Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-08T22:40:41.710Z Has data issue: false hasContentIssue false

5 - Apoptosis in the cardiovascular system: incidence, regulation, and therapeutic options

Published online by Cambridge University Press:  03 March 2010

Martin R. Bennett
Affiliation:
Unit of Cardiovascular Medicine, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, UK
Martin Holcik
Affiliation:
University of Ottawa
Eric C. LaCasse
Affiliation:
University of Ottawa
Alex E. MacKenzie
Affiliation:
University of Ottawa
Robert G. Korneluk
Affiliation:
University of Ottawa
Get access

Summary

Incidence of apoptosis

Apoptosis in the heart

The adult cardiomyocyte is a terminally differentiated cell that cannot divide. Therefore, by definition, apoptosis within the adult heart cannot be physiologic, as no turnover of myocytes is possible. Indeed, apoptosis is observed very infrequently in adult hearts (Gottlieb et al., 1994; Cheng et al., 1995; Liu et al., 1995; Kajstura et al., 1996; Sharov et al., 1996; Bialik et al., 1997). In contrast, cardiomyocyte apoptosis in development plays a critical role in formation of the heart, and is an increasingly important feature of many diseases of the cardiovascular system (Table 5.1).

Apoptosis in cardiac development and aging

During development, organs and tissues are remodeled using the processes of cell division, cell migration, and cell death. Most, if not all, of this cell death occurs through apoptosis. Thus, apoptosis is seen when the notochord fuses in the developing spinal cord and apoptosis causes the breakdown of interdigital webs to sculpt the fingers (see Chapter 2). Within the heart, cell death may be involved in the formation of septa between cardiac chambers or of valves, suggesting that defects in apoptosis can result in congenital heart disease (Krstic and Pexieder, 1973; Pexieder, 1975). Major foci of apoptosis include the atrioventricular cushions and their zones of fusion, the bulbar cushions and their zones of fusion, and the aortic and pulmonary valves and arteries (Pexieder, 1975; Cheng et al., 2002). Indeed, apoptosis has been found in the developing rat bulbus cordis within mesenchymal cells (Takeda et al., 1996).

Type
Chapter
Information
Apoptosis in Health and Disease
Clinical and Therapeutic Aspects
, pp. 156 - 187
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. W. and Brown, J. H. (2001). G-proteins in growth and apoptosis: lessons from the heart. Oncogene, 20, 1626–34CrossRefGoogle ScholarPubMed
Anversa, P., Hiler, B., Ricci, R., Guideri, G., and Olivetti, G. (1986). Myocyte cell loss and myocyte hypertrophy in the aging rat heart. J. Am. Coll. Cardiol., 8, 1441–8CrossRefGoogle ScholarPubMed
Ashkenazi, A. and Dixit, V. (1998). Death receptors: signaling and modulation. Science, 281, 1305–8CrossRefGoogle ScholarPubMed
Au-Yeung, K. K., Zhu, D. Y., O, K. and Siow, Y. L. (2001). Inhibition of stress-activated protein kinase in the ischemic/reperfused heart: role of magnesium tanshinoate B in preventing apoptosis. Biochem. Pharmacol., 62, 483–93CrossRefGoogle ScholarPubMed
Baker, A. H., Zaltsman, A. B., George, S. J., and Newby, A. C. (1998). Divergent effects of tissue inhibitor of metalloproteinase-1, -2, or -3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro – TIMP-3 promotes apoptosis. J. Clin. Invest., 101, 1478–87CrossRefGoogle ScholarPubMed
Bardales, R. H., Hailey, L. S., Xie, S. S., Schaefer, R. F., and Hsu, S. M. (1996). In situ apoptosis assay for the detection of early acute myocardial infarction. Am. J. Pathol., 149, 821–9Google ScholarPubMed
Bascands, J. L., Girolami, J. P., Troly, M.et al. (2001). Angiotensin II induces phenotype-dependent apoptosis in vascular smooth muscle cells. Hypertension, 38, 1294–9CrossRefGoogle ScholarPubMed
Bauriedel, G., Schluckebier, S., Hutter, R.et al. (1998). Apoptosis in restenosis versus stable-angina atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 18, 1132–9CrossRefGoogle ScholarPubMed
Baxter, G. F., Mocanu, M. M., Brar, B. K., Latchman, D. S., and Yellon, D. M. (2001). Cardioprotective effects of transforming growth factor-beta1 during early reoxygenation or reperfusion are mediated by p42/p44 MAPK. J. Cardiovasc. Pharmacol., 38, 930–9CrossRefGoogle ScholarPubMed
Belanger, A. J., Scaria, A., Lu, H.et al. (2001). Fas ligand/Fas-mediated apoptosis in human coronary artery smooth muscle cells: therapeutic implications of fratricidal mode of action. Cardiovasc. Res., 51, 749–61CrossRefGoogle ScholarPubMed
Bennett, M., Macdonald, K., Chan, S.-W., Simari, R., Luzio, J., and Weissberg, P. (1998). Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science, 282, 290–3CrossRefGoogle ScholarPubMed
Bennett, M. R., Evan, G. I., and Schwartz, S. M. (1995). Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J. Clin. Invest., 95, 2266–74CrossRefGoogle ScholarPubMed
Bialik, S., Cryns, V. L., Drincic, A.et al. (1999). The mitochondrial apoptotic pathway is activated by serum and glucose deprivation in cardiac myocytes. Circ. Res., 85, 403–14CrossRefGoogle ScholarPubMed
Bialik, S., Geenen, D. L., Sasson, I. E.et al. (1997). Myocyte apoptosis during acute myocardial infarction in the mouse localizes to hypoxic regions but occurs independently of p53. J. Clin. Invest., 100, 1363–72CrossRefGoogle ScholarPubMed
Bitar, F. F., Bitar, H., El Sabban, M.et al. (2002). Modulation of ceramide content and lack of apoptosis in the chronically hypoxic neonatal rat heart. Pediatr. Res., 51, 144–9CrossRefGoogle ScholarPubMed
Bochaton-Piallat, M., Gabbiani, F., Redard, M., Desmouliere, A., and Gabbiani, G. (1995). Apoptosis participates in cellularity regulation during rat aortic intimal thickening. Am. J. Path., 146, 1059–64Google ScholarPubMed
Bochaton-Piallat, M.-L., Ropraz, P., Gabbiani, F., and Gabbiani, G. (1996). Phenotypic heterogeneity of rat aortic smooth muscle cell clones. Arterioscler. Thromb. Vasc. Biol., 16, 815–20CrossRefGoogle ScholarPubMed
Bombeli, T., Karsan, A., Tait, J. F., and Harlan, J. M. (1997). Apoptotic vascular endothelial cells become procoagulant. Blood, 89, 2429–42Google ScholarPubMed
Boyle, J., Bowyer, D., Weissberg, P., and Bennett, M. (2001). Human blood-derived macrophages induce apoptosis in human plaque-derived vascular smooth muscle cells by Fas ligand/Fas interactions. Arterioscler. Thromb. Vasc. Biol., 21, 1402–7CrossRefGoogle ScholarPubMed
Boyle, J. J., Bowyer, D. E., Weissberg, P. L., and Bennett, M. R. (1999). Interactions between TNF alpha and nitric oxide in human macrophage-induced vascular smooth muscle cell apoptosis. J. Pathol., 187, A12Google Scholar
Brar, B. K., Stephanou, A., Liao, Z.et al. (2001). Cardiotrophin-1 can protect cardiac myocytes from injury when added both prior to simulated ischaemia and at reoxygenation. Cardiovasc. Res., 51, 265–74CrossRefGoogle ScholarPubMed
Braunwald, E. and Kloner, R. (1985). Myocardial reperfusion: a double-edged sword?J. Clin. Invest., 76, 1713CrossRefGoogle ScholarPubMed
Bueno, O. F., Windt, L. J., Tymitz, K. M.et al. (2000). The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J., 19, 6341–50CrossRefGoogle ScholarPubMed
Buerke, M., Murohara, T., Skurk, C., Nuss, C., Tomaselli, K., and Lefer, A. (1995). Cardioprotective effect of insulin-like growth factor I in myocardial ischaemia followed by reperfusion. Proc. Natl. Acad. Sci. USA, 92, 8031–5CrossRefGoogle ScholarPubMed
Buus, C. L., Pourageaud, F., Fazzi, G. E., Janssen, G., Mulvany, M. J., and Mey, J. G. (2001). Smooth muscle cell changes during flow-related remodeling of rat mesenteric resistance arteries. Circ. Res., 89, 180–6CrossRefGoogle ScholarPubMed
Cesselli, D., Jakoniuk, I., Barlucchi, L.et al. (2001). Oxidative stress-mediated cardiac cell death is a major determinant of ventricular dysfunction and failure in dog dilated cardiomyopathy. Circ. Res., 89, 279–86CrossRefGoogle ScholarPubMed
Chan, S., Weissberg, P., and Bennett, M. (1998). Heterogeneity of caspase regulation of human vascular smooth muscle cell apoptosis. Heart, 71, 12 (Abstract)Google Scholar
Chan, S.-W., Hegyi, L., Scott, S., Cary, N., Weissberg, P., and Bennett, M. (2000). Sensitivity to Fas-mediated apoptosis is determined below receptor level in vascular smooth muscle cells. Circ. Res., 86, 1038–46CrossRefGoogle ScholarPubMed
Chen, A. H., Gortler, D. S., Kilaru, S., Araim, O., Frangos, S. G., and Sumpio, B. E. (2001). Cyclic strain activates the pro-survival Akt protein kinase in bovine aortic smooth muscle cells. Surgery, 130, 378–81CrossRefGoogle ScholarPubMed
Chen, Z., Woodburn, K. W., Shi, C., Adelman, D. C., Rogers, C., and Simon, D. I. (2001). Photodynamic therapy with motexafin lutetium induces redox-sensitive apoptosis of vascular cells. Arterioscler. Thromb. Vasc. Biol., 21, 759–64CrossRefGoogle ScholarPubMed
Cheng, G., Wessels, A., Gourdie, R. G., and Thompson, R. P. (2002). Spatiotemporal and tissue specific distribution of apoptosis in the developing chick heart. Dev. Dyn., 223, 119–33CrossRefGoogle ScholarPubMed
Cheng, W., Kajstura, J., Nitahara, J. A.et al. (1996). Programmed myocyte cell death affects the viable myocardium after infarction in rats. Exp. Cell. Res., 226, 316–27CrossRefGoogle ScholarPubMed
Cheng, W., Li, B., Kajstura, J., Li, P.et al. (1995). Stretch-induced programmed myocyte cell death. J. Clin. Invest., 96, 2247–59CrossRefGoogle ScholarPubMed
Cho, A. and Langille, B. L. (1993). Arterial smooth-muscle cell turnover during the postnatal-period in lambs. FASEB J., 7, A756–A6Google Scholar
Cho, A., Courtman, D., and Langille, L. (1995). Apoptosis (programmed cell death) in arteries of the neonatal lamb. Circ. Res., 76, 168–75CrossRefGoogle ScholarPubMed
Cho, A., Mitchell, L., Koopmans, D., and Langille, B. L. (1997). Effects of changes in blood flow rate on cell death and cell proliferation in carotid arteries of immature rabbits. Circ. Res., 81, 328–37CrossRefGoogle ScholarPubMed
Condorelli, G., Roncarati, R., Ross, J. Jr.et al. (2001). Heart-targeted overexpression of caspase3 in mice increases infarct size and depresses cardiac function. Proc. Natl. Acad. Sci. USA, 98, 9977–82CrossRefGoogle ScholarPubMed
Cui, T., Nakagami, H., Iwai, M.et al. (2001). Pivotal role of tyrosine phosphatase SHP-1 in AT2 receptor-mediated apoptosis in rat fetal vascular smooth muscle cell. Cardiovasc. Res., 49, 863–71CrossRefGoogle ScholarPubMed
Dowd, N. P., Scully, M., Adderley, S. R., Cunningham, A. J., and Fitzgerald, D. J. (2001). Inhibition of cyclooxygenase-2 aggravates doxorubicin-mediated cardiac injury in vivo. J. Clin. Invest., 108, 585–90CrossRefGoogle ScholarPubMed
Entman, M. and Smith, C. (1994). Postreperfusion inflammation: a model for reaction to injury in cardiovascular disease. Cardiovasc. Res., 28, 1301CrossRefGoogle ScholarPubMed
Erl, W., Hansson, G., Martin, R., Draude, G., Weber, K., and Weber, C. (1999). Nuclear factor-κβ regulates induction of apoptosis and inhibitor of apoptosis protein-1 expression in vascular smooth muscle cells. Circ. Res., 84, 668–77CrossRefGoogle Scholar
Fauvel, H., Marchetti, P., Chopin, C., Formstecher, P., and Neviere, R. (2001). Differential effects of caspase inhibitors on endotoxin-induced myocardial dysfunction and heart apoptosis. Am. J. Physiol. Heart Circ. Physiol., 280, H1608–14CrossRefGoogle ScholarPubMed
Felzen, B., Shilkrut, M., Less, H.et al. (1998). Fas (CD95/Apo-1)-mediated damage to ventricular myocytes induced by cytotoxic T lymphocytes from perforin-deficient mice: a major role for inositol 1,4,5-trisphosphate. Circ. Res., 82, 438–50CrossRefGoogle Scholar
Fliss, H. and Gattinger, D. (1996). Apoptosis in ischemic and reperfused rat myocardium. Circ. Res., 79, 949–56CrossRefGoogle ScholarPubMed
Flynn, P., Byrne, C., Baglin, T., Weissberg, P., and Bennett, M. (1997). Thrombin generation by apoptotic vascular smooth muscle cells. Blood, 89, 4373–84Google ScholarPubMed
Fox, J. and Shanley, J. (1996). Antisense inhibition of basic fibroblast growth factor induces apoptosis in vascular smooth muscle cells. J. Biol. Chem., 271, 12578–84CrossRefGoogle ScholarPubMed
Fujio, Y., Nguyen, T., Wencker, D., Kitsis, R. N., and Walsh, K. (2000). Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation, 101, 660–7CrossRefGoogle ScholarPubMed
Fukuo, K., Hata, S., Suhara, T.et al.(1996). Nitric oxide induces upregulation of fas and apoptosis in vascular smooth muscle. Hypertension, 27, 823–6CrossRefGoogle ScholarPubMed
Fukuo, K., Nakahashi, T., Nomura, S.et al. (1997). Possible participation of Fas-mediated apoptosis in the mechanism of atherosclerosis. Gerontology, 43, 35–42CrossRefGoogle ScholarPubMed
Gao, F., Gong, B., Christopher, T. A., Lopez, B. L., Karasawa, A., and Ma, X. L. (2001). Anti-apoptotic effect of benidipine, a long-lasting vasodilating calcium antagonist, in ischaemic/reperfused myocardial cells. Br. J. Pharmacol., 132, 869–78CrossRefGoogle ScholarPubMed
Geng, Y. and Libby, P. (1995). Evidence for apoptosis in advanced human atheroma: colocalization with interleukin-1β converting enzyme. Am. J. Path., 147, 251–66Google Scholar
Geng, Y., Wu, Q., Muszynski, M., Hansson, G., and Libby, P. (1996). Apoptosis of vascular smooth-muscle cells induced by in vitro stimulation with interferon-gamma, tumor necrosis factor-alpha, and interleukin-1-beta. Arterioscler. Thromb. Vasc. Biol., 16, 19–27CrossRefGoogle ScholarPubMed
Geng, Y. J., Henderson, L. E., Levesque, E. B., Muszynski, M., and Libby, P. (1997). Fas is expressed in human atherosclerotic intima and promotes apoptosis of cytokine-primed human vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol., 17, 2200–08CrossRefGoogle ScholarPubMed
George, S. J., Angelini, G. D., Capogrossi, M. C., and Baker, A. H. (2001). Wild-type p53 gene transfer inhibits neointima formation in human saphenous vein by modulation of smooth muscle cell migration and induction of apoptosis. Gene. Ther., 8, 668–76CrossRefGoogle ScholarPubMed
Goldenberg, I., Grossman, E., Jacobson, K. A., Shneyvays, V., and Shainberg, A. (2001). Angiotensin II-induced apoptosis in rat cardiomyocyte culture: a possible role of AT1 and AT2 receptors. J. Hypertens., 19, 1681–9CrossRefGoogle ScholarPubMed
Gonzalez, A., Lopez, B., Ravassa, S.et al. (2002). Stimulation of cardiac apoptosis in essential hypertension: potential role of angiotensin II. Hypertension, 39, 75–80CrossRefGoogle ScholarPubMed
Gordon, D., Reidy, M. A., Benditt, E. P., and Schwartz, S. M. (1990). Cell proliferation in human coronary arteries. Proc. Natl. Acad. Sci. USA, 87, 4600–4CrossRefGoogle ScholarPubMed
Gottlieb, R. A., Burleson, K. O., Kloner, R. A., Babior, B. M., and Engler, R. L. (1994). Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J. Clin. Invest., 94, 1621–8CrossRefGoogle ScholarPubMed
Goussev, A., Sharov, V. G., Shimoyama, H.et al. (1998). Effects of ACE inhibition on cardiomyocyte apoptosis in dogs with heart failure. Am. J. Physiol., 275, H626–31Google ScholarPubMed
Granville, D. J., Cassidy, B. A., Ruehlmann, D. O.et al. (2001). Mitochondrial release of apoptosis-inducing factor and cytochrome c during smooth muscle cell apoptosis. Am. J. Pathol., 159, 305–11CrossRefGoogle ScholarPubMed
Guerra, S., Leri, A., Wang, X.et al. (1999). Myocyte death in the failing human heart is gender dependent. Circ. Res., 85, 856–66CrossRefGoogle ScholarPubMed
Hamet, P., Richard, L., Dam, T.et al. (1995). Apoptosis in target organs of hypertension. Hypertension, 26, 642–8CrossRefGoogle ScholarPubMed
Han, D., Haudenschild, C., Hong, M., Tinkle, B., Leon, M., and Liau, G. (1995). Evidence for apoptosis in human atherosclerosis and in a rat vascular injury model. Am. J. Path., 147, 267–77Google Scholar
Hasdai, D., Sangiorgi, G., Spagnoli, L. G.et al. (1999). Coronary artery apoptosis in experimental hypercholesterolemia. Atherosclerosis, 142, 317–25CrossRefGoogle ScholarPubMed
Hayden, M. A., Lange, P. A., and Nakayama, D. K. (2001). Nitric oxide and cyclic guanosine monophosphate stimulate apoptosis via activation of the Fas-FasL pathway. J. Surg. Res., 101, 183–9CrossRefGoogle ScholarPubMed
Henderson, E. L., Gang, Y. J., Sukhova, G. K., Whittemore, A. D., Knox, J., and Libby, P. (1999). Death of smooth muscle cells and expression of mediators of apoptosis by T lymphocytes in human abdominal aortic aneurysms. Circulation, 99, 96–104CrossRefGoogle Scholar
Hirata, H., Takahashi, A., Kobayashi, S.et al. (1998). Caspases are activated in a branched protease cascade and control distinct downstream processes in Fas-induced apoptosis. J. Exp. Med., 187, 587–600CrossRefGoogle Scholar
Hirota, H., Chen, J., Betz, U. A.et al. (1999). Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell., 97, 189–98CrossRefGoogle ScholarPubMed
Hoffmann, G., Kenn, S., Wirleitner, B.et al. (1998). Neopterin induces nitric oxide-dependent apoptosis in rat vascular smooth muscle cells. Immunobiology, 199, 63–73CrossRefGoogle ScholarPubMed
Hsieh, C. C., Yen, M. H., Yen, C. H., and Lau, Y. T. (2001). Oxidized low density lipoprotein induces apoptosis via generation of reactive oxygen species in vascular smooth muscle cells. Cardiovasc. Res., 49, 135–45CrossRefGoogle ScholarPubMed
Igase, M., Okura, T., Kitami, Y., and Hiwada, K. (1999). Apoptosis and Bcl-xs in the intimal thickening of balloon-injured carotid arteries. Clin. Sci., 96, 605–12CrossRefGoogle ScholarPubMed
Ikari, Y., Mulvihill, E., and Schwartz, S. M. (2001). α1-Proteinase inhibitor, alpha 1-antichymotrypsin, and alpha 2-macroglobulin are the antiapoptotic factors of vascular smooth muscle cells. J. Biol. Chem., 276, 11798–803CrossRefGoogle ScholarPubMed
Imanishi, T., Hano, T., Nishio, I., Han, D. K., and Schwartz, S. M. (2001). Apoptosis of vascular smooth muscle cells is induced by Fas ligand derived from endothelial cells. Jpn. Circ. J., 65, 556–60CrossRefGoogle ScholarPubMed
Isner, J., Kearney, M., Bortman, S., and Passeri, J. (1995). Apoptosis in human atherosclerosis and restenosis. Circulation, 91, 2703–11CrossRefGoogle ScholarPubMed
Itoh, G., Tamura, J., Suzuki, M.et al. (1995). DNA fragmentation of human infarcted myocardial cells demonstrated by the nick end labeling method and DNA agarose gel electrophoresis. Am. J. Pathol., 146, 1325–31Google ScholarPubMed
Iwashina, M., Shichiri, M., Marumo, F., and Hirata, Y. (1998). Transfection of inducible nitric oxide synthase gene causes apoptosis in vascular smooth muscle cells. Circulation, 98, 1212–18CrossRefGoogle ScholarPubMed
Jacob, T., Ascher, E., Hingorani, A., Gunduz, Y., and Kallakuri, S. (2001). Initial steps in the unifying theory of the pathogenesis of artery aneurysms. J. Surg. Res., 101, 37–43CrossRefGoogle ScholarPubMed
James, T. N. (1994). Normal and abnormal consequences of apoptosis in the human heart. From postnatal morphogenesis to paroxysmal arrhythmias. Circulation, 90, 556–73CrossRefGoogle ScholarPubMed
James, T. N., St. Martin, E., Willis, P. W., 3rd, and Lohr, T. O. (1996). Apoptosis as a possible cause of gradual development of complete heart block and fatal arrhythmias associated with absence of the AV node, sinus node, and internodal pathways. Circulation, 93, 1424–38CrossRefGoogle ScholarPubMed
James, T. N., Terasaki, F., Pavlovich, E. R., and Vikhert, A. M. (1993). Apoptosis and pleomorphic micromitochondriosis in the sinus nodes surgically excised from five patients with the long QT syndrome. J. Lab. Clin. Med., 122, 309–23Google ScholarPubMed
Jeroudi, M. O., Hartley, C. J., and Bolli, R. (1994). Myocardial reperfusion injury: role of oxygen radicals and potential therapy with antioxidants. Am. J. Cardiol., 73, 2B–7BCrossRefGoogle ScholarPubMed
Jonassen, A. K., Brar, B. K., Mjos, O. D., Sack, M. N., Latchman, D. S., and Yellon, D. M. (2000). Insulin administered at reoxygenation exerts a cardioprotective effect in myocytes by a possible anti-apoptotic mechanism. J. Mol. Cell. Cardiol., 32, 757–64CrossRefGoogle ScholarPubMed
Kajstura, J., Cheng, W., Reiss, K.et al. (1996). Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab. Invest., 74, 86–107Google ScholarPubMed
Kajstura, J., Cigola, E., Malhotra, A.et al. (1997). Angiotensin II induces apoptosis of adult ventricular myocytes in vitro. J. Mol. Cell. Cardiol., 29, 859–70CrossRefGoogle ScholarPubMed
Kang, P. M., Haunstetter, A., Aoki, H., Usheva, A., and Izumo, S. (2000). Morphological and molecular characterization of adult cardiomyocyte apoptosis during hypoxia and reoxygenation. Circ. Res., 87, 118–25CrossRefGoogle ScholarPubMed
Karwatowska-Prokopczuk, E., Nordberg, J. A., Li, H. L., Engler, R. L., and Gottlieb, R. A. (1998). Effect of vacuolar proton ATPase on pHi, Ca2+, and apoptosis in neonatal cardiomyocytes during metabolic inhibition/recovery. Circ. Res., 82, 1139–44CrossRefGoogle ScholarPubMed
Kavurma, M. M., Santiago, F. S., Bonfoco, E., and Khachigian, L. M. (2001). Sp1 phosphorylation regulates apoptosis via extracellular FasL-Fas engagement. J. Biol. Chem., 276, 4964–71CrossRefGoogle ScholarPubMed
Kim, K. (2001). Proteasome inhibitors sensitize human vascular smooth muscle cells to Fas (CD95)-mediated death. Biochem. Biophys. Res. Commun., 281, 305–10CrossRefGoogle ScholarPubMed
Kocher, A. A., Schuster, M. D., Szabolcs, M. J.et al. (2001). Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat. Med., 7, 430–6CrossRefGoogle ScholarPubMed
Kockx, M. M. (1998). Apoptosis in the atherosclerotic plaque – quantitative and qualitative aspects. Arterioscler. Thromb. Vasc. Biol., 18, 1519–22CrossRefGoogle ScholarPubMed
Kockx, M. M., DeMeyer, G., Muhring, J., Jacob, W., Bult, H., and Herman, A. G. (1998a). Apoptosis and related proteins in different stages of human atherosclerotic plaques. Circulation, 97, 2307–15CrossRefGoogle Scholar
Kockx, M. M., DeMeyer, G. Y., Buyssens, N., Knaapen, M. W. M., Bult, H., and Herman, A. G. (1998b). Cell composition, replication, and apoptosis in atherosclerotic plaques after 6 months of cholesterol withdrawal. Circ. Res., 83, 378–87CrossRefGoogle Scholar
Konstadoulakis, M. M., Kymionis, G. D., Karagiani, M.et al. (1998). Evidence of apoptosis in human carotid atheroma. J. Vasc. Surg., 27, 733–9CrossRefGoogle ScholarPubMed
Krajewska, M., Wang, H. G., Krajewski, S.et al. (1997). Immunohistochemical analysis of in vivo patterns of expression of CPP32 (caspase-3), a cell death protease. Cancer Res., 57, 1605–13Google Scholar
Krstic, R. and Pexieder, T. (1973). Ultrastructure of cell death in bulbar cushions of chick embryo heart. Z. Anat. Entwicklungsgesch., 140, 337–50CrossRefGoogle ScholarPubMed
Kubota, T., McTiernan, C., Frye, C.et al. (1997). Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-α. Circ. Res., 81, 627–35CrossRefGoogle ScholarPubMed
Kumar, A. and Lindner, V. (1997). Remodeling with neointima formation in the mouse carotid artery after cessation of blood flow. Arterioscler. Thromb. Vasc. Biol., 17, 2238–44CrossRefGoogle ScholarPubMed
Laugwitz, K. L., Moretti, A., Weig, H. J.et al. (2001). Blocking caspase-activated apoptosis improves contractility in failing myocardium. Hum. Gene. Ther., 12, 2051–63CrossRefGoogle ScholarPubMed
Lee, T. and Chau, L. (2001). Fas/Fas ligand-mediated death pathway is involved in oxLDL-induced apoptosis in vascular smooth muscle cells. Am. J. Physiol. Cell. Physiol., 280, C709–18CrossRefGoogle ScholarPubMed
Leri, A., Fiordaliso, F., Setoguchi, M.et al. (2000). Inhibition of p53 function prevents renin–angiotensin system activation and stretch-mediated myocyte apoptosis. Am. J. Pathol., 157, 843–57CrossRefGoogle ScholarPubMed
Leri, A., Liu, Y., Claudio, P. P.et al. (1999). Insulin-like growth factor-1 induces Mdm2 and down-regulates p53, attenuating the myocyte renin–angiotensin system and stretch-mediated apoptosis. Am. J. Pathol., 154, 567–80CrossRefGoogle ScholarPubMed
Leskinen, M., Wang, Y., Leszczynski, D., Lindstedt, K. A., and Kovanen, P. T. (2001). Mast cell chymase induces apoptosis of vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol., 21, 516–22CrossRefGoogle ScholarPubMed
Li, H. L., Zhu, H., Xu, C. J., and Yuan, J. Y. (1998). Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell, 94, 491–501CrossRefGoogle Scholar
Li, P. F., Dietz, R., and Harsdorf, R. (1997). Differential effect of hydrogen peroxide and superoxide anion on apoptosis and proliferation of vascular smooth muscle cells. Circulation, 96, 3602–9CrossRefGoogle ScholarPubMed
Li, Q., Li, B., Wang, X.et al. (1997). Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. J. Clin. Invest., 100, 1991–9CrossRefGoogle ScholarPubMed
Li, Z., Bing, O. H., Long, X., Robinson, K. G., and Lakatta, E. G. (1997). Increased cardiomyocyte apoptosis during the transition to heart failure in the spontaneously hypertensive rat. Am. J. Physiol., 272, H2313–19Google ScholarPubMed
Litt, M. R., Jeremy, R. W., Weisman, H. F., Winkelstein, J. A., and Becker, L. C. (1989). Neutrophil depletion limited to reperfusion reduced myocardial infarct size after 90 minutes of ischemia: evidence for neutrophil-mediated reperfusion injury. Circulation, 80, 1816–27CrossRefGoogle ScholarPubMed
Liu, H., McPherson, B. C., and Yao, Z. (2001). Preconditioning attenuates apoptosis and necrosis: role of protein kinase C-epsilon and -delta isoforms. Am. J. Physiol. Heart Circ. Physiol., 281, H404–10CrossRefGoogle ScholarPubMed
Liu, Y., Cigola, E., Cheng, W.et al. (1995). Myocyte nuclear mitotic division and programmed myocyte cell death characterize the cardiac myopathy induced by rapid ventricular pacing in dogs. Lab. Invest., 73, 771–87Google ScholarPubMed
Long, X., Crow, M. T., Sollott, S. J.et al. (1998). Enhanced expression of p53 and apoptosis induced by blockade of the vacuolar proton ATPase in cardiomyocytes. J. Clin. Invest., 101, 1453–61CrossRefGoogle ScholarPubMed
Long, X. L., Boluyt, M. O., Hipolito, M. D.et al. (1997). p53 and the hypoxia-induced apoptosis of cultured neonatal rat cardiac myocytes. J. Clin. Invest., 99, 2635–43CrossRefGoogle ScholarPubMed
LopezCandales, A., Holmes, D. R., Liao, S. X., Scott, M. J., Wickline, S. A., and Thompson, R. W. (1997). Decreased vascular smooth muscle cell density in medial degeneration of human abdominal aortic aneurysms. Am. J. Pathol., 150, 993–1007Google Scholar
Luo, Z., Garron, T., Palasis, M.et al. (2001). Enhancement of fas ligand-induced inhibition of neointimal formation in rabbit femoral and iliac arteries by coexpression of p35. Hum. Gene. Ther., 12, 2191–202CrossRefGoogle ScholarPubMed
Malik, N., Francis, S. E., Holt, C. M.et al. (1998). Apoptosis and cell proliferation after porcine coronary angioplasty. Circulation, 98, 1657–65CrossRefGoogle ScholarPubMed
Mallat, Z., Benamer, H., Hugel, B., Steg, P., Freyssinet, J., and Tedgui, A. (1998). Elevated plasma levels of shed membrane microparticles in patients with acute coronary syndromes. Circulation, 98, I-172 (Abstract)Google Scholar
Mallat, Z., Fornes, P., Costagliola, R.et al. (2001). Age and gender effects on cardiomyocyte apoptosis in the normal human heart. J. Gerontol. A. Biol. Sci. Med. Sci., 56, M719–23CrossRefGoogle ScholarPubMed
Mallat, Z., Hugel, B., Ohan, J., Leseche, G., Freyssinet, J. M., and Tedgui, A. (1999). Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques – a role for apoptosis in plaque thrombogenicity. Circulation, 99, 348–53CrossRefGoogle ScholarPubMed
Mallat, Z., Tedgui, A., Fontaliran, F., Frank, R., Durigon, M., and Fontaine, G. (1996). Evidence of apoptosis in arrhythmogenic right ventricular dysplasia. New. Eng. J. Med., 335, 1190–6CrossRefGoogle ScholarPubMed
Mano, T., Luo, Z., Suhara, T., Smith, R. C., Esser, S., and Walsh, K. (2000). Expression of wild-type and noncleavable Fas ligand by tetracycline-regulated adenoviral vectors to limit intimal hyperplasia in vascular lesions. Hum. Gene. Ther., 11, 1625–35CrossRefGoogle ScholarPubMed
Matsui, T., Tao, J., del Monte, F.et al. (2001). Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation, 104, 330–5CrossRefGoogle ScholarPubMed
Mehrhof, F. B., Muller, F. U., Bergmann, M. W.et al. (2001). In cardiomyocyte hypoxia, insulin-like growth factor-I-induced antiapoptotic signaling requires phosphatidylinositol-3-OH-kinase-dependent and mitogen-activated protein kinase-dependent activation of the transcription factor cAMP response element-binding protein. Circulation, 104, 2088–94CrossRefGoogle ScholarPubMed
Meiners, S., Laule, M., Rother, W.et al. (2002). Ubiquitin-proteasome pathway as a new target for the prevention of restenosis. Circulation, 105, 483–9CrossRefGoogle ScholarPubMed
Miao, W., Luo, Z., Kitsis, R. N., and Walsh, K. (2000). Intracoronary, adenovirus-mediated Akt gene transfer in heart limits infarct size following ischemia–reperfusion injury in vivo. J. Mol. Cell. Cardiol., 32, 2397–402CrossRefGoogle ScholarPubMed
Miyamoto, T., Leconte, I., Swain, J. L.et al. (1998). Autocrine FGF signaling is required for vascular smooth muscle cell survival in vitro. J. Cell. Physiol., 177, 58–673.0.CO;2-D>CrossRefGoogle ScholarPubMed
Mocanu, M. M., Baxter, G. F., and Yellon, D. M. (2000). Caspase inhibition and limitation of myocardial infarct size: protection against lethal reperfusion injury. Br. J. Pharmacol., 130, 197–200CrossRefGoogle ScholarPubMed
Moudgil, R., Menon, V., Xu, Y., Musat-Marcu, S., Kumar, D., and Jugdutt, B. I. (2001). Postischemic apoptosis and functional recovery after angiotensin II type 1 receptor blockade in isolated working rat hearts. J. Hypertens., 19, 1121–9CrossRefGoogle ScholarPubMed
Nakamura, T., Ueda, Y., Juan, Y., Katsuda, S., Takahashi, H., and Koh, E. (2000). Fas-mediated apoptosis in adriamycin-induced cardiomyopathy in rats: in vivo study. Circulation, 102, 572–8CrossRefGoogle ScholarPubMed
Narula, J., Haider, N., Virmani, R.et al. (1996). Apoptosis in myocytes in end-stage heart failure. N. Engl. J. Med., 335, 1182–9CrossRefGoogle ScholarPubMed
Nayler, W., Panagiotopoulos, S., Elz, J., and Daly, M. (1988). Calcium mediated damage during post ischemic reperfusion. J. Molec. Cell. Cardiol., 20, 41CrossRefGoogle Scholar
Neschis, D. G., Safford, S. D., Hanna, A. K., Fox, J. C., and Golden, M. A. (1998). Antisense basic fibroblast growth factor gene transfer reduces early intimal thickening in a rabbit femoral artery balloon injury model. J. Vasc. Surg., 27, 126–34CrossRefGoogle Scholar
Niemann-Jonsson, A., Ares, M. P., Yan, Z. Q.et al. (2001). Increased rate of apoptosis in intimal arterial smooth muscle cells through endogenous activation of TNF receptors. Arterioscler. Thromb. Vasc. Biol., 21, 1909–14CrossRefGoogle ScholarPubMed
Nishio, E. and Watanabe, Y. (1997). NO induced apoptosis accompanying the change of oncoprotein expression and the activation of CPP32 protease. Life Sci., 62, 239–45CrossRefGoogle Scholar
Okura, Y., Brink, M., Zahid, A. A., Anwar, A., and Delafontaine, P. (2001). Decreased expression of insulin-like growth factor-1 and apoptosis of vascular smooth muscle cells in human atherosclerotic plaque. J. Mol. Cell. Cardiol., 33, 1777–89CrossRefGoogle ScholarPubMed
Olivetti, G., Abbi, R., Quaini, F.et al. (1997). Apoptosis in the failing human heart. N. Engl. J. Med., 336, 1131–41CrossRefGoogle ScholarPubMed
Olivetti, G., Giordano, G., Corradi, D.et al. (1995). Gender differences and aging: effects on the human heart. J. Am. Coll. Cardiol., 26, 1068–79CrossRefGoogle ScholarPubMed
Olivetti, G., Quaini, F., Sala, R.et al. (1996). Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J. Mol. Cell. Cardiol., 28, 2005–16CrossRefGoogle Scholar
Orlandi, A., Francesconi, A., Cocchia, D., Corsini, A., and Spagnoli, L. G. (2001). Phenotypic heterogeneity influences apoptotic susceptibility to retinoic acid and cis-platinum of rat arterial smooth muscle cells in vitro: implications for the evolution of experimental intimal thickening. Arterioscler. Thromb. Vasc. Biol., 21, 1118–23CrossRefGoogle ScholarPubMed
Palojoki, E., Saraste, A., Eriksson, A.et al. (2001). Cardiomyocyte apoptosis and ventricular remodeling after myocardial infarction in rats. Am. J. Physiol. Heart Circ. Physiol., 280, H2726–31CrossRefGoogle ScholarPubMed
Patel, V., Zhang, Q.-J., Soos, M., Siddle, K., Weissberg, P. L., and Bennett, M. R. (2001). Defect in insulin-like growth factor 1 signaling underlies increased apoptosis of human atherosclerotic plaque-derived vascular smooth muscle cells. Circ. Res., 88, 895–902CrossRefGoogle Scholar
Perlman, H., Maillard, L., Krasinski, K., and Walsh, K. (1997). Evidence for the rapid onset of apoptosis in medial smooth muscle cells after balloon injury. Circulation, 95, 981–7CrossRefGoogle ScholarPubMed
Perlman, H., Sata, M., Krasinski, K., Dorai, T., Buttyan, R., and Walsh, K. (2000). Adenovirus-encoded hammerhead ribozyme to Bcl-2 inhibits neointimal hyperplasia and induces vascular smooth muscle cell apoptosis. Cardiovasc. Res., 45, 570–8CrossRefGoogle ScholarPubMed
Pexieder, T. (1975). Cell death in the morphogenesis and teratogenesis of the heart. Adv. Anat. Embryol. Cell. Biol., 51, 3–99Google Scholar
Pollman, M. J., Hall, J. L., and Gibbons, G. H. (1999). Determinants of vascular smooth muscle cell apoptosis after balloon angioplasty injury – influence of redox state and cell phenotype. Circ. Res., 84, 113–21CrossRefGoogle ScholarPubMed
Pollman, M. J., Hall, J. L., Mann, M. J., Zhang, L. N., and Gibbons, G. H. (1998). Inhibition of neointimal cell bcl-x expression induces apoptosis and regression of vascular disease. Nat. Med., 4, 222–7CrossRefGoogle ScholarPubMed
Pollman, M. J., Yamada, T., Horiuchi, M., and Gibbons, G. H. (1996). Vasoactive substances regulate vascular smooth-muscle cell apoptosis – countervailing influences of nitric-oxide and angiotensin-II. Circ. Res., 79, 748–56CrossRefGoogle ScholarPubMed
Proudfrot, D., Skepper, J. N., Hegyi, C.et al. (2000). Apoptosis regulates human vascular calcification in vitro: evidence for initiation of vascular calcification by apoptotic bodies. Circ. Res. 87, 1055–62CrossRefGoogle Scholar
Ruetten, H., Badorff, C., Ihling, C., Zeiher, A. M., and Dimmeler, S. (2001). Inhibition of caspase-3 improves contractile recovery of stunned myocardium, independent of apoptosis-inhibitory effects. J. Am. Coll. Cardiol., 38, 2063–70CrossRefGoogle ScholarPubMed
Saraste, A., Pulkki, K., Kallajoki, M., Henriksen, K., Parvinen, M., and Voipio-Pulkki, L. (1997). Apoptosis in human acute myocardial infarction. Circulation, 95, 320–3CrossRefGoogle ScholarPubMed
Sata, M., Perlman, H. R., Muruve, D. A.et al. (1998). Fas ligand gene transfer to the vessel wall inhibits neointima formation and overrides the adenovirus-mediated T cell response. Proc. Natl. Acad. Sci. USA, 95, 1213–17CrossRefGoogle ScholarPubMed
Scaffidi, C., Fulda, S., Srinivasan, A.et al. (1998). Two CD95 (APO-1/Fas) signaling pathways. EMBO J., 17, 1675–87CrossRefGoogle ScholarPubMed
Schaub, F. J., Han, D. K., Conrad Liles, W.et al. (2000). Fas/FADD-mediated activation of a specific program of inflammatory gene expression in vascular smooth muscle cells. Nat. Med., 6, 790–6Google ScholarPubMed
Scheidegger, K. J., James, R. W., and Delafontaine, P. (2000). Differential effects of low density lipoproteins on IGF-1 and IGF-1R expression in vascular smooth muscle cells. J. Biol. Chem., 275, 26864–9Google ScholarPubMed
Schneider, D. B., Vassalli, G., Wen, S.et al. (2000). Expression of Fas ligand in arteries of hypercholesterolemic rabbits accelerates atherosclerotic lesion formation. Arterioscler. Thromb. Vasc. Biol., 20, 298–308CrossRefGoogle ScholarPubMed
Schwartzbauer, G. and Robbins, J. (2001). The tumor suppressor gene PTEN can regulate cardiac hypertrophy and survival. J. Biol. Chem., 276, 35786–93CrossRefGoogle Scholar
Seshiah, P. N., Kereiakes, D. J., Vasudevan, S. S.et al. (2002). Activated monocytes induce smooth muscle cell death: role of macrophage colony-stimulating factor and cell contact. Circulation, 105, 174–80CrossRefGoogle ScholarPubMed
Sharov, V. G., Sabbah, H. N., Shimoyama, H., Goussev, A. V., Lesch, M., and Goldstein, S. (1996). Evidence of cardiocyte apoptosis in myocardium of dogs with chronic heart failure. Am. J. Pathol., 148, 141–9Google ScholarPubMed
Shaulian, E., Resnitzky, D., Shifman, O.et al. (1997). Induction of Mdm2 and enhancement of cell survival by bFGF. Oncogene, 15, 2717–25CrossRefGoogle ScholarPubMed
Sheng, Z., Knowlton, K., Chen, J., Hoshijima, M., Brown, J., and Chien, K. (1997). Cardiotrophin 1 (CT-1) inhibition of cardiac myocyte apoptosis via a mitogen-activated protein kinase-dependent pathway: divergence from downstream CT-1 signals for myocardial cell hypertrophy. J. Biol. Chem., 272, 5783–91CrossRefGoogle Scholar
Slomp, J., GittenbergerdeGroot, A. C., Glukhova, M. A.et al.(1997). Differentiation, dedifferentiation, and apoptosis of smooth muscle cells during the development of the human ductus arteriosus. Arterioscler. Thromb. Vasc. Biol., 17, 1003–9CrossRefGoogle ScholarPubMed
Smith, E. F. D., Egan, J. W., Bugelski, P. J., Hillegass, L. M., Hill, D. E., and Griswold, D. E. (1988). Temporal relation between neutrophil accumulation and myocardial reperfusion injury. Am. J. Physiol., 255, H1060–8Google ScholarPubMed
Stephanou, A., Scarabelli, T. M., Brar, B. K.et al. (2001). Induction of apoptosis and Fas receptor/Fas ligand expression by ischemia/reperfusion in cardiac myocytes requires serine 727 of the STAT-1 transcription factor but not tyrosine 701. J. Biol. Chem., 276, 28340–7CrossRefGoogle Scholar
Sugino, H., Ozono, R., Kurisu, S.et al. (2001). Apoptosis is not increased in myocardium overexpressing type 2 angiotensin II receptor in transgenic mice. Hypertension, 37, 1394–8CrossRefGoogle Scholar
Suhara, T., Mano, T., Oliveira, B. E., and Walsh, K. (2001). Phosphatidylinositol 3-kinase/Akt signaling controls endothelial cell sensitivity to Fas-mediated apoptosis via regulation of FLICE-inhibitory protein (FLIP). Circ. Res., 89, 13–19CrossRefGoogle Scholar
Susin, S. A., Lorenzo, H., Zamzami, N.et al. (1999). Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 397, 441–6CrossRefGoogle ScholarPubMed
Takeda, K., Yu, Z. X., Nishikawa, T.et al. (1996). Apoptosis and DNA fragmentation in the bulbus cordis of the developing rat heart. J. Mol. Cell. Cardiol., 28, 209–15CrossRefGoogle ScholarPubMed
Takemura, G., Ohno, M., Hayakawa, Y.et al. (1998). Role of apoptosis in the disappearance of infiltrated and proliferated interstitial cells after myocardial infarction. Circ. Res., 82, 1130–8CrossRefGoogle ScholarPubMed
Tanaka, M., Ito, H., Adachi, S.et al. (1994). Hypoxia induces apoptosis with enhanced expression of Fas antigen messenger RNA in cultured neonatal rat cardiomyocytes. Circ. Res., 75, 426–33CrossRefGoogle ScholarPubMed
Teiger, E., Than, V. D., Richard, L.et al. (1996). Apoptosis in pressure overload-induced heart hypertrophy in the rat. J. Clin. Invest., 97, 2891–7CrossRefGoogle ScholarPubMed
Thompson, R. W., Liao, S. X., and Curci, J. A. (1997). Vascular smooth muscle cell apoptosis in abdominal aortic aneurysms. Coron. Artery Dis., 8, 623–31CrossRefGoogle ScholarPubMed
Torre-Amione, G., Kapadia, S., Lee, J., Bies, R., Lebovitz, R., and Mann, D. (1995). Expression and functional significance of tumor necrosis factor receptors in human myocardium. Circulation, 92, 1487–93CrossRefGoogle ScholarPubMed
Umansky, S., Cuenco, G., Khutzlan, S.et al. (1995). Post ischemic apoptotic death of rat neonatal cardiomyocytes. Cell Death Differ., 2, 235Google ScholarPubMed
Waksman, R., Rodriguez, J. C., Robinson, K. A.et al. (1997). Effect of intravascular irradiation on cell proliferation, apoptosis, and vascular remodeling after balloon overstretch injury of porcine coronary arteries. Circulation, 96, 1944–52CrossRefGoogle ScholarPubMed
Wang, H. and Keiser, J. A. (1998). Molecular characterization of rabbit CPP32 and its function in vascular smooth muscle cell apoptosis. Am. J. Physiol., 43, H1132–H40Google Scholar
Wang, L., Ma, W. Q., Markovich, R., Chen, J. W., and Wang, P. H. (1998). Regulation of cardiomyocyte apoptotic signaling by insulin-like growth factor I. Circ. Res., 83, 516–22CrossRefGoogle ScholarPubMed
Wang, Y., Huang, S., Sah, V. P.et al. (1998). Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J. Biol. Chem., 273, 2161–8CrossRefGoogle ScholarPubMed
Watanabe, M., Jafri, A., and Fisher, S. A. (2001). Apoptosis is required for the proper formation of the ventriculo-arterial connections. Dev. Biol., 240, 274–88CrossRefGoogle ScholarPubMed
Yamashita, K., Kajstura, J., Discher, D. J.et al. (2001). Reperfusion-activated Akt kinase prevents apoptosis in transgenic mouse hearts overexpressing insulin-like growth factor-1. Circ. Res., 88, 609–14CrossRefGoogle ScholarPubMed
Yaoita, H., Ogawa, K., Maehara, K., and Maruyama, Y. (1998). Attenuation of ischemia/ reperfusion injury in rats by a caspase inhibitor. Circulation, 97, 276–81CrossRefGoogle ScholarPubMed
Yue, T. L., Ma, X. L., Wang, X.et al. (1998). Possible involvement of stress-activated protein kinase signaling pathway and Fas receptor expression in prevention of ischemia/reperfusion-induced cardiomyocyte apoptosis by carvedilol. Circ. Res., 82, 166–74CrossRefGoogle ScholarPubMed
Yue, T. L., Wang, C., Gu, J. L.et al. (2000). Inhibition of extracellular signal-regulated kinase enhances ischemia/reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ. Res., 86, 692–9CrossRefGoogle ScholarPubMed
Zechner, D., Craig, R., Hanford, D. S., McDonough, P. M., Sabbadini, R. A., and Glembotski, C. C. (1998). MKK6 activates myocardial cell NF-kappaB and inhibits apoptosis in a p38 mitogen-activated protein kinase-dependent manner. J. Biol. Chem., 273, 8232–9CrossRefGoogle Scholar
Zhao, Y. Y., Sawyer, D. R., Baliga, R. R.et al. (1998). Neuregulins promote survival and growth of cardiac myocytes. Persistence of ErbB2 and ErbB4 expression in neonatal and adult ventricular myocytes. J. Biol. Chem., 273, 10261–9CrossRefGoogle ScholarPubMed
Zhao, Z. H., Francis, C. E., Welch, G., Loscalzo, J., and Ravid, K. (1997). Reduced glutathione prevents nitric oxide-induced apoptosis in vascular smooth muscle cells. Biochim. Biophys. Acta., 1359, 143–52CrossRefGoogle ScholarPubMed
Zhu, W. Z., Zheng, M., Koch, W. J., Lefkowitz, R. J., Kobilka, B. K., and Xiao, R. P. (2001). Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes. Proc. Natl. Acad. Sci. USA, 98, 1607–12CrossRefGoogle ScholarPubMed
Zweier, J., Flaherty, J., and Weisfeldt, M. (1987). Direct measurement of radical generation following reperfusion of ischemic myocardium. Proc. Natl. Acad. Sci. USA, 84, 1404CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×