecosystems: community composition and ecosystem interactions. Environmental Management, 7, 2328.Google Scholar
Ivanov, K., Milligan, J., and Keiper, J. (2009). Efficiency of the winkler method for extracting ants (Hymenoptera: Formicidae) from temperate-forest litter. Myrmecological News, 13, 7379.Google Scholar
Johnson, M. T. J. (2008) Bottom-up effects of plant genotype on aphids, ants, and predators. Ecology, 89(1), 141154.CrossRefGoogle ScholarPubMed
Jurzenski, J., Albrecht, M., and Hoback, W. W. (2012). Distribution and diversity of ant genera from selected ecoregions across Nebraska. The Prairie Naturalist 44, 1729.Google Scholar
Klotz, J., Hansen, L., Pospischil, R. and Rust, M. (2008). Urban Ants of North America and Europe: Identification, Biology, and Management. Ithaca, NY: Cornell University Press.Google Scholar
Lane, D. R. and BassiriRad, H. (2005). Diminishing effects of ant mounds on soil heterogeneity across a chronosequence of prairie restoration sites. Pedobiologia, 49, 359366.Google Scholar
Lessard, J., Dunn, R. R., Parker, C. R., and Sanders, N. J. (2007). Rarity and diversity in forest ant assemblages of Great Smoky Mountains National Park. Southeastern Naturalist, 6, 215228.Google Scholar
Lessard, J. P., Dunn, R. R., and Sanders, N. J. (2009). Temperature-mediated coexistence in temperate forest ant communities. Insectes Sociaux, 56, 149156.Google Scholar
Lobry de Bruyn, L. A. (1999). Ants as bioindicators of soil function in rural environments. Agriculture, Ecosystems and Environment, 74, 425441.Google Scholar
Longino, J. T. and Nadkarni, N. M. (1990). A comparison of ground and canopy leaf litter ants (Hymenoptera: Formicidae) in a neotropical montane forest. Psyche, 97, 8193.Google Scholar
Lubowski, R. N., Bucholtz, S., Claassen, R. et al. (2006). Environmental effects of agricultural land-use change: the role of economics and policy. US Department of Agriculture, Economic Research Report, 25, pp. 175.Google Scholar
Lucky, A., Savage, A. M. Nichols, L. M. et al. (2014). Ecologists, educators, and writers collaborate with the public to assess backyard diversity in The School of Ants Project. Ecosphere, 5, 123.Google Scholar
Mahon, M. B., Campbell, K. U. and Crist, T. O. (2017). Effectiveness of Winkler litter extraction and pitfall traps in sampling ant communities and functional groups in a temperate forest. Environmental Entomology, 46, 470479.Google Scholar
Martelli, M. G., Ward, M. M., and Fraser, A. M. (2004). Ant diversity sampling on the southern Cumberland Plateau: a comparison of litter sifting and pitfall trapping. Southeastern Naturalist, 3, 113126.Google Scholar
Medley, K. E., Okey, B. W., Barrett, G. W., Lucas, M. F. and Renwick, W. H. (1995). Landscape change with agricultural intensification in a rural watershed, southwestern Ohio, U.S.A. Landscape Ecology, 10, 161176.Google Scholar
Menalled, F. D., Smith, R. G., Dauer, J. T., and Fox, T. B. (2007). Impact of agricultural management on carabid communities and weed seed predation. Agriculture, Ecosystems, and Environment, 118, 4954.Google Scholar
Menke, S. B., Gaulke, E., Hamel, A., and Vachter, N. (2015). The effects of restoration age and prescribed burns on grassland ant community structure. Environmental Entomology, 44(5), 13361347.Google Scholar
Menke, S. B., Guénard, B., Sexton, J. O. et al. (2011). Urban areas may serve as habitat and corridors for dry-adapted, heat tolerant species; an example from ants. Urban Ecosystems, 14, 135163.Google Scholar
Merickel, F. W. and Clark, W. H. (1994). Tetramorium caespitum (Linnaeus) and Liometopum luctuosum WM Wheeler (Hymenoptera: Formicidae): New state records for Idaho and Oregon, with notes on their natural history. Pan-Pacific Entomologist, 70, 148158.Google Scholar
Moranz, R. A., Debinski, D. M., Winkler, L. et al. (2013). Effects of grassland management practices on ant functional groups in central North America. Journal of Insect Conservation, 17, 699713.Google Scholar
Morrison, L. W. (2002). Long-term impacts of an arthropod-community invasion by the imported fire ant, Solenopsis invicta. Ecology, 83, 23372345.Google Scholar
Morrison, L. W. and Porter, S. D. (2003). Positive association between densities of the Red Imported Fire Ant, Solenopsis invicta (Hymenoptera: Formicidae) and generalized ant and arthropod diversity. Environmental Entomology, 32, 548554.Google Scholar
Morrison, L. W., Korzukhin, D., and Porter, S. D. (2005). Predicted range expansion of the invasive fire ant, Solenopsis invicta, in the eastern United States based on the VEMAP global warming scenario. Diversity and Distributions, 11, 199204.Google Scholar
Nemec, K. T. (2014). Tallgrass prairie ants: their species composition, ecological roles, and response to management. Journal of Insect Conservation, 18, 509521.Google Scholar
Pećaravić, M., Danoff-Burg, J., and Dunn, R. R. (2010). Biodiversity on broadway – enigmatic diversity of the societies of ants (Formicidae) on the streets of New York City. Public Library of Science Biology, 5, 18.Google Scholar
Peck, S. L., McQuaid, B. and Campbell, C. L. (1998). Using ant species (Hymenoptera: Formicidae) as a biological indicator of agroecosystem condition. Environmental Entomology, 27, 11021110.Google Scholar
Pelini, S. L., Boudreau, M. McCoy, N. et al. (2011). Effects of short-term warming on low and high latitude forest ant communities. Ecosphere, 2, art 62.Google Scholar
Pelini, S. L., Diamond, S. E., MacLean, H. et al. (2012). Common garden experiments reveal uncommon responses across temperatures, locations, and species of ants. Ecology and Evolution, 2, 30093015.Google Scholar
Penick, C. A, Savage, A. M. and Dunn, R. R. (2015). Stable isotopes reveal links between human food inputs and urban ant diets. Proceedings of the Royal Society B, 282(1806), 18.Google Scholar
Peters, V. E., Campbell, K. U., Dienno, G. et al. (2016). Ants and plants as indicators of biodiversity, ecosystem services and conservation value in constructed grasslands. Biodiversity and Conservation, 25, 14811501.Google Scholar
Peterson, D. E., Zwolfer, K., and Frandkin, J. (1998). Ant fauna of reconstructed tallgrass prairie in Northeastern Illinois. Transactions of the Illinois State Academy of Science, 91, 8590.Google Scholar
Philpott, S. M., Perfecto, I., Armbrecht, I., and Parr, C. L. (2010). Ant diversity and function in disturbed and changing habitats. In Lach, L., Parr, C. L., and Abbott, K. L., editors. Ant Ecology. Oxford: Oxford University Press, pp. 137156.Google Scholar
Phipps, S. J. (2006). Biodiversity of Ants (Hymenoptera: Formicidae) in Restored Grasslands of Different Ages. University of Missouri, Columbia.Google Scholar
Pryor, S. C., Scavia, D. Downer, C. et al. (2014). Chapter 18: Midwest. In: Melillo, J. M., Richmond, T. C., and Yohe, G. W., editors. Climate Change Impacts in the United States: The Third National Climate Assessment. US Global Change Research Program, pp. 418440.Google Scholar
Ragsdale, D. W., Landis, D. A., Brodeur, J., Heimpel, G. E., and Desneux, N. (2011). Ecology and management of the soybean aphid in North America. Annual Review of Entomology, 56, 375399.Google Scholar
Renwick, W. H., Vanni, M. J., Zhang, Q., and Patton, J. (2008). Water quality trends and changing agricultural practices in a Midwest U.S. watershed, 1994–2006. Journal of Environmental Quality, 37, 18621874.Google Scholar
Samson, F. and Knopf, F. (1994). Prairie conservation in North America. BioScience, 44(6), 418421.Google Scholar
Sanford, M. P., Manley, P. N. and Murphy, D. D. (2009). Effects of urban development on ant communities: Implications for ecosystem services and management. Conservation Biology, 23, 131141.Google Scholar
Spiesman, B. J. and Cumming, G. S. (2008). Communities in context: the influences of multiscale environmental variation on local ant community structure. Landscape Ecology, 23, 313325.Google Scholar
Steiner, F. M., Schlick-Steiner, B. C., Trager, J. C. et al. (2006). Tetramorium tsushimae, a new invasive ant in North America. Biological Invasions, 8, 117123.Google Scholar
Steiner, F. M., Schlick-Steiner, B. C., Vanderwal, J. et al. (2008). Combined modelling of distribution and niche in invasion biology: a case study of two invasive Tetramorium ant species. Diversity and Distributions, 14, 538545.Google Scholar
Strittholt, J. R. and Boerner, R. E. J. (1995). Applying biodiversity gap analysis in a regional nature reserve design for the Edge-of-Appalachia, Ohio (U.S.A.). Conservation Biology, 9, 14921505.Google Scholar
Talbot, M. (1934). Distribution of ant species in the Chicago region with reference to ecological factors and physiological toleration. Ecology, 15, 416439.Google Scholar
Talbot, M. (1975). A list of the ants of the Edwin S. George Reserve. The Great Lakes Entomologist, 8, 245246.Google Scholar
Theobald, D. M. (2002). Land-use dynamics beyond the American urban fringe. The Geographical Review, 91, 544564.Google Scholar
Thompson, B. and McLachlan, S. (2007). The effects of urbanization on ant communities and myrmecochory in Manitoba, Canada. Urban Ecosystems, 10, 4352.Google Scholar
Underwood, E. C. and Fisher, B. L. (2006). The role of ants in conservation monitoring: if, when, and how. Biological Conservation, 132, 166182.Google Scholar
Uno, S., Cotton, J. and Philpott, S. M. (2010). Diversity, abundance, and species composition of ants in urban green spaces. Urban Ecosystems, 13, 425441.Google Scholar
US Department of Agriculture (2016). Farm Service Agency, Conservation Reserve Program. From: www.fsa.usda.gov/programs-and-services/conservation-programs (Accessed September 2016).Google Scholar
Voigt, W., Perner, J., and Hefin Jones, T. (2007). Using functional groups to investigate community response to environmental changes: two grassland case studies. Global Change Biology, 13, 17101721.Google Scholar
Wang, C., Strazanac, J. S., and Butler, L. (2001). Association between ants (Hymenoptera: Formicidae) and habitat characteristics in oak-dominated mixed forests. Environmental Entomology, 30, 842848.Google Scholar
Wang, D., McSweeney, K., Lowery, B., and Norman, J. M. (1995). Nest structure of ant Lasius neoniger Emery and its implications to soil modification. Geoderma, 66, 259272.CrossRefGoogle Scholar
Wetterer, J. K. (2011). Worldwide spread of the yellow-footed ant, Nylanderia flavipes (Hymenoptera: Formicidae). Florida Entomologist, 94, 582587.Google Scholar
Wetterer, J. K. and Radchenko, A. G. (2011). Worldwide spread of the ruby ant, Myrmica rubra (Hymenoptera: Formicidae). Myrmecological News, 14, 8796.Google Scholar
Wheeler, G. C., Wheeler, J. N., and Kannowski, P. B. (1994). Checklist of the ants of Michigan (Hymenoptera: Formicidae). The Great Lakes Entomologist, 26, 297310.Google Scholar
Wielgoss, A., Tscharntke, T., Rumede, A. et al. (2014). Interaction complexity matters: disentangling services and disservices of ant communities driving yield in tropical agroecosystems. Proceedings of the Royal Society B, 281, 110.Google Scholar
Wilson, E. O. (2003). Pheidole in the New World: A Dominant, Hyperdiverse Ant Genus. Cambridge, MA: Harvard University Press.Google Scholar
Wyckhuys, K. A. G., Koch, R. L. and Heimpel, G. E. (2007). Physical and ant-mediated refuges from parasitism: implications for non-target effects in biological control. Biological Control, 40, 306313.Google Scholar

References

Adis, J., Lubin, Y. D. & Montgomery, G. G. (1984). Arthropods from the canopy of inundated and terra firme forests near Manaus, Brazil, with critical considerations on the pyrethrum-fogging technique. Studies on Neotropical Fauna and Environment, 19, 223–36.Google Scholar
Agosti, D., Majer, J. D., Alonso, L. E. & Schultz, T. R. (2000). Ants: Standard Methods for Measuring and Monitoring Biodiversity. Washington, DC: Smithsonian Institution Press.Google Scholar
Basset, Y., Cizek, L., Cuenoud, P. et al. (2012). Arthropod diversity in a tropical forest. Science, 338, 1481–4.Google Scholar
Bihn, J. H., Verhaagh, M., Brändle, M. & Brandl, R. (2008). Do secondary forests act as refuges for old growth forest animals? Recovery of ant diversity in the Atlantic Forest of Brazil. Biological Conservation, 141, 733–43.Google Scholar
Blüthgen, N. & Fiedler, K. (2002). Interactions between weaver ants Oecophylla smaragdina, homopterans, trees and lianas in an Australian rain forest canopy. Journal of Animal Ecology, 71, 793801.Google Scholar
Blüthgen, N., Gebauer, G. & Fiedler, K. (2003). Disentangling a rainforest food web using stable isotopes: dietary diversity in a species-rich ant community. Oecologia, 137, 426–35.Google Scholar
Blüthgen, N., Mezger, D. & Linsenmair, K. E. (2006). Ant-hemipteran trophobioses in a Bornean rainforest – diversity, specificity and monopolisation. Insectes Sociaux, 53, 194203.Google Scholar
Blüthgen, N., Verhaagh, M., Goitia, W. et al. (2000). How plants shape the ant community in the Amazonian rainforest canopy: the key role of extrafloral nectaries and homopteran honeydew. Oecologia, 125, 229–40.Google Scholar
Butler, R. A. & Laurance, W. F. (2008). New strategies for conserving tropical forests. Trends in Ecology & Evolution, 23, 469–72.Google Scholar
Camarota, F., Powell, S., Vasconcelos, H. L., Priest, G. & Marquis, R. J. (2015). Extrafloral nectaries have a limited effect on the structure of arboreal ant communities in a Neotropical savanna. Ecology, 96, 231–40.Google Scholar
Chazdon, R. L. (2014). Second Growth. Chicago: University of Chicago Press.Google Scholar
DaRocha, W. D., Ribeiro, S. P., Neves, F. S. et al. (2015). How does bromeliad distribution structure the arboreal ant assemblage (Hymenoptera: Formicidae) on a single tree in a Brazilian Atlantic Forest agroecosystem? Myrmecological News, 21, 8392.Google Scholar
Davidson, D. W., Cook, S. C., Snelling, R. R. & Chua, T. H. (2003). Explaining the abundance of ants in lowland tropical rainforest canopies. Science, 300, 969–72.Google Scholar
de Castro Solar, R. R., Barlow, J., Ferreira, J. et al. (2015). How pervasive is biotic homogenization in human-modified tropical forest landscapes? Ecology Letters, 18, 1108–18.Google Scholar
Dejean, A., Corbara, B., Orivel, J. & Leponce, M. (2007). Rainforest canopy ants: the implications of territoriality and predatory behavior. Functional Ecosystems and Communities, 1, 105–20.Google Scholar
Dejean, A., Djieto-Lordon, C., Cereghino, R. & Leponce, M. (2008). Ontogenetic succession and the ant mosaic: an empirical approach using pioneer trees. Basic and Applied Ecology, 9, 316–23.Google Scholar
Dejean, A., Fisher, B. L., Corbara, B. et al. (2010). Spatial distribution of dominant arboreal ants in a Malagasy coastal rainforest: gaps and presence of an invasive species. PLoS ONE, 5, e9319.Google Scholar
Ewers, R. M., Boyle, M. J. W., Gleave, R. A. et al. (2015). Logging cuts the functional importance of invertebrates in tropical rainforest. Nature Communications, 6, 6836.Google Scholar
Fayle, T. M., Edwards, D. P., Foster, W. A., Yusah, K. M. & Turner, E. C. (2015). An ant-plant by-product mutualism is robust to selective logging of rain forest and conversion to oil palm plantation. Oecologia, 178, 441–50.Google Scholar
Fayle, T. M., Turner, E. C. & Foster, W. A. (2013). Ant mosaics occur in SE Asian oil palm plantation but not rain forest and are influenced by the presence of nest-sites and non-native species. Ecography, 36, 1051–7.Google Scholar
Fayle, T. M., Turner, E. C., Snaddon, J. L. et al. (2010). Oil palm expansion into rain forest greatly reduces ant biodiversity in canopy, epiphytes and leaf-litter. Basic and Applied Ecology, 11, 337–45.Google Scholar
Feldhaar, H., Fiala, B., Hashim, R. B. & Maschwitz, U. (2003). Patterns of the Crematogaster-Macaranga association: The ant partner makes the difference. Insectes Sociaux, 50, 919.Google Scholar
Floren, A. (2005). How reliable are data on arboreal ant (Hymenoptera: Formicidae) communities collected by insecticidal fogging? Myrmecologische Nachrichten, 7, 91–4.Google Scholar
Floren, A., Freking, A., Biehl, M. & Linsenmair, K. E. (2001). Anthropogenic disturbance changes the structure of arboreal tropical ant communities. Ecography, 24, 547–54.Google Scholar
Floren, A. & Linsenmair, K. E. (1997). Diversity and recolonization dynamics of selected arthropod groups on different tree species in a lowland rainforest in Sabah, with special reference to Formicidae. In Canopy Arthropods, ed. Stork, N. E., Adis, J. & Didham, R. K.. London: Chapman & Hall, pp. 344–81.Google Scholar
Floren, A., Wetzel, W. & Staab, M. (2014). The contribution of canopy species to overall ant diversity (Hymenoptera: Formicidae) in temperate and tropical ecosystems. Myrmecological News, 19, 6574.Google Scholar
Frederickson, M. E. & Gordon, D. M. (2007). The devil to pay: a cost of mutualism with Myrmelachista schumanni ants in ‘devil’s gardens’ is increased herbivory on Duroia hirsuta trees. Proceedings of the Royal Society B-Biological Sciences, 274, 1117–23.Google Scholar
Gullan, P. J., Buckley, R. C. & Ward, P. S. (1993). Ant-tended scale insects (Hemiptera: Coc-cidae: Myzolecanium) within lowland rain forest trees in Papua New Guinea. Journal of Tropical Ecology, 9, 8191.Google Scholar
Huxley, C. R. (1978). The ant-plants Myrmecodia and Hydnophytum (Rubiaceae), and the relationships between their morphology, ant occupants, physiology and ecology. New Phytologist, 80, 231–68.Google Scholar
Janzen, D. H. (1966). Coevolution of mutualism between ants and acacias in Central America. Evolution, 20, 249–75.Google Scholar
Jimenez-Soto, E. & Philpott, S. M. (2015). Size matters: nest colonization patterns for twig-nesting ants. Ecology and Evolution, 5, 3288–98.Google Scholar
Klimes, P., Fibich, P., Idigel, C. & Rimandai, M. (2015). Disentangling the diversity of arboreal ant communities in tropical forest trees. PLoS ONE, 10, e0117853.Google Scholar
Klimes, P., Husnik, F., Borovanska, M. & Gullan, P. J. (2016). Contrasting tri-trophic food webs between primary and secondary tropical forest: role of species ecology and phylogeny (Abstract). In Annual Meeting of the Association for Tropical Biology and Conservation. Montpellier: 53 rd ATBC, Le Corum, p. 220.Google Scholar
Klimes, P., Idigel, C., Rimandai, M. et al. (2012). Why are there more arboreal ant species in primary than in secondary tropical forests? Journal of Animal Ecology, 81, 1103–12.Google Scholar
Klimes, P. & McArthur, A. (2014). Diversity and ecology of arboricolous ant communities of Camponotus (Hymenoptera: Formicidae) in a New Guinea rainforest with description of four new species. Myrmecological News, 20, 141–58.Google Scholar
Lach, L., Parr, L. C. & Abbott, K. L. (2010). Ant Ecology. New York: Oxford University Press.Google Scholar
Letourneau, D. K. & Barbosa, P. (1999). Ants, stem borers, and pubescence in Endospermum in Papua New Guinea. Biotropica, 31, 295302.Google Scholar
Lowman, M. D., Schowalter, T. D. & Franklin, J. F. (2012). Methods in Forest Canopy Research. London: University of California Press.Google Scholar
Novotny, V. (2010). Rain forest conservation in a tribal world: why forest dwellers prefer loggers to conservationists. Biotropica, 42, 546–9.Google Scholar
Novotny, V., Miller, S. E., Leps, J. et al. (2004). No tree an island: the plant-caterpillar food web of a secondary rain forest in New Guinea. Ecology Letters, 7, 10901100.Google Scholar
Oliveira, P. S., Freitas, A. V. L. & Del-Claro, K. (2002). Ant foraging on plant foliage: contrasting effects. In The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna, ed. Oliveira, P. S. & Marquis, R. J.. New York: Columbia University Press, pp. 287305.Google Scholar
R Core Team (2015). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.Google Scholar
Ribas, C. R., Schoereder, J. H., Pic, M. & Soares, S. M. (2003). Tree heterogeneity, resource availability, and larger scale processes regulating arboreal ant species richness. Austral Ecology, 28, 305–14.Google Scholar
Rico-Gray, V. & Oliveira, P. S. (2007). The Ecology and Evolution of Ant-Plant Interactions. Chicago: University of Chicago Press.Google Scholar
Ryder Wilkie, K. T., Mertl, A. L. & Traniello, J. F. A. (2010). Species diversity and distribution patterns of the ants of Amazonian Ecuador. PLoS ONE, 5, e13146.Google Scholar
Satoh, T., Yoshida, T., Koyama, S. et al. (2016). Resource partitioning based on body size contributes to the species diversity of wood-boring beetles and arboreal nesting ants. Insect Conservation and Diversity, 9, 412.Google Scholar
Shearman, P. & Bryan, J. (2011). A bioregional analysis of the distribution of rainforest cover, deforestation and degradation in Papua New Guinea. Austral Ecology, 36, 924.Google Scholar
Šmilauer, P. & Lepš, J. (2014). Multivariate Analysis of Ecological Data Using CANOCO 5. Cambridge: Cambridge University Press.Google Scholar
Staab, M., Blüthgen, N. & Klein, A.-M. (2015). Tree diversity alters the structure of a tri-trophic network in a biodiversity experiment. Oikos, 124, 827–34.Google Scholar
Staab, M., Schuldt, A., Assmann, T. & Klein, A.-M. (2014). Tree diversity promotes predator but not omnivore ants in a subtropical Chinese forest. Ecological Entomology, 39, 637–47.Google Scholar
Tanaka, H. O., Yamane, S. & Itioka, T. (2010). Within-tree distribution of nest sites and foraging areas of ants on canopy trees in a tropical rainforest in Borneo. Population Ecology, 52, 147–57.Google Scholar
Toussaint, E. F. A., Hall, R., Monaghan, M. T. et al. (2014). The towering orogeny of New Guinea as a trigger for arthropod megadiversity. Nature Communications, 5, 4001.Google Scholar
Vasconcelos, H. L. & Bruna, E. M. (2012). Arthropod responses to the experimental isolation of Amazonian forest fragments. Zoologia, 29, 515–30.Google Scholar
Wardhaugh, C. W., Stork, N. E. & Edwards, W. (2013). Specialization of rainforest canopy beetles to host trees and microhabitats: not all specialists are leaf-feeding herbivores. Biological Journal of the Linnean Society, 109, 215–28.Google Scholar
Whitfeld, T. J. S., Lasky, J. R., Damas, K. et al. (2014). Species richness, forest structure, and functional diversity during succession in the New Guinea lowlands. Biotropica, 46, 538–48.Google Scholar
Whitfeld, T. J. S., Novotny, V., Miller, S. E. et al. (2012). Predicting tropical insect herbivore abundance from host plant traits and phylogeny. Ecology, 93, S211–S22.Google Scholar
Widodo, E. S., Naito, T., Mohamed, M. & Hashimoto, Y. (2004). Effects of selective logging on the arboreal ants of a Bornean rainforest. Entomological Science, 7, 341–9.Google Scholar
Woodcock, P., Edwards, D. P., Fayle, T. M. et al. (2011). The conservation value of South East Asia’s highly degraded forests: evidence from leaf-litter ants. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 3256–64.Google Scholar
Woodcock, P., Edwards, D. P., Newton, R. J. et al. (2013). Impacts of intensive logging on the trophic organisation of ant communities in a biodiversity hotspot. PLoS ONE, 8, e60756.Google Scholar
Yanoviak, S. P., Silveri, C., Hamm, C. A. & Solis, M. (2012). Stem characteristics and ant body size in a Costa Rican rain forest. Journal of Tropical Ecology, 28, 199204.Google Scholar
Yusah, K. M., Fayle, T. M., Harris, G. & Foster, W. A. (2012). Optimizing diversity assessment protocols for high canopy ants in tropical rain forest. Biotropica, 44, 7381.Google Scholar
Yusah, K. M. & Foster, W. A. (2016). Tree size and habitat complexity affect ant communities (Hymenoptera: Formicidae) in the high canopy of Bornean rain forest. Myrmecological News, 23, 1523.Google Scholar

References

Blüthgen, N., Menzel, F., Hovestadt, T., Fiala, B. and Bluthgen, N. (2007). Specialization, constraints, and conflicting interests in mutualistic networks. Current Biology, 17, 341346.Google Scholar
Blüthgen, N., Verhaagh, M., Goitía, W. and Blüthgen, N. (2000). Ant nests in tank bromeliads – an example of non-specific interaction. Insect. Soc., 47, 313316.Google Scholar
Bruna, E. M., Izzo, T. J., Inouye, B. D., Uriarte, M. and Vasconcelos, H. L. (2011). Asymmetric dispersal and colonization success of Amazonian plant-ants queens. PLoS ONE, 6, e22937.Google Scholar
Bruna, E. M., Vasconcelos, H. L. and Heredia, S. (2005). The effect of habitat fragmentation on communities of mutualists: Amazonian ants and their host plants. Biological Conservation, 124, 209216.Google Scholar
Chazdon, R. L. (2014). Second Growth: The Promise of Tropical Forest Regeneration in an Age of Deforestation. Chicago: University of Chicago Press.Google Scholar
DaRocha, W. D., Neves, F. S., Dáttilo, W. and Delabie, J. H. C. (2016). Epiphytic bromeliads as key components for maintenance of ant diversity and ant–bromeliad interactions in agroforestry system canopies. Forest Ecology and Management, 372, 128136.Google Scholar
Dáttilo, W., Guimarães, P. R. and Izzo, T. J. (2013). Spatial structure of ant-plant mutualistic networks. Oikos, 122, 16431648.Google Scholar
Dejean, A., Durou, S., Olmsted, I., Snelling, R. R. and Orivel, J. (2003). Nest site selection by ants in a flooded Mexican mangrove, with special reference to the epiphytic orchid Myrmecophila christinae. Journal of Tropical Ecology, 19, 325331.Google Scholar
Dejean, A., Olmsted, I. and Snelling, R. R. (1995). Tree-epiphyte-ant relationships in the low inundated forest of Sian Ka’an biosphere reserve, Quintana Roo, Mexico. Biotropica, 27, 5770.Google Scholar
Donald, J., Maxfield, P., Murray, D. and Ellwood, M. D. F. (2017) How tropical epiphytes at the Eden Project contribute to rainforest canopy science. Sibbaldia: The Journal of Botanic Garden Horticulture, 14, 5568.Google Scholar
Dunne, J. A. and Williams, R. J. (2009). Cascading extinctions and community collapse in model food webs. Philosophical Transactions of the Royal Society B-Biological Sciences, 364, 17111723.Google Scholar
Dutra, D. and Wetterer, J. K. (2008). Ants in myrmecophytic orchids of Trinidad (Hymenoptera: Formicidae). Sociobiology, 51, 249254.Google Scholar
Edwards, D. P., Hassall, M., Sutherland, W. J. and Yu, D. W. (2006). Selection for protection in an ant-plant mutualism: host sanctions, host modularity, and the principal-agent game. Proceedings of the Royal Society B: Biological Sciences, 273, 595602.Google Scholar
Edwards, D. P., Tobias, J. A., Sheil, D., Meijaard, E. and Laurance, W. F. (2014). Maintaining ecosystem function and services in logged tropical forests. Trends in Ecology & Evolution, 29, 511520.Google Scholar
Ellwood, M. D. F., Blüthgen, N., Fayle, T. M., Foster, W. A. and Menzel, F. (2016). Analysis of pairwise interactions reveals unexpected patterns in tropical ant communities Acta Oecologica, 75, 2434.Google Scholar
Ellwood, M. D. F. and Foster, W. A. (2004). Doubling the estimate of invertebrate biomass in a rainforest canopy? Nature, 429, 549551.Google Scholar
Ellwood, M. D. F., Jones, D. T. and Foster, W. A. (2002). Canopy ferns in lowland dipterocarp forest support a prolific abundance of ants, termites and other invertebrates. Biotropica, 34, 575583.Google Scholar
Ellwood, M. D. F., Manica, A. and Foster, W. A. (2009). Stochastic and deterministic processes jointly structure tropical arthropod communities. Ecology Letters, 12, 277284.Google Scholar
Emer, C., Venticinque, E. and Fonseca, C. R. (2013). Effects of dam-induced landscape fragmentation on Amazonian ant-plant mutualistic networks. Conservation Biology, 27, 763773.Google Scholar
Ewers, R. M. and Didham, R. K. (2008). Pervasive impact of large-scale edge effects on a beetle community. Proceedings of the National Academy of Sciences, 105, 54265429.Google Scholar
Fayle, T. M., Chung, A. Y., Dumbrell, A. J., Eggleton, P. and Foster, W. A. (2009). The effect of rain forest canopy architecture on the distribution of epiphytic ferns (Asplenium spp.) in Sabah, Malaysia. Biotropica, 41, 676681.Google Scholar
Fayle, T. M., Dumbrell, A. J., Turner, E. C. and Foster, W. A. (2011). Distributional patterns of epiphytic ferns are explained by the presence of cryptic species. Biotropica, 43, 67.Google Scholar
Fayle, T. M., Edwards, D. P., Foster, W. A., Yusah, K. M. and Turner, E. C. (2015a). An ant-plant by-product mutualism is robust to selective logging of rain forest and conversion to oil palm plantation. Oecologia, 178, 441450.Google Scholar
Fayle, T. M., Edwards, D. P., Turner, E. C. et al. (2012). Public goods, public services, and by-product mutualism in an ant-fern symbiosis. Oikos, 121, 12791286.Google Scholar
Fayle, T. M., Eggleton, P., Manica, A., Yusah, K. M. and Foster, W. A. (2015b). Experimentally testing and assessing the predictive power of species assembly rules for tropical canopy ants. Ecology Letters, 18, 254262.Google Scholar
Fayle, T. M., Ellwood, M. D. F., Turner, E. C. et al. (2008). Bird’s nest ferns: islands of biodiversity in the rainforest canopy. Antenna, 32(1), 3437.Google Scholar
Fayle, T. M., Turner, E. C. and Foster, W. A. (2013). Ant mosaics occur in SE Asian oil palm plantation but not rain forest and are influenced by the presence of nest-sites and non-native species. Ecography, 36, 10511057.Google Scholar
Fayle, T. M., Turner, E. C., Snaddon, J. L. et al. (2010). Oil palm expansion into rain forest greatly reduces ant biodiversity in canopy, epiphytes and leaf-litter. Basic and Applied Ecology, 11, 337345.Google Scholar
Feldhaar, H., Gadau, J. and Fiala, B. (2010). Speciation in obligately plant-associated crematogaster ants: host distribution rather than adaption towards specific hosts drives the process. In: Glaubrecht, M (ed.) Evolution in Action. Berlin Heidelberg: Springer, pp. 193213.Google Scholar
Fernandes, D. N. and Sanford, R. L. (1995). Effects of recent land-use practices on soil nutrients and succession under tropical wet forest in Costa Rica. Conservation Biology, 9, 915922.Google Scholar
Fisher, B. L. and Zimmerman, J. K. (1988). Ant/orchid associations in the Barro Colorado National Monument, Panama. Lindleyana, 3, 1216.Google Scholar
Floater, G. J. (1995). Effect of epiphytes on the abundance and species richness of litter-dwelling insects in a Seychelles cloud forest. Tropical Ecology, 36, 203212.Google Scholar
Fonseca, C. R. (1999). Amazonian ant-plant interactions and the nesting space limitation hypothesis. Journal of Tropical Ecology, 15, 807825.Google Scholar
Fortuna, M. A. and Bascompte, J. (2006). Habitat loss and the structure of plant–animal mutualistic networks. Ecology Letters, 9, 281286.Google Scholar
Foster, W. A., Snaddon, J. L., Turner, E. C. et al. (2011). Establishing the evidence base for maintaining biodiversity and ecosystem function in the oil palm landscapes of South East Asia. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 32773291.Google Scholar
Frederickson, M. E., Greene, M. J. and Gordon, D. M. (2005). ‘Devil’s gardens’ bedevilled by ants. Nature, 437, 495496.Google Scholar
Freiberg, M. and Turton, S. M. (2007). Importance of drought on the distribution of the birds nest fern, Asplenium nidus, in the canopy of a lowland tropical rainforest in north-eastern Australia. Austral Ecology, 32, 7076.Google Scholar
Gay, H. and Hensen, R. (1992). Ant specificity and behaviour in mutualisms with epiphytes: the case of Lecanopteris (Polypodiaceae). Biological Journal of the Linnean Society, 47, 261284.Google Scholar
Gibernau, M., Orivel, J., Delabie, J. H. C., Barabe, D. and Dejean, A. (2007). An asymmetrical relationship between an arboreal ponerine ant and a trash-basket epiphyte (Araceae). Biological Journal of the Linnean Society, 91, 341346.Google Scholar
Gibson, L., Lee, T. M., Koh, Lian Pin et al. (2011). Primary forests are irreplaceable for sustaining tropical biodiversity. Nature, 478, 378381.Google Scholar
Haddad, N. M., Brudvig, L. A., Clobert, J. et al. (2015). Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances, 1, e1500052.Google Scholar
Hardwick, S. R., Toumi, R., Pfeifer, M. et al. (2015). The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: Forest disturbance drives changes in microclimate. Agricultural and Forest Meteorology, 201, 187195.Google Scholar
Hodgkison, R., Balding, S. T., Akbar, Z. and Kunz, T. H. (2003). Roosting ecology and social organization of the spotted-winged fruit bat, Balionycteris maculata (Chiroptera: Pteropodidae), in a Malaysian lowland dipterocarp forest. Journal of Tropical Ecology, 19, 667676.Google Scholar
Holttum, R. E. (1976). Asplenium Linn., sect. Thamnopteris Presl. Gardens’ Bulletin, Singapore, 27, 143154.Google Scholar
Huxley, C. R. (1978). The ant-plants Myrmecodia and Hydnophytum (Rubiaceae), and the relationships between their morphology, ant occupants, physiology and ecology. New Phytologist, 80, 213268.Google Scholar
Kaiser-Bunbury, C. N. and Blüthgen, N. (2015). Integrating network ecology with applied conservation: a synthesis and guide to implementation. AoB Plants, 7: plv076. doi:10.1093/aobpla/plv076Google Scholar
Karasawa, S. and Hijii, N. (2006a). Determinants of litter accumulation and the abundance of litter-associated microarthropods in bird’s nest ferns (Asplenium nidus complex) in the forest of Yambaru on Okinawa Island, southern Japan. Journal of Forest Research, 11, 313318.Google Scholar
Karasawa, S. and Hijii, N. (2006b). Does the existence of bird’s nest ferns enhance the diversity of oribatid (Acari: Oribatida) communities in a subtropical forest? Biodiversity and Conservation, 15, 45334553.Google Scholar
Karasawa, S. and Hijii, N. (2006c). Effects of distribution and structural traits of bird’s nest ferns (Asplenium nidus) on oribatid (Acari: Oribatida) communities in a subtropical Japanese forest. Journal of Tropical Ecology, 22, 213222.Google Scholar
King, J. R. and Tschinkel, W. R. (2008). Experimental evidence that human impacts drive fire ant invasions and ecological change. Proceeding of the National Academy of Sciences, 105, 2033920343.Google Scholar
Klimes, P., Idigel, C., Rimandai, M. et al. (2012). Why are there more arboreal ant species in primary than secondary tropical forests? Journal of Animal Ecology, 81, 11031112.Google Scholar
Laughlin, D. C. and Messier, J. (2015). Fitness of multidimensional phenotypes in dynamic adaptive landscapes. Trends in Ecology & Evolution, 30, 487496.Google Scholar
Laurance, W. F., Camargo, J. L. C., Luizão, R. C. C. et al. (2011). The fate of Amazonian forest fragments: a 32-year investigation. Biological Conservation, 144, 5667.Google Scholar
Lowe, S., Browne, M., Boudjelas, S. and De Poorter, M. (2000). 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Database. The Invasive Species Specialist Group (ISSG), Auckland, New Zealand, 12 pp.Google Scholar
Mayer, V. E., Frederickson, M. E., McKey, D. and Blatrix, R. (2014). Current issues in the evolutionary ecology of ant-plant symbioses. New Phytologist, 202, 749764.Google Scholar
Mikissa, J. B., Jeffery, K., Fresneau, D. and Mercier, J. L. (2013). Impact of an invasive alien ant, Wasmannia auropunctata Roger, on a specialised plant–ant mutualism, Barteria fistulosa Mast. and Tetraponera aethiops F. Smith., in a Gabon forest. Ecological Entomology, 38, 580584.Google Scholar
Murase, K., Itioka, T., Nomura, M. and Yamane, S. (2003). Intraspecific variation in the status of ant symbiosis on a myrmecophyte, Macaranga bancana, between primary and secondary forests in Borneo. Population Ecology, 45, 221226.Google Scholar
Murase, K., Yamane, S., Itino, T. and Itioka, T. (2010). Multiple factors maintaining high species-specificity in Macaranga-Crematogaster (Hymenoptera: Formicidae) myrmecophytism: higher mortality in mismatched ant-seedling pairs. Sociobiology, 55, 883898.Google Scholar
Ness, J. and Bronstein, J. (2004). The effects of invasive ants on prospective ant mutualists. Biological Invasions, 6, 445461.Google Scholar
Owusu-Sekyere, E., Cobbina, J. and Wakatsuki, T. (2006). Nutrient cycling in primary, secondary forests and cocoa plantation in the Ashanti Region, Ghana. West African Journal of Applied Ecology, 9, 1–9. http://dx.doi.org/10.4314/wajae.v9i1.45680Google Scholar
Padmawathe, R., Qureshi, Q. and Rawat, G. S. (2004). Effects of selective logging on vascular epiphyte diversity in a moist lowland forest of Eastern Himalaya, India. Biological Conservation, 119, 8192.Google Scholar
Palmer, T. M., Stanton, M. L., Young, T. P. et al. (2008). Breakdown of an ant-plant mutualism follows the loss of large herbivores from an African Savanna. Science, 319, 192195.Google Scholar
Passmore, H. A., Bruna, E. M., Heredia, S. M. and Vasconcelos, H. L. (2012). Resilient networks of ant-plant mutualists in Amazonian forest fragments. PLoS ONE, 7, e40803.Google Scholar
Patra, B., Bera, S. and Hickey, R. J. (2008). Soral crypsis: protective mimicry of a coccid on an Indian fern. Journal of Integrative Plant Biology, 50, 653658.Google Scholar
Picard, N., Gourlet-Fleury, S. and Forni, É. (2012). Estimating damage from selective logging and implications for tropical forest management. Canadian Journal of Forest Research, 42, 605613.Google Scholar
Plowman, N. S., Hood, A. S. C., Moses, J., Redmond, C., Novotny, V., Klimes, P. and Fayle, T. M. (2017). Network reorganization and breakdown of an ant-plant protection mutualism with elevation. Proceedings of the Royal Society B: Biological Sciences 284: 20162564. http://dx.doi.org/10.1098/rspb.2016.2564.Google Scholar
Putz, F. E. and Holbrook, N. M. (1988). Further observations on the dissolution of mutualism between Cecropia and its ants: the Malaysian case. Oikos, 53, 121125.Google Scholar
Richardson, B. A., Borges, S. and Richardson, M. J. (2006). Differences between epigeic earthworm populations in tank bromeliads from Puerto Rico and Dominica. Caribbean Journal of Science, 42, 380385.Google Scholar
Rico-Gray, V. and Oliveira, P. S. (2007). The Ecology and Evolution of Ant-Plant Interactions. Chicago: University of Chicago Press.Google Scholar
Rodgers, D. J. and Kitching, R. L. (1998). Vertical stratification of rainforest collembolan (Collembola: Insecta) assemblages: description of ecological patterns and hypotheses concerning their generation. Ecography, 21, 392400.Google Scholar
Rodgers, D. J. and Kitching, R. L. (2011). Rainforest Collembola and the insularity of epiphyte microhabitats. Insect Conservation and Diversity, 4, 99106.Google Scholar
Rodríguez-Castañeda, G., Forkner, R. E., Tepe, E. J., Gentry, G. L. and Dyer, L. A. (2011). Weighing defensive and nutritive roles of ant mutualists across a tropical altitudinal gradient. Biotropica, 43, 343350.Google Scholar
Roland, L.-A. R. d., Rabearivony, J., Razafimanjato, G., Robenarimangason, H. and Thorstrom, R. (2005). Breeding biology and diet of Banded Kestrels Falco zoniventris on Masoala Peninsula, Madagascar. Ostrich, 76, 3236.Google Scholar
Sala, O. E., Stuart Chapin, F., III et al. (2000). Global biodiversity scenarios for the year 2100. Science, 287, 17701774.Google Scholar
Scheffers, B. R., Edwards, D. P., Diesmos, A., Williams, S. E. and Evans, T. A. (2013). Microhabitats reduce animal’s exposure to climate extremes. Global Change Biology, n/a-n/a.Google Scholar
Scheffers, B. R., Phillips, B. L. and Shoo, L. P. (2014). Asplenium bird’s nest ferns in rainforest canopies are climate-contingent refuges for frogs. Global Ecology and Conservation, 2, 3746.Google Scholar
Slik, F. J. W., Keßler, P. J. A. and Welzen, P. C. v. (2003). Macaranga and Mallotus species (Euphorbiaceae) as indicators for disturbance in the mixed lowland dipterocarp forest of East Kalimantan (Indonesia). Ecological Indicators, 2, 311324.Google Scholar
Snaddon, J. L., Turner, E. C., Fayle, T. M. et al. (2012). Biodiversity hanging by a thread: the importance of fungal-litter trapping systems in tropical rainforests. Biology Letters, 8, 397400.Google Scholar
Stuntz, S., Ziegler, C., Simon, U. and Zotz, G. (2002). Diversity and structure of the arthropod fauna within three canopy epiphyte species in central Panama. Journal of Tropical Ecology, 18, 161176.Google Scholar
Talaga, S., Dézerald, O., Carteron, A. et al. (2015). Tank bromeliads as natural microcosms: a facultative association with ants influences the aquatic invertebrate community structure. C. R. Biol., 338, 696700.Google Scholar
Tanaka, H., Inui, Y. and Itioka, T. (2009). Anti-herbivore effects of an ant species, Crematogaster difformis, inhabiting myrmecophytic epiphytes in the canopy of a tropical lowland rainforest in Borneo. Ecol. Res., 24, 13931397.Google Scholar
Tanaka, H. O., Yamane, S., Nakashizuka, T., Momose, K. and Itioka, T. (2007). Effects of deforestation on mutualistic interactions of ants with plants and hemipterans in tropical rainforest of Borneo. Asian Myrmecology, 1, 3150.Google Scholar
Thorstrom, R. and Roland, L.-A. R. d. (2000). First nest description, breeding behaviour and distribution of the Madagascar Serpent-Eagle Eutriorchis astur. Ibis, 142, 217224.Google Scholar
Tilman, D., Fargione, J., Wolff, B. et al. (2001). Forecasting agriculturally driven global environmental change. Science, 292, 281284.Google Scholar
Turner, E. C. (2005). The ecology of the Bird’s Nest Fern (Asplenium spp.) in unlogged and managed habitats in Sabah, Malaysia. PhD, University of Cambridge, Cambridge.Google Scholar
Turner, E. C. and Foster, W. A. (2006). Assessing the influence of Bird’s nest ferns (Asplenium spp.) on the local microclimate across a range of habitat disturbances in Sabah, Malaysia. Selbyana, 27, 195200.Google Scholar
Turner, E. C. and Foster, W. A. (2009). The impact of forest conversion to oil palm on arthropod abundance and biomass in Sabah, Malaysia. Journal of Tropical Ecology, 25, 2330.Google Scholar
Turner, E. C., Snaddon, J. L., Johnson, H. R. and Foster, W. A. (2007). The impact of bird’s nest ferns on stemflow nutrient concentration in a primary rain forest, Sabah, Malaysia. Journal of Tropical Ecology, 23, 721724.Google Scholar
Tylianakis, J. M., Laliberté, E., Nielsen, A. and Bascompte, J. (2010). Conservation of species interaction networks. Biological Conservation, 143, 22702279.Google Scholar
Walter, D. E., Seeman, O., Rodgers, D. and Kitching, R. L. (1998). Mites in the mist: how unique is a rainforest canopy knockdown fauna? Australian Journal of Ecology, 23, 501508.Google Scholar
Watkins, J. E., Cardelús, C. L. and Mack, M. C. (2008). Ants mediate nitrogen relations of an epiphytic fern. New Phytologist, 180, 58.Google Scholar
Weathers, K. C., Cadenasso, M. L. and Pickett, S. T. (2001). Forest edges as nutrient and pollutant concentrators: potential synergisms between fragmentation, forest canopies, and the atmosphere. Conservation Biology, 15, 15061514.Google Scholar
Wetterer, J. K. (1997). Ants on Cecropia in Hawaii. Biotropica, 29, 128132.Google Scholar
Wilcove, D. S., Giam, X., Edwards, D. P., Fisher, B. and Koh, L. P. (2013). Navjot’s nightmare revisited: logging, agriculture, and biodiversity in Southeast Asia. Trends in Ecology & Evolution, 28, 531540.Google Scholar
Yu, D. W., Wilson, H. B. and Pierce, N. E. (2001). An empirical model of species coexistence in a spatially structured environment. Ecology, 82, 17611771.Google Scholar

References

Almeida, W. R., Wirth, R. and Leal, I. R. (2008). Edge-mediated reduction of phorid parasitism on leaf-cutting ants in a Brazilian Atlantic Forest. Entomologia Experimentalis et Applicata, 129, 251257.Google Scholar
Arroyo-Rodríguez, V., Melo, F. P. L., Martínez-Ramos, M., Bongers, F., Chazdon, R. L., Meave, J. A., Norden, N., Santos, B. A., Leal, I. R. and Tabarelli, M. (2017). Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biological Reviews, 92, 326–340.Google Scholar
Backé, J. (2015). Lebensgemeinschaften von Blattschneider-ameisen und ihre Rolle als Ökosystemingenieure unter dem Einfluss von Klimawandel und menschlicher Störung in der brasilianischen Caatinga. MSc thesis, University of Kaiserslautern, Germany.Google Scholar
Barrera, C. A., Buffa, L. M., Valladares, G. (2015). Do leaf-cutting ants benefit from forest fragmentation? Insights from community and species-specific responses in a fragmented dry forest. Insect Conservation and Diversity, 8, 456463.Google Scholar
Basset, Y., Cizek, L., Cuenoud, P. et al. (2012). Arthropod diversity in a tropical forest. Science, 338, 14811484.Google Scholar
Beattie, A. J. (1985). The Evolutionary Ecology of Ant-Plant Mutualisms. Cambridge: Cambridge University Press.Google Scholar
Belnap, J. and Lange, O. L. (2001). Biological soil crusts: structure, function, and management. Ecological Studies, 150, 2nd edition. Berlin, Heidelberg, New York: Springer.Google Scholar
Bieber, A. G. D., Oliveira, M. A., Wirth, R., Tabarelli, M. and Leal, I. R. (2011). Do abandoned nests of leaf-cutting ants enhance plant recruitment in the Atlantic Forest? Austral Ecology, 36, 220232.Google Scholar
Broadbent, E.N., Asner, G.P., Keller, M., Knapp, D.E., Oliveira, P.J.C. and Silva, J.N. (2008). Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biological Conservation, 141, 17451757.Google Scholar
Ceballos, G. and García, A. (1995). Conserving neotropical biodiversity: the role of dry forests in western Mexico. Conservation Biology, 9, 13491356.Google Scholar
Cherrett, J. M. (1989). Leaf-cutting ants. In Ecosystems of the World (eds. Lieth, H. and Werger, M. J. A.). Amsterdam: Elsevier, pp. 473486.Google Scholar
Coley, P. D. (1980). Effects of leaf age and plant life history patterns on herbivory. Nature, 284, 545546.Google Scholar
Coley, P. D., and Barone, J. A. (1996). Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics, 27, 305335.Google Scholar
Coley, P. D., Bryant, J. P. and ChapinIII, F. S. (1985). Resource availability and plant anti-herbivore defense. Science, 230, 895899.Google Scholar
Corrêa, M. M., Silva, P. S. D., Wirth, R., Tabarelli, M. and Leal, I. R. (2010). How leaf-cutting ants impact forests: drastic nest effects on light environment and plant assemblages. Oecologia, 162, 103115.Google Scholar
Corrêa, M. M., Silva, P. S. D., Wirth, R., Tabarelli, M. and Leal, I. R. (2016). Foraging activity of leaf-cutting ants changes light availability and plant assemblage in Atlantic Forest. Ecological Entomology, 41, 442–450.Google Scholar
Costa, A. N., Vasconcelos, H. L., Vieira-Neto, E. H. M. and Bruna, E. M. (2008). Do herbivores exert top-down effects in Neotropical savannas? Journal of Vegetation Science, 19, 849854.Google Scholar
Costa, U. A. S., Pinto, S. R. R., Silva, F. A., Oliveira, M., Agra, D. B., Marques, E. and Leal, I. R. (2013). O papel das formigas como dispersores secundários de sementes na Floresta Atlântica Nordestina. In Serra Grande: uma floresta de idéias (eds. Tabarelli, M., Aguiar Neto, A. V., Leal, I. R. and Lopes, A. V.). Recife: Editora Universitária da UFPE, pp. 415438.Google Scholar
De Fine Licht, H. H. and Boomsma, J. J. (2010). Forage collection, substrate preparation, and diet composition in fungus-growing ants. Ecological Entomology, 35, 259269.Google Scholar
De Fine Licht, H. H., Schiott, M., Rogowska-Wrzesinska, A., Nygaard, S., Roepstorff, P. and Boomsma, J. J. (2013). Laccase detoxification mediates the nutritional alliance between leaf-cutting ants and fungus-garden symbionts. Proceedings of the National Academy of Sciences, 110, 583587.Google Scholar
Dohm, C., Leal, I. R., Tabarelli, M., Meyer, S. T. and Wirth, R. (2011). Leaf-cutting ants proliferate in the Amazon: an expected response to forest edge? Journal of Tropical Ecology, 27, 645649.Google Scholar
Falcão, P. F., Pinto, S. R. R., Wirth, R. and Leal, I. R. (2011). Edge-induced narrowing of dietary diversity in leaf-cutting ants. Bulletin of Entomological Research, 101, 305311.Google Scholar
Farji-Brener, A. G. (1996). Posibles vías de expansión de la hormiga cortadora de hojas Acromyrmex lobicornis hacia la Patagonia. Ecología Austral, 6, 144150.Google Scholar
Farji-Brener, A. G. (2001). Why are leaf-cutting ants more common in early secondary forests than in old-growth tropical forests? An evaluation of the palatable forage hypothesis. Oikos, 92, 169177.Google Scholar
Farji-Brener, A. G. and Ghermandi, L. (2008). Leaf-cutting ant nests near roads increase fitness of exotic plant species in natural protected areas. Proceedings of the Royal Society B –Biological Sciences, 275, 14311440.Google Scholar
Farji-Brener, A. G. and Illes, A. E. (2000). Do leaf-cutting ant nests make ‘bottom-up’ gaps in Neotropical rain forests? A critical review of the evidence. Ecology Letters, 3, 219227.Google Scholar
Farji-Brener, A. G., Lescano, N. and Ghermandi, L. (2010). Ecological engineering by a native leaf-cutting ant increases the performance of exotic plant species. Oecologia, 163, 163169.Google Scholar
Farji-Brener, A. G. and Ruggiero, A. (1994). Leaf-cutting ants (Atta and Acromyrmex) inhabitating Argentina: patterns in species richness and geographical range sizes. Journal of Biogeography, 21, 391399.Google Scholar
Farji-Brener, A. G. and Silva, J. (1995). Leaf-cutting ants and forest groves in a tropical parkland savanna of Venezuela: facilitated succession? Journal of Tropical Ecology, 11, 651669.Google Scholar
Farji-Brener, A. G. and Silva, J. (1996). Leaf-cutter ants’ (Atta laevigata) aid to the establishment success of Tapirira velutinifolia (Anacardiaceae) seedlings in a parkland savanna? Journal of Tropical Ecology, 12, 163168.Google Scholar
Farji-Brener, A. G. and Werenkraut, V. (2015). A meta-analysis of leaf-cutting ant nest effects on soil fertility and plant performance. Ecological Entomology, 40,150158.Google Scholar
Fowler, H. G. and Claver, S. (1991). Leaf-cutter ant assemblies: effects of latitude, vegetation, and behavior. In Ant-Plant Interactions (eds. Huxley, C. R. and Cutler, D. F.). Oxford: Oxford University Press, pp. 5159.Google Scholar
Fowler, H. G., Pagani, M. I., Silva, O. A., Forti, L. C. and Sales, N. B. (1989). A pest is a pest is a pest? The dilemma of neotropical leaf-cutting ants: keystone taxa of natural ecosystems. Environmental Management, 13, 671675.Google Scholar
Fowler, H. G., Pereira da Silva, V., Forti, L. C., Saes, N. B. (1986). Population dynamics of leaf-cutting ants: a brief review. In Fire Ants and Leaf-Cutting Ants: Ecology and Management (eds. Lofgren, C. S. and Vander Meer, R. K.). Boulder: Westview Press, pp. 123145.Google Scholar
Garrettson, M., Stetzel, J. F., Halpern, B. S., Hearn, D. J., Lucey, B. T. and McKone, M. J. (1998). Diversity and abundance of understory plants on active and abandoned nests of leaf-cutting ants (Atta cephalotes) in a Costa Rican rain forest. Journal of Tropical Ecology, 14, 1726.Google Scholar
Girão, L. C., Lopes, A. V., Tabarelli, M. and Bruna, E. M. (2007). Changes in tree reproductive traits reduce functional diversity in a fragmented Atlantic Forest landscape. PLoS ONE, 2, e908.Google Scholar
Grau, H. R., Gasparri, N. I. and Aide, T. M. (2008). Balancing food production and nature conservation in the neotropical dry forests of northern Argentina. Global Change Biology, 14, 985997.Google Scholar
Harvey, C. A., Komar, O., Chazdon, R. et al. (2008). Integrating agricultural landscapes with biodiversity conservation in the Mesoamerican hotspot. Conservation Biology, 22, 815.Google Scholar
Herz, H., Beyschlag, W. and Hölldobler, B. (2007). Herbivory rate of leaf-cutting ants in a tropical moist forest in Panama at the population and ecosystem scales. Biotropica, 39, 482488.Google Scholar
Hölldobler, B. and Wilson, E. O. (1990). The Ants. Cambridge, MA: Harvard University Press.Google Scholar
Hölldobler, B. and Wilson, E. O. (2011). The Leafcutter Ants: Civilization by Instinct. London: W.W. Norton.Google Scholar
Joly, C. A., Metzger, J. P. and Tabarelli, M. (2014). Experiences from the Brazilian Atlantic Forest: ecological findings and conservation initiatives.New Phytologist, 204, 459473.Google Scholar
Kauffman, B., SanfordJr., R. L., Cummings, D. L., Salcedo, I. H. and Sampaio, E. V. S. B. (1993). Biomass and nutrient dynamics associated with slash fires in neotropical dry forests. Ecology, 74, 140151.Google Scholar
Kost, C., Gama de Oliveira, E., Knoch, T. and Wirth, R. (2005). Temporal and spatial patterns, plasticity, and ontogeny of foraging trails in leaf-cutting ants. Journal of Tropical Ecology, 21, 677688.Google Scholar
Landsberg, J. and Ohmart, C. (1989). Levels of insect defoliation in forests: patterns and concepts. Trends in Ecology & Evolution, 4, 96100.Google Scholar
Laurance, W. F., Nascimento, H. E. M., Laurance, S. G. et al. (2006). Rain forest fragmentation and the proliferation of successional trees. Ecology, 87, 469482.Google Scholar
Laurance, W. F., Sayer, J. and Cassman, K. G. (2014). Agricultural expansion and its impacts on tropical nature. Trends in Ecology & Evolution, 29, 107116.Google Scholar
Leal, I. R., Silva, J. M. C., Tabarelli, M. and Lacher, T. E. (2005). Changing the course of biodiversity conservation in the Caatinga of Northeastern Brazil. Conservation Biology, 19, 701706.Google Scholar
Leal, I. R., Wirth, R., Tabarelli, M. (2014a). The multiple impacts of leaf-cutting ants and their novel ecological role in human-modified neotropical forests. Biotropica, 46, 516528.Google Scholar
Leal, L. C., Andersen, A. N. and Leal, I. R. (2014b). Anthropogenic disturbance reduces seed dispersal services for myrmecochorous plants in the Brazilian Caatinga. Oecologia, 174, 173181.Google Scholar
Leal, L. C., Andersen, A. N., Leal, I. R. (2015). Disturbance winners or losers? Plants bearing extrafloral nectaries in Brazilian Caatinga. Biotropica, 47, 468474.Google Scholar
Lôbo, D., Leão, T., Melo, F. P. L., Santos, A. M. M. and Tabarelli, M. (2011). Forest fragmentation drives Atlantic Forest of northeastern Brazil to biotic homogenization. Diversity and Distribution, 17, 287296.Google Scholar
Melo, F. P. L., Arroyo-Rodríguez, V., Fahrig, L., Martínez-Ramos, M. and Tabarelli, M. (2013). On the hope for biodiversity-friendly tropical landscapes. Trends in Ecology and Evolution, 28, 461468.Google Scholar
Meyer, S. T., Leal, I. R., Tabarelli, M. and Wirth, R. (2011a). Ecosystem engineering by leaf-cutting ants: nests of Atta cephalotes drastically alter forest structure and microclimate. Ecological Entomology, 36, 1424.Google Scholar
Meyer, S. T., Leal, I. R., Tabarelli, M. and Wirth, R. (2011b). Performance and fate of tree seedlings on and around nests of the leaf-cutting ant Atta cephalotes: ecological filters in a fragmented forest. Austral Ecology, 36, 779790.Google Scholar
Meyer, S. T., Leal, I. R. and Wirth, R. (2009). Persisting hyper-abundance of keystone herbivores (Atta spp.) at the edge of an old Brazilian Atlantic Forest fragment. Biotropica, 41, 711716.Google Scholar
Meyer, S. T., Neubauer, M., Sayer, E. J., Leal, I. R., Tabarelli, M. and Wirth, R. (2013). Leaf-cutting ants as ecosystem engineers: topsoil and litter perturbations around Atta cephalotes nests reduce nutrient availability. Ecological Entomology, 38, 497504.Google Scholar
Montoya-Lerma, J., Giraldo-Echeverri, C., Armbrecht, I., Farji-Brener, A. G. and Calle, Z. (2012). Leaf-cutting ants revisited: towards rational management and control. International Journal of Pest Management, 58, 225247.Google Scholar
Moreira, A. A, Forti, L. C., Andrade, A. P. P., Boaretto, M. A. C. and Lopes, J. F. S. (2004a). Nest architecture of Atta laevigata (F. Smith 1858) (Hymenoptera: Formicidae). Studies on Neotropical Fauna and Environment, 39, 109116.Google Scholar
Moreira, A. A., Forti, L. C., Boaretto, M. A. C., Andrade, A. P. P., Lopes, J. F. S. and Ramos, V. M. (2004b). External and internal structure of Atta bisphaerica Forel (Hymenoptera: Formicidae) nests. Journal of Applied Entomology, 128, 204211.Google Scholar
Mueller, U. G., Rehner, S. A. and Schultz, T. R. (1998). The evolution of agriculture in ants. Science, 281, 20342038.Google Scholar
Pennington, R.T., Lavin, M. and Oliveira-Filho, A. (2009). Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annual Review of Ecology, Evolution and Systematics, 40, 437–57.Google Scholar
Pereira, I. M., Andrade, L. A., Sampaio, E. V. S. B. and Barbosa, M. R. V. (2003). Use-history effects on structure and flora of Caatinga. Biotropica, 35, 154165.Google Scholar
Ramos, M. A. and Albuquerque, U. P. (2012). The domestic use of firewood in rural communities of the Caatinga: how seasonality interferes with patterns of firewood collection. Biomass and Bioenergy, 39, 147158.Google Scholar
Rosenthal, J. P. and Kotanen, P. M. (1994). Terrestrial plant tolerance to herbivory. Trends in Ecology and Evolution, 9,145148.Google Scholar
Sampaio, E. V. S. B. (1995). Overview of the Brazilian Caatinga. In Seasonally Dry Forests (eds. Bullock, S. H., Mooney, H. A. and Medina, E.). Cambridge: Cambridge University Press, pp. 3558.Google Scholar
Santos, B. A., Peres, C. A., Oliveira, M. A., Grillo, A. S., Alves-Costa, C. P. and Tabarelli, M. (2008). Drastic erosion in functional attributes of tree assemblages in Atlantic Forest fragments of northeastern Brazil. Biological Conservation, 141, 249260.Google Scholar
Santos, B. A., Tabarelli, M., Melo, F.P. L. et al. (2014). Phylogenetic impoverishment of Amazonian tree communities in an experimentally fragmented forest landscape. PLoS One, 9, e113109.Google Scholar
Santos, J. C., Leal, I. R., Almeida-Cortez, J. S., Fernandes, G. W. and Tabarelli, M. (2011). Caatinga: the scientific anonymity experienced by a dry tropical forest. Tropical Conservation Science, 3, 276286.Google Scholar
Schowalter, T. D., Hargrove, W. W. and CrossleyJr, D. A. (1986). Herbivory in forested ecosystems. Annual Review of Entomology, 31, 177196.Google Scholar
Schultz, T. R. and Brady, S. G. (2008). Major evolutionary transitions in ant agriculture. Proceedings of the National Academy of Sciences, 105, 54355440.Google Scholar
Shepherd, J. D. (1985). Adjusting foraging effort to resources in adjacent colonies of the leaf-cutting ant, Atta colombica. Biotropica, 17, 245252.Google Scholar
Silva, P. S. D., Bieber, A. G. D., Knoch, T. A., Tabarelli, M., Leal, I. R. and Wirth, R. (2013). Foraging in highly dynamic environments: leaf-cutting ants adjust foraging trail networks to pioneer plant availability. Entomologia Experimentalis et Applicata, 147, 110119.Google Scholar
Silva, P. S. D., Bieber, A. G. D., Leal, I. R., Wirth, R. and Tabarelli, M. (2009). Decreasing abundance of leaf-cutting ants across a chronosequence of advancing Atlantic Forest regeneration. Journal of Tropical Ecology, 25, 223227.Google Scholar
Silva, P. S. D., Leal, I. R., Wirth, R., Melo, P. F. L. and Tabarelli, M. (2012). Leaf-cutting ants alter seedling assemblages across second-growth stands of Brazilian Atlantic Forest. Journal of Tropical Ecology, 28, 361368.Google Scholar
Singh, S. P. (1998). Chronic disturbance, a principal cause of environmental degradation in developing countries. Environmental Conservation, 25, 12.Google Scholar
Sobrinho, M. S., Tabarelli, M., Machado, I. C., Sfair, J., Bruna, E. M. and Lopes, A. V. (2016). Land use, fallow period and the recovery of a Caatinga forest. Biotropica, doi: 10.1111/btp.12334.Google Scholar
Tabarelli, M., Aguiar, A. V., Ribeiro, M. C., Metzger, J. P. and Peres, C. A. (2010). Prospects for biodiversity conservation in the Atlantic Forest: lessons from aging human-modified landscapes. Biological Conservation, 143, 23282340.Google Scholar
Tabarelli, M., Lopes, A. V. and Peres, C. A. (2008). Edge-effects drive tropical forest fragments towards an early-successional system. Biotropica, 40, 657661.Google Scholar
Tabarelli, M., Peres, C. A. and Melo, F. P. L. (2012). The ‘few winners and many losers’ paradigm revisited: emerging prospects for tropical forest biodiversity. Biological Conservation, 155, 136140.Google Scholar
Tabarelli, M., Silva, J. M. C. and Gascon, C. (2004). Forest fragmentation, synergisms and the impoverishment of Neotropical forests. Biodiversity and Conservation, 13, 14191425.Google Scholar
Teixeira, M. C., Schroeder, J. H. and Mayhé-Nunes, A. J. (2003). Geographic distribution of Atta robusta Borgmeier (Hymenoptera: Formicidae). Neotropical Entomology, 32, 719721.Google Scholar
Terborgh, J., Lopez, L., Nuñez, V. P. et al. (2001). Ecological meltdown in predator-free forest fragments. Science, 294, 19231926.Google Scholar
Urbas, P., AraújoJr., M. V., Leal, I. R. and Wirth, R. (2007). Cutting more from cut forests: edge effects on foraging and herbivory of leaf-cutting ants in Brazil. Biotropica, 39, 489495.Google Scholar
Vasconcelos, H. L. (1990). Habitat selection by the queens of the leaf-cutting ant Atta sexdens L. in Brazil. Journal of Tropical Ecology, 6, 249252.Google Scholar
Vasconcelos, H. L. and Fowler, H. G. (1990). Foraging and fungal substrate selection by leaf-cutting ants. In Applied Myrmecology – A World Perspective, (eds. Vander Meer, R. K., Jaffe, K., and Cedeno, A.). Boulder: Westview Press, pp. 411419.Google Scholar
Vasconcelos, H. L., Vieira-Neto, E. H. M., Mundim, F. M. and Bruna, E. M. (2006). Roads alter the colonization dynamics of a keystone herbivore in Neotropical savannas. Biotropica, 38, 661666.Google Scholar
Vieira-Neto, E. H. M. and Vasconcelos, H. L. (2010). Developmental changes in factors limiting colony survival and growth of the leaf-cutter ant Atta laevigata. Ecography, 33, 538544.Google Scholar
Weber, N. A. (1966). Fungus growing ants. Science, 153, 587604.Google Scholar
Wirth, R., Beyschlag, W., Herz, H., Ryel, R. J. and Hölldobler, B. (2003). Herbivory of leaf-cutter ants: a case study of Atta colombica in the tropical rainforest of Panama. Ecological Studies, 164. New York: Springer.Google Scholar
Wirth, R., Leal, I. R. and Tabarelli, M. (2008). Plant-herbivore interactions at the forest edge. Progress in Botany, 69, 423448.Google Scholar
Wirth, R., Meyer, S. T., Almeida, W. R., Araujo Jr, M. V., Barbosa, V. S. and Leal, I. R. (2007). Increasing densities of leaf-cutting ants (Atta spp.) with proximity to the edge in a Brazilian Atlantic Forest. Journal of Tropical Ecology, 23, 501505.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×