Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-28T13:39:47.121Z Has data issue: false hasContentIssue false

7 - Early evolution of planetary systems

Published online by Cambridge University Press:  05 June 2012

Philip J. Armitage
Affiliation:
University of Colorado, Boulder
Get access

Summary

The classical theory of giant planet formation described in the preceding chapter predicts that massive planets ought to form on approximately circular orbits, with a strong preference for formation in the outer disk at a few AU or beyond. Most currently known extrasolar planets have orbits that are grossly inconsistent with these predictions and, irrespective of the still open question of what the typical planetary system looks like, their existence demands an explanation. Even within the Solar System the existence of a large resonant population of Kuiper Belt Objects, and the time scale problem for the formation of Uranus and Neptune, suggest that the classical theory is at best incomplete.

In this chapter we describe a set of physical mechanisms – gas disk migration, planetesimal scattering, and planet–planet scattering – that promise to reconcile the observed properties of extrasolar planetary systems with theory. The common feature of all of these mechanisms is that they result in energy and angular momentum exchange either among newly formed planets, or between planets and leftover solid or gaseous debris in the system. The exchange of energy and angular momentum drives evolution of the planetary semi-major axis and eccentricity, which can be substantial enough to make the final architecture of the system unrecognizable from its state immediately after planet formation.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×