Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-06-11T05:16:03.204Z Has data issue: false hasContentIssue false

8 - Anaerobic fermentation

Published online by Cambridge University Press:  05 September 2012

Byung Hong Kim
Affiliation:
Korea Institute of Science and Technology, Seoul
Geoffrey Michael Gadd
Affiliation:
University of Dundee
Get access

Summary

Anaerobic conditions are maintained in some ecosystems where the rate of oxygen supply is lower than that of consumption. Organic compounds are removed from anaerobic ecosystems through the concerted action of fermentative and anaerobic respiratory microorganisms. In microbiology, the term ‘fermentation’ can be used to describe either microbial processes that produce useful products or a form of anaerobic microbial growth using internally supplied electron acceptors and generating ATP mainly through substrate-level phosphorylation (SLP).

Electron acceptors used in anaerobic metabolism

Fermentation and anaerobic respiration

Respiration refers to the reduction of oxygen by electrons from the electron transport chains coupled to the generation of a proton motive force through electron transport phosphorylation (ETP; Section 5.8). Under anaerobic conditions, some microorganisms grow using an ETP process with externally supplied oxidized compounds other than oxygen as the terminal electron acceptor. This type of growth is referred to as anaerobic respiration. In a fermentative process, ATP is generated through SLP with the oxidation of electron donors coupled to the reduction of electron carriers such as NAD(P)+ or flavin adenine dinucleotide (FAD). The reduced electron carriers are reoxidized reducing the metabolic intermediate.

This chapter describes the fermentation processes carried out by various anaerobic prokaryotes. In fermentation, ATP is generated not only through SLP but also by other mechanisms such as the reactions catalyzed by fumarate reductase and Na+-dependent decarboxylase, and lactate/H+ symport as described earlier (Section 5.8.6).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atack, J. M. & Kelly, D. J. (2006). Structure, mechanism and physiological roles of bacterial cytochrome c peroxidases. Advances in Microbial Physiology 52, 73–106.CrossRefGoogle Scholar
Brioukhanov, A. L., Thauer, R. K. & Netrusov, A. I. (2002). Catalase and superoxide dismutase in the cells of strictly anaerobic microorganisms. Microbiology-Moscow 71, 281–285.CrossRefGoogle Scholar
Brioukhanov, A. L., Netrusov, A. I. & Eggen, R. I. L. (2006). The catalase and superoxide dismutase genes are transcriptionally up-regulated upon oxidative stress in the strictly anaerobic archaeon Methanosarcina barkeri. Microbiology-UK 152, 1671–1677.CrossRefGoogle ScholarPubMed
Chen, L., Sharma, P., Gall, J., Mariano, A. M., Teixeira, M. & Xavier, A. V. (1994). A blue non-heme iron protein from Desulfovibrio gigas. European Journal of Biochemistry 226, 613–618.CrossRefGoogle ScholarPubMed
Coulter, E. D. & Kurtz, D. M. (2001). A role for rubredoxin in oxidative stress protection in Desulfovibrio vulgaris: catalytic electron transfer to rubrerythrin and two-iron superoxide reductase. Archives of Biochemistry and Biophysics 394, 76–86.CrossRefGoogle ScholarPubMed
Davydova, M. N. & Tarasova, N. B. (2005). Carbon monoxide inhibits superoxide dismutase and stimulates reactive oxygen species production by Desulfovibrio desulfuricans 1388. Anaerobe 11, 335–338.CrossRefGoogle ScholarPubMed
Dolla, A., Fournier, M. & Dermoun, Z. (2006). Oxygen defense in sulfate-reducing bacteria. Journal of Biotechnology 126, 87–100.CrossRefGoogle ScholarPubMed
Fournier, M., Zhang, Y., Wildschut, J. D., Dolla, A., Voordouw, J. K., Schriemer, D. C. & Voordouw, G. (2003). Function of oxygen resistance proteins in the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Journal of Bacteriology 185, 71–79.CrossRefGoogle ScholarPubMed
Frey, A. D. & Kallio, P. T. (2003). Bacterial hemoglobins and flavohemoglobins: versatile proteins and their impact on microbiology and biotechnology. FEMS Microbiology Reviews 27, 525–545.CrossRefGoogle ScholarPubMed
Grunden, A. M., Jenney, F. E. Jr., Ma, K., Ji, M., Weinberg, M. V. & Adams, M. W. W. (2005). In vitro reconstitution of an NADPH-dependent superoxide reduction pathway from Pyrococcus furiosus. Applied and Environmental Microbiology 71, 1522–1530.CrossRefGoogle ScholarPubMed
Horsburgh, M. J., Wharton, S. J., Karavolos, M. & Foster, S. J. (2002). Manganese: elemental defence for a life with oxygen. Trends in Microbiology 10, 496–501.CrossRefGoogle ScholarPubMed
Imlay, J. A. (2002). How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis. Advances in Microbial Physiology 46, 111–153.CrossRefGoogle ScholarPubMed
Imlay, J. A. (2006). Iron-sulphur clusters and the problem with oxygen. Molecular Microbiology 59, 1073–1082.CrossRefGoogle ScholarPubMed
Jacobson, M. D. (1996). Reactive oxygen species and programmed cell death. Trends in Biochemical Sciences 21, 83–86.CrossRefGoogle ScholarPubMed
Jean, D., Briolat, V. & Reysset, G. (2004). Oxidative stress response in Clostridium perfringens. Microbiology-UK 150, 1649–1659.CrossRefGoogle ScholarPubMed
Jovanovic, T., Ascenso, C., Hazlett, K. R. O., Sikkink, R., Kerbs, C., Litwiller, R., Benson, L. M., Moura, I., Moura, J. J. G., Radolf, J. D., Huynh, B. H., Naylor, S. & Rusnak, F. (2000). Neelaredoxin, an iron-binding protein from the syphilis spirochete, Treponema pallidum, is a superoxide reductase. Journal of Biological Chemistry 275, 28439–28448.CrossRefGoogle ScholarPubMed
Kawasaki, S., Watamura, Y., Ono, M., Watanabe, T., Takeda, K. & Niimura, Y. (2005). Adaptive responses to oxygen stress in obligatory anaerobes Clostridium acetobutylicum and Clostridium aminovalericum. Applied and Environmental Microbiology 71, 8442–8450.CrossRefGoogle ScholarPubMed
Kawasaki, S., Mimura, T., Satoh, T., Takeda, K. & Niimura, Y. (2006). Response of the microaerophilic Bifidobacterium species, B. boum and B. thermophilum, to oxygen. Applied and Environmental Microbiology 72, 6854–6858.CrossRefGoogle Scholar
Kim, J. H. & Suh, K. H. (2005). Light-dependent expression of superoxide dismutase from cyanobacterium Synechocystis sp. strain PCC 6803. Archives of Microbiology 183, 218–223.CrossRefGoogle ScholarPubMed
Kitamura, M., Nakanishi, T., Kojima, S., Kumagai, I. & Inoue, H. (2001). Cloning and expression of the catalase gene from the anaerobic bacterium Desulfovibrio vulgaris (Miyazaki F). Journal of Biochemistry 129, 357–364.CrossRefGoogle Scholar
Kjeldsen, K. U., Joulian, C. & Ingvorsen, K. (2004). Oxygen tolerance of sulfate-reducing bacteria in activated sludge. Environmental Science and Technology 38, 2038–2043.CrossRefGoogle ScholarPubMed
Gall, J. & Xavier, A. V. (1996). Anaerobes response to oxygen: the sulfate-reducing bacteria. Anaerobe 2, 1–9.CrossRefGoogle ScholarPubMed
Lee, J. H., Yeo, W. S. & Roe, J. H. (2004). Induction of the sufA operon encoding Fe-S assembly proteins by superoxide generators and hydrogen peroxide: involvement of OxyR, IHF and an unidentified oxidant-responsive factor. Molecular Microbiology 51, 1745–1755.CrossRefGoogle ScholarPubMed
Ludwig, R. A. (2004). Microaerophilic bacteria transduce energy via oxidative metabolic gearing. Research in Microbiology 155, 61–70.CrossRefGoogle ScholarPubMed
Lumppio, H. L., Shenvi, N. V., Summers, A. O., Voordouw, G. & Kurtz, D. M. (2001). Rubrerythrin and rubredoxin oxidoreductase in Desulfovibrio vulgaris: a novel oxidative stress protection system. Journal of Bacteriology 183, 101–108.CrossRefGoogle ScholarPubMed
Mongkolsuk, S. & Helmann, J. D. (2002). Regulation of inducible peroxide stress responses. Molecular Microbiology 45, 9–15.CrossRefGoogle ScholarPubMed
Podkopaeva, D. A., Grabovich, Yu M. & Dubinina, G. A. (2003). Oxidative stress and antioxidant cell protection systems in the microaerophilic bacterium Spirillum winogradskii. Microbiology-Moscow 72, 534–542.CrossRefGoogle ScholarPubMed
Romao, C. V., Liu, M. Y., Gall, J., Gomes, C. M., Braga, V., Pacheco, I., Xavier, A. V. & Teixeira, M. (1999). The superoxide dismutase activity of desulfoferrodoxin from Desulfovibrio desulfuricans ATCC 27774. European Journal of Biochemistry 261, 438–443.CrossRefGoogle ScholarPubMed
Sawers, G. (1999). The aerobic/anaerobic interface. Current Opinion in Microbiology 2, 181–187.CrossRefGoogle ScholarPubMed
Silva, G., Legall, J., Xavier, A. V., Teixeira, M. & Rodrigues-Pousada, C. (2001). Molecular characterization of Desulfovibrio gigas neelaredoxin, a protein involved in oxygen detoxification in anaerobes. Journal of Bacteriology 183, 4413–4420.CrossRefGoogle ScholarPubMed
Storz, G. & Imlay, J. A. (1999). Oxidative stress. Current Opinion in Microbiology 2, 188–194.CrossRefGoogle ScholarPubMed
Wildschut, J. D., Lang, R. M., Voordouw, J. K. & Voordouw, G. (2006). Rubredoxin:oxygen oxidoreductase enhances survival of Desulfovibrio vulgaris Hildenborough under microaerophilic conditions. Journal of Bacteriology 188, 6253–6260.CrossRefGoogle ScholarPubMed
Asanuma, N., Yoshii, T. & Hino, T. (2004). Molecular characteristics and transcription of the gene encoding a multifunctional alcohol dehydrogenase in relation to the deactivation of pyruvate formate-lyase in the ruminal bacterium Streptococcus bovis. Archives of Microbiology 181, 122–128.CrossRefGoogle ScholarPubMed
Cocaign-Bousquet, M., Even, S., Lindley, N. D. & Loubiere, P. (2002). Anaerobic sugar catabolism in Lactococcus lactis: genetic regulation and enzyme control over pathway flux. Applied Microbiology and Biotechnology 60, 24–32.CrossRefGoogle ScholarPubMed
Vos, W. M., Bron, P. A. & Kleerebezem, M. (2004). Post-genomics of lactic acid bacteria and other food-grade bacteria to discover gut functionality. Current Opinion in Biotechnology 15, 86–93.CrossRefGoogle ScholarPubMed
Diaz-Muniz, I. & Steele, J. L. (2006). Conditions required for citrate utilization during growth of Lactobacillus casei ATCC334 in chemically defined medium and Cheddar cheese extract. Antonie Van Leeuwenhoek 90, 233–243.CrossRefGoogle ScholarPubMed
Drider, D., Bekal, S. & Prevost, H. (2004). Genetic organization and expression of citrate permease in lactic acid bacteria. Genetics and Molecular Research 3, 273–281.Google ScholarPubMed
Garrigues, C., Mercade, M., Cocaign-Bousquet, M., Lindley, N. D. & Loubiere, P. (2001). Regulation of pyruvate metabolism in Lactococcus lactis depends on the imbalance between catabolism and anabolism. Biotechnology and Bioengineering 74, 108–115.CrossRefGoogle ScholarPubMed
Klijn, A., Mercenier, A. & Arigoni, F. (2005). Lessons from the genomes of bifidobacteria. FEMS Microbiology Reviews 29, 491–509.CrossRefGoogle ScholarPubMed
Liu, S. Q. (2002). Malolactic fermentation in wine: beyond deacidification. Journal of Applied Microbiology 92, 589.CrossRefGoogle ScholarPubMed
Martin, M. G., Sender, P. D., Peiru, S., Mendoza, D. & Magn, C. (2004). Acid-inducible transcription of the operon encoding the citrate lyase complex of Lactococcus lactis biovar diacetylactis CRL264. Journal of Bacteriology 186, 5649–5660.CrossRefGoogle ScholarPubMed
Ouwehand, A. C., Salminen, S. & Isolauri, E. (2002). Probiotics: an overview of beneficial effects. Antonie van Leeuwenhoek 82, 279–289.CrossRefGoogle ScholarPubMed
Sarantinopoulos, P., Kalantzopoulos, G. & Tsakalidou, E. (2001). Citrate metabolism by Enterococcus faecalis FAIR-E 229. Applied and Environmental Microbiology 67, 5482–5487.CrossRefGoogle ScholarPubMed
Smit, G., Smit, B. A. & Engels, W. J. M. (2005). Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiology Reviews 29, 591–610.CrossRefGoogle ScholarPubMed
Vido, K., Bars, D., Mistou, M. Y., Anglade, P., Gruss, A. & Gaudu, P. (2004). Proteome analyses of heme-dependent respiration in Lactococcus lactis: involvement of the proteolytic system. Journal of Bacteriology 186, 1648–1657.CrossRefGoogle ScholarPubMed
Zaunmueller, T., Eichert, M., Richter, H. & Unden, G. (2006). Variations in the energy metabolism of biotechnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids. Applied Microbiology and Biotechnology 72, 421–429.CrossRefGoogle Scholar
Kalnenieks, U. (2006). Physiology of Zymomonas mobilis: some unanswered questions. Advances in Microbial Physiology 51, 73–117.CrossRefGoogle ScholarPubMed
Kalnenieks, U., Toma, M. M., Galinina, N. & Poole, R. K. (2003). The paradoxical cyanide-stimulated respiration of Zymomonas mobilis: cyanide sensitivity of alcohol dehydrogenase (ADH II). Microbiology-UK 149, 1739–1744.CrossRefGoogle Scholar
Roustan, J. L. & Sablayrolles, J. M. (2002). Impact of the addition of electron acceptors on the by-products of alcoholic fermentation. Enzyme and Microbial Technology 31, 142–152.CrossRefGoogle Scholar
Adams, C. J., Redmond, M. C. & Valentine, D. L. (2006). Pure-culture growth of fermentative bacteria, facilitated by H2 removal: bioenergetics and H2 production. Applied and Environmental Microbiology 72, 1079–1085.CrossRefGoogle ScholarPubMed
Alsaker, K. V. & Papoutsakis, E. T. (2005). Transcriptional program of early sporulation and stationary-phase events in Clostridium acetobutylicum. Journal of Bacteriology 187, 7103–7118.CrossRefGoogle ScholarPubMed
Armstrong, F. A. (2004). Hydrogenases: active site puzzles and progress. Current Opinion in Chemical Biology 8, 133–140.CrossRefGoogle ScholarPubMed
Bourriaud, C., Robins, R. J., Martin, L., Kozlowski, F., Tenailleau, E., Cherbut, C. & Michel, C. (2005). Lactate is mainly fermented to butyrate by human intestinal microfloras but inter-individual variation is evident. Journal of Applied Microbiology 99, 201–212.CrossRefGoogle ScholarPubMed
Buckel, W. & Golding, B. T. (2006). Radical enzymes in anaerobes. Annual Review of Microbiology 60, 27–49.CrossRefGoogle ScholarPubMed
Ceccarelli, E. A., Arakaki, A. K., Cortez, N. & Carrillo, N. (2004). Functional plasticity and catalytic efficiency in plant and bacterial ferredoxin-NADP(H) reductases. Biochimica et Biophysica Acta – Proteins & Proteomics 1698, 155–165.CrossRefGoogle ScholarPubMed
Colin, T., Bories, A., Lavigne, C. & Moulin, G. (2001). Effects of acetate and butyrate during glycerol fermentation by Clostridium butyricum. Current Microbiology 43, 238–243.CrossRefGoogle ScholarPubMed
Duncan, S. H., Barcenilla, A., Stewart, C. S., Pryde, S. E. & Flint, H. J. (2002). Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Applied and Environmental Microbiology 68, 5186–5190.CrossRefGoogle ScholarPubMed
Duncan, S. H., Louis, P. & Flint, H. J. (2004). Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Applied and Environmental Microbiology 70, 5810–5817.CrossRefGoogle ScholarPubMed
Gonzalez-Pajuelo, M., Meynial-Salles, I., Mendes, F., Soucaille, P. & Vasconcelos, I. (2006). Microbial conversion of glycerol to 1,3-propanediol: physiological comparison of a natural producer, Clostridium butyricum VPI 3266, and an engineered strain, Clostridium acetobutylicum DG1(pSPD5). Applied and Environmental Microbiology 72, 96–101.CrossRefGoogle Scholar
Guedon, E. & Petitdemange, H. (2001). Identification of the gene encoding NADH-rubredoxin oxidoreductase in Clostridium acetobutylicum. Biochemical and Biophysical Research Communications 285, 496–502.CrossRefGoogle ScholarPubMed
Hillmann, F., Fischer, R. J. & Bahl, H. (2006). The rubrerythrin-like protein Hsp21 of Clostridium acetobutylicum is a general stress protein. Archives of Microbiology 185, 270–276.CrossRefGoogle ScholarPubMed
Kutty, R. & Bennett, G. (2005). Biochemical characterization of trinitrotoluene transforming oxygen-insensitive nitroreductases from Clostridium acetobutylicum ATCC 824. Archives of Microbiology 184, 158–167.CrossRefGoogle ScholarPubMed
Malaoui, H. & Marczak, R. (2001). Influence of glucose on glycerol metabolism by wild-type and mutant strains of Clostridium butyricum E5 grown in chemostat culture. Applied Microbiology and Biotechnology 55, 226–233.CrossRefGoogle ScholarPubMed
Malaoui, H. & Marczak, R. (2001). Separation and characterization of the 1,3-propanediol and glycerol dehydrogenase activities from Clostridium butyricum E5 wild-type and mutant D. Journal of Applied Microbiology 90, 1006–1014.CrossRefGoogle ScholarPubMed
May, A., Hillmann, F., Riebe, O., Fischer, R. J. & Bahl, H. (2004). A rubrerythrin-like oxidative stress protein of Clostridium acetobutylicum is encoded by a duplicated gene and identical to the heat shock protein Hsp21. FEMS Microbiology Letters 238, 249–254.Google ScholarPubMed
Pryde, S. E., Duncan, S. H., Hold, G. L., Stewart, C. S. & Flint, H. J. (2002). The microbiology of butyrate formation in the human colon. FEMS Microbiology Letters 217, 133–139.CrossRefGoogle ScholarPubMed
Saint-Amans, S., Girbal, L., Andrade, J., Ahrens, K. & Soucaille, P. (2001). Regulation of carbon and electron flow in Clostridium butyricum VPI 3266 grown on glucose-glycerol mixtures. Journal of Bacteriology 183, 1748–1754.CrossRefGoogle ScholarPubMed
Thormann, K., Feustel, L., Lorenz, K., Nakotte, S. & Duerre, P. (2002). Control of butanol formation in Clostridium acetobutylicum by transcriptional activation. Journal of Bacteriology 184, 1966–1973.CrossRefGoogle ScholarPubMed
Tummala, S. B., Junne, S. G. & Papoutsakis, E. T. (2003). Antisense RNA downregulation of coenzyme A transferase combined with alcohol-aldehyde dehydrogenase overexpression leads to predominantly alcohologenic Clostridium acetobutylicum fermentations. Journal of Bacteriology 185, 3644–3653.CrossRefGoogle ScholarPubMed
Vignais, P. M., Billoud, B. & Meyer, J. (2001). Classification and phylogeny of hydrogenases. FEMS Microbiology Reviews 25, 455–501.CrossRefGoogle ScholarPubMed
Zhao, Y., Hindorff, L. A., Chuang, A., Monroe-Augustus, M., Lyristis, M., Harrison, M. L., Rudolph, F. B. & Bennett, G. N. (2003). Expression of a cloned cyclopropane fatty acid synthase gene reduces solvent formation in Clostridium acetobutylicum ATCC 824. Applied and Environmental Microbiology 69, 2831–2841.CrossRefGoogle ScholarPubMed
Zhao, Y., Tomas, C. A., Rudolph, F. B., Papoutsakis, E. T. & Bennett, G. N. (2005). Intracellular butyryl phosphate and acetyl phosphate concentrations in Clostridium acetobutylicum and their implication. Applied and Environmental Microbiology 71, 530–537.CrossRefGoogle Scholar
Zverlov, V., Berezina, O., Velikodvorskaya, G. & Schwarz, W. (2006). Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery. Applied Microbiology and Biotechnology 71, 587–597.CrossRefGoogle ScholarPubMed
Altaras, N. E., Etzel, M. R. & Cameron, D. C. (2001). Conversion of sugars to 1,2-propanediol by Thermoanaerobacterium thermosaccharolyticum HG-8. Biotechnology Progress 17, 52–56.CrossRefGoogle ScholarPubMed
Bagramyan, K., Galstyan, A. & Trchounian, A. (2000). Redox potential is a determinant in the Escherichia coli anaerobic fermentative growth and survival: effects of impermeable oxidant. Bioelectrochemistry 51, 151–156.CrossRefGoogle ScholarPubMed
Berrios-Rivera, S. J., San, K.-Y. & Bennett, G. N. (2003). The effect of carbon sources and lactate dehydrogenase deletion on 1,2-propanediol production in Escherichia coli. Journal of Industrial Microbiology and Biotechnology 30, 34–40.CrossRefGoogle ScholarPubMed
Carlier, J. P., Marchandin, H., Jumas-Bilak, E., Lorin, V., Henry, C., Carriere, C. & Jean-Pierre, H. (2002). Anaeroglobus geminatus gen. nov., sp. nov., a novel member of the family Veillonellaceae. International Journal of Systematic and Evolutionary Microbiology 52, 983–986.Google ScholarPubMed
Cecchini, G., Schroder, I., Gunsalus, R. P. & Maklashina, E. (2002). Succinate dehydrogenase and fumarate reductase from Escherichia coli. Biochimica et Biophysica Acta – Bioenergetics 1553, 140–157.CrossRefGoogle ScholarPubMed
Chen, X., Zhang, D.-J., Qi, W.-T., Gao, S.-J., Xiu, Z.-L. & Xu, P. (2003). Microbial fed-batch production of 1,3-propanediol by Klebsiella pneumoniae under micro-aerobic conditions. Applied Microbiology and Biotechnology 63, 143–146.CrossRefGoogle ScholarPubMed
Garnova, E. S. & Krasil'nikova, E. N. (2003). Carbohydrate metabolism of the saccharolytic alkaliphilic anaerobes Halonatronum saccharophilum, Amphibacillus fermentum, and Amphibacillus tropicus. Microbiology-Moscow 72, 558–563.CrossRefGoogle ScholarPubMed
Hasona, A., Kim, Y., Healy, F. G., Ingram, L. O. & Shanmugam, K. T. (2004). Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose. Journal of Bacteriology 186, 7593–7600.CrossRefGoogle ScholarPubMed
Kim, P., Laivenieks, M., Vieille, C. & Zeikus, J. G. (2004). Effect of overexpression of Actinobacillus succinogenes phosphoenolpyruvate carboxykinase on succinate production in Escherichia coli. Applied and Environmental Microbiology 70, 1238–1241.CrossRefGoogle ScholarPubMed
Laurinavichene, T. V., Zorin, N. A. & Tsygankov, A. A. (2002). Effect of redox potential on activity of hydrogenase 1 and hydrogenase 2 in Escherichia coli. Archives of Microbiology 178, 437–442.CrossRefGoogle ScholarPubMed
Lee, P. C., Lee, S. Y., Hong, S. H. & Chang, H. N. (2002). Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen. Applied Microbiology and Biotechnology 58, 663–668.Google ScholarPubMed
Nakamura, C. E. & Whited, G. M. (2003). Metabolic engineering for the microbial production of 1,3-propanediol. Current Opinion in Biotechnology 14, 454–459.CrossRefGoogle ScholarPubMed
Skibinski, D. A. G., Golby, P., Chang, Y. S., Sargent, F., Hoffman, R., Harper, R., Guest, J. R., Attwood, M. M., Berks, B. C. & Andrews, S. C. (2002). Regulation of the hydrogenase-4 operon of Escherichia coli by the σ54-dependent transcriptional activators FhlA and HyfR. Journal of Bacteriology 184, 6642–6653.CrossRefGoogle Scholar
Houdt, R., Moons, P., Buj, Hueso M. & Michiels, C. W. (2006). N-acyl-L-homoserine lactone quorum sensing controls butanediol fermentation in Serratia plymuthica RVH1 and Serratia marcescens MG1. Journal of Bacteriology 188, 4570–4572.CrossRefGoogle ScholarPubMed
Wang, W., Sun, J., Hartlep, M., Deckwer, W. D. & Zeng, A. P. (2003). Combined use of proteomic analysis and enzyme activity assays for metabolic pathway analysis of glycerol fermentation by Klebsiella pneumoniae. Biotechnology and Bioengineering 83, 525–536.CrossRefGoogle ScholarPubMed
Abou-Zeid, D. M., Biebl, H., Sproer, C. & Muller, R. J. (2004). Propionispora hippei sp. nov., a novel Gram-negative, spore-forming anaerobe that produces propionic acid. International Journal of Systematic and Evolutionary Microbiology 54, 951–954.CrossRefGoogle ScholarPubMed
Biebl, H., Schwab-Hanisch, H., Sproer, C. & Lunsdorf, H. (2000). Propionispora vibrioides, nov. gen., nov. sp., a new Gram-negative, spore-forming anaerobe that ferments sugar alcohols. Archives of Microbiology 174, 239–247.CrossRefGoogle ScholarPubMed
Deborde, C. & Boyaval, P. (2000). Interactions between pyruvate and lactate metabolism in Propionibacterium freudenreichii subsp shermanii: in vivo C-13 nuclear magnetic resonance studies. Applied and Environmental Microbiology 66, 2012–2020.CrossRefGoogle Scholar
Janssen, P. H. (1998). Pathway of glucose catabolism by strain VeGlc2, an anaerobe belonging to the Verrucomicrobiales lineage of bacterial descent. Applied and Environmental Microbiology 64, 4830–4833.Google ScholarPubMed
Janssen, P. H. & Liesack, W. (1995). Succinate decarboxylation by Propionigenium maris sp. nov., a new anaerobic bacterium from an estuarine sediment. Archives of Microbiology 164, 29–35.CrossRefGoogle ScholarPubMed
Kiatpapan, P. & Murooka, Y. (2002). Genetic manipulation system in propionibacteria. Journal of Bioscience and Bioengineering 93, 1–8.CrossRefGoogle ScholarPubMed
Koussemon, M., Combet-Blanc, Y. & Ollivier, B. (2003). Glucose fermentation by Propionibacterium microaerophilum: effect of pH on metabolism and bioenergetics. Current Microbiology 46, 141–145.Google Scholar
Seeliger, S., Janssen, P. H. & Schink, B. (2002). Energetics and kinetics of lactate fermentation to acetate and propionate via methylmalonyl-CoA or acrylyl-CoA. FEMS Microbiology Letters 211, 65–70.CrossRefGoogle ScholarPubMed
Quesada-Chanto, A., Silveira, M. M., Schmidmeyer, A. C., Schroeder, A. G., Dacosta, J. P. C. L., Lopez, J., Carvalhojonas, M. F., Artolozaga, M. J. & Jonas, R. (1998). Effect of oxygen supply on pattern of growth, and corrinoid and organic acid production of Propionibacterium shermanii. Applied Microbiology and Biotechnology 49, 732–736.CrossRefGoogle Scholar
Tholozan, J. L., Grivet, J. P. & Vallet, C. (1994). Metabolic pathway to propionate of Pectinatus frisingensis, a strictly anaerobic beer-spoilage bacterium. Archives of Microbiology 162, 401–408.CrossRefGoogle Scholar
Ye, K. M., Shijo, M., Miyano, K. & Shimizu, K. (1999). Metabolic pathway of Propionibacterium growing with oxygen: enzymes, C-13 NMR analysis, and its application for vitamin B-12 production with periodic fermentation. Biotechnology Progress 15, 201–207.CrossRefGoogle Scholar
Buckel, W. (2001). Unusual enzymes involved in five pathways of glutamate fermentation. Applied Microbiology and Biotechnology 57, 263–273.CrossRefGoogle ScholarPubMed
Lan, J. & Newman, E. B. (2003). A requirement for anaerobically induced redox functions during aerobic growth of Escherichia coli with serine, glycine and leucine as carbon source. Research in Microbiology 154, 191–197.CrossRefGoogle ScholarPubMed
Menes, R. J. & Muxi, L. (2002). Anaerobaculum mobile sp. nov., a novel anaerobic, moderately thermophilic, peptide-fermenting bacterium that uses crotonate as an electron acceptor, and emended description of the genus Anaerobaculum. International Journal of Systematic and Evolutionary Microbiology 52, 157–164.CrossRefGoogle ScholarPubMed
Wallace, R. J., McKain, N., McEwan, N. R., Miyagawa, E., Chaudhary, L. C., King, T. P., Walker, N. D., Apajalahti, J. H. A. & Newbold, C. J. (2003). Eubacterium pyruvativorans sp. nov., a novel non-saccharolytic anaerobe from the rumen that ferments pyruvate and amino acids, forms caproate and utilizes acetate and propionate. International Journal of Systematic and Evolutionary Microbiology 53, 965–970.CrossRefGoogle ScholarPubMed
Duncan, S. H., Richardson, A. J., Kaul, P., Holmes, R. P., Allison, M. J. & Stewart, C. S. (2002). Oxalobacter formigenes and its potential role in human health. Applied and Environmental Microbiology 68, 3841–3847.CrossRefGoogle ScholarPubMed
Janssen, P. H. & Hugenholtz, P. (2003). Fermentation of glycolate by a pure culture of a strictly anaerobic Gram-positive bacterium belonging to the family Lachnospiraceae. Archives of Microbiology 179, 321–328.CrossRefGoogle ScholarPubMed
Sahin, N. (2003). Oxalotrophic bacteria. Research in Microbiology 154, 399–407.CrossRefGoogle ScholarPubMed
Sidhu, H., Hoppe, B., Hesse, A., Tenbrock, K., Bromme, S., Rietschel, E. & Peck, A. B. (1998). Absence of Oxalobacter formigenes in cystic fibrosis patients: a risk factor for hyperoxaluria. Lancet 352, 1026–1029.CrossRefGoogle ScholarPubMed
Stewart, C. S., Duncan, S. H. & Cave, D. R. (2004). Oxalobacter formigenes and its role in oxalate metabolism in the human gut. FEMS Microbiology Letters 230, 1–7.CrossRefGoogle ScholarPubMed
Ye, L., Jia, Z., Jung, T. & Maloney, P. C. (2001). Topology of OxlT, the oxalate transporter of Oxalobacter formigenes, determined by site-directed fluorescence labeling. Journal of Bacteriology 183, 2490–2496.CrossRefGoogle ScholarPubMed
Atack, J. M. & Kelly, D. J. (2006). Structure, mechanism and physiological roles of bacterial cytochrome c peroxidases. Advances in Microbial Physiology 52, 73–106.CrossRefGoogle Scholar
Brioukhanov, A. L., Thauer, R. K. & Netrusov, A. I. (2002). Catalase and superoxide dismutase in the cells of strictly anaerobic microorganisms. Microbiology-Moscow 71, 281–285.CrossRefGoogle Scholar
Brioukhanov, A. L., Netrusov, A. I. & Eggen, R. I. L. (2006). The catalase and superoxide dismutase genes are transcriptionally up-regulated upon oxidative stress in the strictly anaerobic archaeon Methanosarcina barkeri. Microbiology-UK 152, 1671–1677.CrossRefGoogle ScholarPubMed
Chen, L., Sharma, P., Gall, J., Mariano, A. M., Teixeira, M. & Xavier, A. V. (1994). A blue non-heme iron protein from Desulfovibrio gigas. European Journal of Biochemistry 226, 613–618.CrossRefGoogle ScholarPubMed
Coulter, E. D. & Kurtz, D. M. (2001). A role for rubredoxin in oxidative stress protection in Desulfovibrio vulgaris: catalytic electron transfer to rubrerythrin and two-iron superoxide reductase. Archives of Biochemistry and Biophysics 394, 76–86.CrossRefGoogle ScholarPubMed
Davydova, M. N. & Tarasova, N. B. (2005). Carbon monoxide inhibits superoxide dismutase and stimulates reactive oxygen species production by Desulfovibrio desulfuricans 1388. Anaerobe 11, 335–338.CrossRefGoogle ScholarPubMed
Dolla, A., Fournier, M. & Dermoun, Z. (2006). Oxygen defense in sulfate-reducing bacteria. Journal of Biotechnology 126, 87–100.CrossRefGoogle ScholarPubMed
Fournier, M., Zhang, Y., Wildschut, J. D., Dolla, A., Voordouw, J. K., Schriemer, D. C. & Voordouw, G. (2003). Function of oxygen resistance proteins in the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Journal of Bacteriology 185, 71–79.CrossRefGoogle ScholarPubMed
Frey, A. D. & Kallio, P. T. (2003). Bacterial hemoglobins and flavohemoglobins: versatile proteins and their impact on microbiology and biotechnology. FEMS Microbiology Reviews 27, 525–545.CrossRefGoogle ScholarPubMed
Grunden, A. M., Jenney, F. E. Jr., Ma, K., Ji, M., Weinberg, M. V. & Adams, M. W. W. (2005). In vitro reconstitution of an NADPH-dependent superoxide reduction pathway from Pyrococcus furiosus. Applied and Environmental Microbiology 71, 1522–1530.CrossRefGoogle ScholarPubMed
Horsburgh, M. J., Wharton, S. J., Karavolos, M. & Foster, S. J. (2002). Manganese: elemental defence for a life with oxygen. Trends in Microbiology 10, 496–501.CrossRefGoogle ScholarPubMed
Imlay, J. A. (2002). How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis. Advances in Microbial Physiology 46, 111–153.CrossRefGoogle ScholarPubMed
Imlay, J. A. (2006). Iron-sulphur clusters and the problem with oxygen. Molecular Microbiology 59, 1073–1082.CrossRefGoogle ScholarPubMed
Jacobson, M. D. (1996). Reactive oxygen species and programmed cell death. Trends in Biochemical Sciences 21, 83–86.CrossRefGoogle ScholarPubMed
Jean, D., Briolat, V. & Reysset, G. (2004). Oxidative stress response in Clostridium perfringens. Microbiology-UK 150, 1649–1659.CrossRefGoogle ScholarPubMed
Jovanovic, T., Ascenso, C., Hazlett, K. R. O., Sikkink, R., Kerbs, C., Litwiller, R., Benson, L. M., Moura, I., Moura, J. J. G., Radolf, J. D., Huynh, B. H., Naylor, S. & Rusnak, F. (2000). Neelaredoxin, an iron-binding protein from the syphilis spirochete, Treponema pallidum, is a superoxide reductase. Journal of Biological Chemistry 275, 28439–28448.CrossRefGoogle ScholarPubMed
Kawasaki, S., Watamura, Y., Ono, M., Watanabe, T., Takeda, K. & Niimura, Y. (2005). Adaptive responses to oxygen stress in obligatory anaerobes Clostridium acetobutylicum and Clostridium aminovalericum. Applied and Environmental Microbiology 71, 8442–8450.CrossRefGoogle ScholarPubMed
Kawasaki, S., Mimura, T., Satoh, T., Takeda, K. & Niimura, Y. (2006). Response of the microaerophilic Bifidobacterium species, B. boum and B. thermophilum, to oxygen. Applied and Environmental Microbiology 72, 6854–6858.CrossRefGoogle Scholar
Kim, J. H. & Suh, K. H. (2005). Light-dependent expression of superoxide dismutase from cyanobacterium Synechocystis sp. strain PCC 6803. Archives of Microbiology 183, 218–223.CrossRefGoogle ScholarPubMed
Kitamura, M., Nakanishi, T., Kojima, S., Kumagai, I. & Inoue, H. (2001). Cloning and expression of the catalase gene from the anaerobic bacterium Desulfovibrio vulgaris (Miyazaki F). Journal of Biochemistry 129, 357–364.CrossRefGoogle Scholar
Kjeldsen, K. U., Joulian, C. & Ingvorsen, K. (2004). Oxygen tolerance of sulfate-reducing bacteria in activated sludge. Environmental Science and Technology 38, 2038–2043.CrossRefGoogle ScholarPubMed
Gall, J. & Xavier, A. V. (1996). Anaerobes response to oxygen: the sulfate-reducing bacteria. Anaerobe 2, 1–9.CrossRefGoogle ScholarPubMed
Lee, J. H., Yeo, W. S. & Roe, J. H. (2004). Induction of the sufA operon encoding Fe-S assembly proteins by superoxide generators and hydrogen peroxide: involvement of OxyR, IHF and an unidentified oxidant-responsive factor. Molecular Microbiology 51, 1745–1755.CrossRefGoogle ScholarPubMed
Ludwig, R. A. (2004). Microaerophilic bacteria transduce energy via oxidative metabolic gearing. Research in Microbiology 155, 61–70.CrossRefGoogle ScholarPubMed
Lumppio, H. L., Shenvi, N. V., Summers, A. O., Voordouw, G. & Kurtz, D. M. (2001). Rubrerythrin and rubredoxin oxidoreductase in Desulfovibrio vulgaris: a novel oxidative stress protection system. Journal of Bacteriology 183, 101–108.CrossRefGoogle ScholarPubMed
Mongkolsuk, S. & Helmann, J. D. (2002). Regulation of inducible peroxide stress responses. Molecular Microbiology 45, 9–15.CrossRefGoogle ScholarPubMed
Podkopaeva, D. A., Grabovich, Yu M. & Dubinina, G. A. (2003). Oxidative stress and antioxidant cell protection systems in the microaerophilic bacterium Spirillum winogradskii. Microbiology-Moscow 72, 534–542.CrossRefGoogle ScholarPubMed
Romao, C. V., Liu, M. Y., Gall, J., Gomes, C. M., Braga, V., Pacheco, I., Xavier, A. V. & Teixeira, M. (1999). The superoxide dismutase activity of desulfoferrodoxin from Desulfovibrio desulfuricans ATCC 27774. European Journal of Biochemistry 261, 438–443.CrossRefGoogle ScholarPubMed
Sawers, G. (1999). The aerobic/anaerobic interface. Current Opinion in Microbiology 2, 181–187.CrossRefGoogle ScholarPubMed
Silva, G., Legall, J., Xavier, A. V., Teixeira, M. & Rodrigues-Pousada, C. (2001). Molecular characterization of Desulfovibrio gigas neelaredoxin, a protein involved in oxygen detoxification in anaerobes. Journal of Bacteriology 183, 4413–4420.CrossRefGoogle ScholarPubMed
Storz, G. & Imlay, J. A. (1999). Oxidative stress. Current Opinion in Microbiology 2, 188–194.CrossRefGoogle ScholarPubMed
Wildschut, J. D., Lang, R. M., Voordouw, J. K. & Voordouw, G. (2006). Rubredoxin:oxygen oxidoreductase enhances survival of Desulfovibrio vulgaris Hildenborough under microaerophilic conditions. Journal of Bacteriology 188, 6253–6260.CrossRefGoogle ScholarPubMed
Asanuma, N., Yoshii, T. & Hino, T. (2004). Molecular characteristics and transcription of the gene encoding a multifunctional alcohol dehydrogenase in relation to the deactivation of pyruvate formate-lyase in the ruminal bacterium Streptococcus bovis. Archives of Microbiology 181, 122–128.CrossRefGoogle ScholarPubMed
Cocaign-Bousquet, M., Even, S., Lindley, N. D. & Loubiere, P. (2002). Anaerobic sugar catabolism in Lactococcus lactis: genetic regulation and enzyme control over pathway flux. Applied Microbiology and Biotechnology 60, 24–32.CrossRefGoogle ScholarPubMed
Vos, W. M., Bron, P. A. & Kleerebezem, M. (2004). Post-genomics of lactic acid bacteria and other food-grade bacteria to discover gut functionality. Current Opinion in Biotechnology 15, 86–93.CrossRefGoogle ScholarPubMed
Diaz-Muniz, I. & Steele, J. L. (2006). Conditions required for citrate utilization during growth of Lactobacillus casei ATCC334 in chemically defined medium and Cheddar cheese extract. Antonie Van Leeuwenhoek 90, 233–243.CrossRefGoogle ScholarPubMed
Drider, D., Bekal, S. & Prevost, H. (2004). Genetic organization and expression of citrate permease in lactic acid bacteria. Genetics and Molecular Research 3, 273–281.Google ScholarPubMed
Garrigues, C., Mercade, M., Cocaign-Bousquet, M., Lindley, N. D. & Loubiere, P. (2001). Regulation of pyruvate metabolism in Lactococcus lactis depends on the imbalance between catabolism and anabolism. Biotechnology and Bioengineering 74, 108–115.CrossRefGoogle ScholarPubMed
Klijn, A., Mercenier, A. & Arigoni, F. (2005). Lessons from the genomes of bifidobacteria. FEMS Microbiology Reviews 29, 491–509.CrossRefGoogle ScholarPubMed
Liu, S. Q. (2002). Malolactic fermentation in wine: beyond deacidification. Journal of Applied Microbiology 92, 589.CrossRefGoogle ScholarPubMed
Martin, M. G., Sender, P. D., Peiru, S., Mendoza, D. & Magn, C. (2004). Acid-inducible transcription of the operon encoding the citrate lyase complex of Lactococcus lactis biovar diacetylactis CRL264. Journal of Bacteriology 186, 5649–5660.CrossRefGoogle ScholarPubMed
Ouwehand, A. C., Salminen, S. & Isolauri, E. (2002). Probiotics: an overview of beneficial effects. Antonie van Leeuwenhoek 82, 279–289.CrossRefGoogle ScholarPubMed
Sarantinopoulos, P., Kalantzopoulos, G. & Tsakalidou, E. (2001). Citrate metabolism by Enterococcus faecalis FAIR-E 229. Applied and Environmental Microbiology 67, 5482–5487.CrossRefGoogle ScholarPubMed
Smit, G., Smit, B. A. & Engels, W. J. M. (2005). Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiology Reviews 29, 591–610.CrossRefGoogle ScholarPubMed
Vido, K., Bars, D., Mistou, M. Y., Anglade, P., Gruss, A. & Gaudu, P. (2004). Proteome analyses of heme-dependent respiration in Lactococcus lactis: involvement of the proteolytic system. Journal of Bacteriology 186, 1648–1657.CrossRefGoogle ScholarPubMed
Zaunmueller, T., Eichert, M., Richter, H. & Unden, G. (2006). Variations in the energy metabolism of biotechnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids. Applied Microbiology and Biotechnology 72, 421–429.CrossRefGoogle Scholar
Kalnenieks, U. (2006). Physiology of Zymomonas mobilis: some unanswered questions. Advances in Microbial Physiology 51, 73–117.CrossRefGoogle ScholarPubMed
Kalnenieks, U., Toma, M. M., Galinina, N. & Poole, R. K. (2003). The paradoxical cyanide-stimulated respiration of Zymomonas mobilis: cyanide sensitivity of alcohol dehydrogenase (ADH II). Microbiology-UK 149, 1739–1744.CrossRefGoogle Scholar
Roustan, J. L. & Sablayrolles, J. M. (2002). Impact of the addition of electron acceptors on the by-products of alcoholic fermentation. Enzyme and Microbial Technology 31, 142–152.CrossRefGoogle Scholar
Adams, C. J., Redmond, M. C. & Valentine, D. L. (2006). Pure-culture growth of fermentative bacteria, facilitated by H2 removal: bioenergetics and H2 production. Applied and Environmental Microbiology 72, 1079–1085.CrossRefGoogle ScholarPubMed
Alsaker, K. V. & Papoutsakis, E. T. (2005). Transcriptional program of early sporulation and stationary-phase events in Clostridium acetobutylicum. Journal of Bacteriology 187, 7103–7118.CrossRefGoogle ScholarPubMed
Armstrong, F. A. (2004). Hydrogenases: active site puzzles and progress. Current Opinion in Chemical Biology 8, 133–140.CrossRefGoogle ScholarPubMed
Bourriaud, C., Robins, R. J., Martin, L., Kozlowski, F., Tenailleau, E., Cherbut, C. & Michel, C. (2005). Lactate is mainly fermented to butyrate by human intestinal microfloras but inter-individual variation is evident. Journal of Applied Microbiology 99, 201–212.CrossRefGoogle ScholarPubMed
Buckel, W. & Golding, B. T. (2006). Radical enzymes in anaerobes. Annual Review of Microbiology 60, 27–49.CrossRefGoogle ScholarPubMed
Ceccarelli, E. A., Arakaki, A. K., Cortez, N. & Carrillo, N. (2004). Functional plasticity and catalytic efficiency in plant and bacterial ferredoxin-NADP(H) reductases. Biochimica et Biophysica Acta – Proteins & Proteomics 1698, 155–165.CrossRefGoogle ScholarPubMed
Colin, T., Bories, A., Lavigne, C. & Moulin, G. (2001). Effects of acetate and butyrate during glycerol fermentation by Clostridium butyricum. Current Microbiology 43, 238–243.CrossRefGoogle ScholarPubMed
Duncan, S. H., Barcenilla, A., Stewart, C. S., Pryde, S. E. & Flint, H. J. (2002). Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Applied and Environmental Microbiology 68, 5186–5190.CrossRefGoogle ScholarPubMed
Duncan, S. H., Louis, P. & Flint, H. J. (2004). Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Applied and Environmental Microbiology 70, 5810–5817.CrossRefGoogle ScholarPubMed
Gonzalez-Pajuelo, M., Meynial-Salles, I., Mendes, F., Soucaille, P. & Vasconcelos, I. (2006). Microbial conversion of glycerol to 1,3-propanediol: physiological comparison of a natural producer, Clostridium butyricum VPI 3266, and an engineered strain, Clostridium acetobutylicum DG1(pSPD5). Applied and Environmental Microbiology 72, 96–101.CrossRefGoogle Scholar
Guedon, E. & Petitdemange, H. (2001). Identification of the gene encoding NADH-rubredoxin oxidoreductase in Clostridium acetobutylicum. Biochemical and Biophysical Research Communications 285, 496–502.CrossRefGoogle ScholarPubMed
Hillmann, F., Fischer, R. J. & Bahl, H. (2006). The rubrerythrin-like protein Hsp21 of Clostridium acetobutylicum is a general stress protein. Archives of Microbiology 185, 270–276.CrossRefGoogle ScholarPubMed
Kutty, R. & Bennett, G. (2005). Biochemical characterization of trinitrotoluene transforming oxygen-insensitive nitroreductases from Clostridium acetobutylicum ATCC 824. Archives of Microbiology 184, 158–167.CrossRefGoogle ScholarPubMed
Malaoui, H. & Marczak, R. (2001). Influence of glucose on glycerol metabolism by wild-type and mutant strains of Clostridium butyricum E5 grown in chemostat culture. Applied Microbiology and Biotechnology 55, 226–233.CrossRefGoogle ScholarPubMed
Malaoui, H. & Marczak, R. (2001). Separation and characterization of the 1,3-propanediol and glycerol dehydrogenase activities from Clostridium butyricum E5 wild-type and mutant D. Journal of Applied Microbiology 90, 1006–1014.CrossRefGoogle ScholarPubMed
May, A., Hillmann, F., Riebe, O., Fischer, R. J. & Bahl, H. (2004). A rubrerythrin-like oxidative stress protein of Clostridium acetobutylicum is encoded by a duplicated gene and identical to the heat shock protein Hsp21. FEMS Microbiology Letters 238, 249–254.Google ScholarPubMed
Pryde, S. E., Duncan, S. H., Hold, G. L., Stewart, C. S. & Flint, H. J. (2002). The microbiology of butyrate formation in the human colon. FEMS Microbiology Letters 217, 133–139.CrossRefGoogle ScholarPubMed
Saint-Amans, S., Girbal, L., Andrade, J., Ahrens, K. & Soucaille, P. (2001). Regulation of carbon and electron flow in Clostridium butyricum VPI 3266 grown on glucose-glycerol mixtures. Journal of Bacteriology 183, 1748–1754.CrossRefGoogle ScholarPubMed
Thormann, K., Feustel, L., Lorenz, K., Nakotte, S. & Duerre, P. (2002). Control of butanol formation in Clostridium acetobutylicum by transcriptional activation. Journal of Bacteriology 184, 1966–1973.CrossRefGoogle ScholarPubMed
Tummala, S. B., Junne, S. G. & Papoutsakis, E. T. (2003). Antisense RNA downregulation of coenzyme A transferase combined with alcohol-aldehyde dehydrogenase overexpression leads to predominantly alcohologenic Clostridium acetobutylicum fermentations. Journal of Bacteriology 185, 3644–3653.CrossRefGoogle ScholarPubMed
Vignais, P. M., Billoud, B. & Meyer, J. (2001). Classification and phylogeny of hydrogenases. FEMS Microbiology Reviews 25, 455–501.CrossRefGoogle ScholarPubMed
Zhao, Y., Hindorff, L. A., Chuang, A., Monroe-Augustus, M., Lyristis, M., Harrison, M. L., Rudolph, F. B. & Bennett, G. N. (2003). Expression of a cloned cyclopropane fatty acid synthase gene reduces solvent formation in Clostridium acetobutylicum ATCC 824. Applied and Environmental Microbiology 69, 2831–2841.CrossRefGoogle ScholarPubMed
Zhao, Y., Tomas, C. A., Rudolph, F. B., Papoutsakis, E. T. & Bennett, G. N. (2005). Intracellular butyryl phosphate and acetyl phosphate concentrations in Clostridium acetobutylicum and their implication. Applied and Environmental Microbiology 71, 530–537.CrossRefGoogle Scholar
Zverlov, V., Berezina, O., Velikodvorskaya, G. & Schwarz, W. (2006). Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery. Applied Microbiology and Biotechnology 71, 587–597.CrossRefGoogle ScholarPubMed
Altaras, N. E., Etzel, M. R. & Cameron, D. C. (2001). Conversion of sugars to 1,2-propanediol by Thermoanaerobacterium thermosaccharolyticum HG-8. Biotechnology Progress 17, 52–56.CrossRefGoogle ScholarPubMed
Bagramyan, K., Galstyan, A. & Trchounian, A. (2000). Redox potential is a determinant in the Escherichia coli anaerobic fermentative growth and survival: effects of impermeable oxidant. Bioelectrochemistry 51, 151–156.CrossRefGoogle ScholarPubMed
Berrios-Rivera, S. J., San, K.-Y. & Bennett, G. N. (2003). The effect of carbon sources and lactate dehydrogenase deletion on 1,2-propanediol production in Escherichia coli. Journal of Industrial Microbiology and Biotechnology 30, 34–40.CrossRefGoogle ScholarPubMed
Carlier, J. P., Marchandin, H., Jumas-Bilak, E., Lorin, V., Henry, C., Carriere, C. & Jean-Pierre, H. (2002). Anaeroglobus geminatus gen. nov., sp. nov., a novel member of the family Veillonellaceae. International Journal of Systematic and Evolutionary Microbiology 52, 983–986.Google ScholarPubMed
Cecchini, G., Schroder, I., Gunsalus, R. P. & Maklashina, E. (2002). Succinate dehydrogenase and fumarate reductase from Escherichia coli. Biochimica et Biophysica Acta – Bioenergetics 1553, 140–157.CrossRefGoogle ScholarPubMed
Chen, X., Zhang, D.-J., Qi, W.-T., Gao, S.-J., Xiu, Z.-L. & Xu, P. (2003). Microbial fed-batch production of 1,3-propanediol by Klebsiella pneumoniae under micro-aerobic conditions. Applied Microbiology and Biotechnology 63, 143–146.CrossRefGoogle ScholarPubMed
Garnova, E. S. & Krasil'nikova, E. N. (2003). Carbohydrate metabolism of the saccharolytic alkaliphilic anaerobes Halonatronum saccharophilum, Amphibacillus fermentum, and Amphibacillus tropicus. Microbiology-Moscow 72, 558–563.CrossRefGoogle ScholarPubMed
Hasona, A., Kim, Y., Healy, F. G., Ingram, L. O. & Shanmugam, K. T. (2004). Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose. Journal of Bacteriology 186, 7593–7600.CrossRefGoogle ScholarPubMed
Kim, P., Laivenieks, M., Vieille, C. & Zeikus, J. G. (2004). Effect of overexpression of Actinobacillus succinogenes phosphoenolpyruvate carboxykinase on succinate production in Escherichia coli. Applied and Environmental Microbiology 70, 1238–1241.CrossRefGoogle ScholarPubMed
Laurinavichene, T. V., Zorin, N. A. & Tsygankov, A. A. (2002). Effect of redox potential on activity of hydrogenase 1 and hydrogenase 2 in Escherichia coli. Archives of Microbiology 178, 437–442.CrossRefGoogle ScholarPubMed
Lee, P. C., Lee, S. Y., Hong, S. H. & Chang, H. N. (2002). Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen. Applied Microbiology and Biotechnology 58, 663–668.Google ScholarPubMed
Nakamura, C. E. & Whited, G. M. (2003). Metabolic engineering for the microbial production of 1,3-propanediol. Current Opinion in Biotechnology 14, 454–459.CrossRefGoogle ScholarPubMed
Skibinski, D. A. G., Golby, P., Chang, Y. S., Sargent, F., Hoffman, R., Harper, R., Guest, J. R., Attwood, M. M., Berks, B. C. & Andrews, S. C. (2002). Regulation of the hydrogenase-4 operon of Escherichia coli by the σ54-dependent transcriptional activators FhlA and HyfR. Journal of Bacteriology 184, 6642–6653.CrossRefGoogle Scholar
Houdt, R., Moons, P., Buj, Hueso M. & Michiels, C. W. (2006). N-acyl-L-homoserine lactone quorum sensing controls butanediol fermentation in Serratia plymuthica RVH1 and Serratia marcescens MG1. Journal of Bacteriology 188, 4570–4572.CrossRefGoogle ScholarPubMed
Wang, W., Sun, J., Hartlep, M., Deckwer, W. D. & Zeng, A. P. (2003). Combined use of proteomic analysis and enzyme activity assays for metabolic pathway analysis of glycerol fermentation by Klebsiella pneumoniae. Biotechnology and Bioengineering 83, 525–536.CrossRefGoogle ScholarPubMed
Abou-Zeid, D. M., Biebl, H., Sproer, C. & Muller, R. J. (2004). Propionispora hippei sp. nov., a novel Gram-negative, spore-forming anaerobe that produces propionic acid. International Journal of Systematic and Evolutionary Microbiology 54, 951–954.CrossRefGoogle ScholarPubMed
Biebl, H., Schwab-Hanisch, H., Sproer, C. & Lunsdorf, H. (2000). Propionispora vibrioides, nov. gen., nov. sp., a new Gram-negative, spore-forming anaerobe that ferments sugar alcohols. Archives of Microbiology 174, 239–247.CrossRefGoogle ScholarPubMed
Deborde, C. & Boyaval, P. (2000). Interactions between pyruvate and lactate metabolism in Propionibacterium freudenreichii subsp shermanii: in vivo C-13 nuclear magnetic resonance studies. Applied and Environmental Microbiology 66, 2012–2020.CrossRefGoogle Scholar
Janssen, P. H. (1998). Pathway of glucose catabolism by strain VeGlc2, an anaerobe belonging to the Verrucomicrobiales lineage of bacterial descent. Applied and Environmental Microbiology 64, 4830–4833.Google ScholarPubMed
Janssen, P. H. & Liesack, W. (1995). Succinate decarboxylation by Propionigenium maris sp. nov., a new anaerobic bacterium from an estuarine sediment. Archives of Microbiology 164, 29–35.CrossRefGoogle ScholarPubMed
Kiatpapan, P. & Murooka, Y. (2002). Genetic manipulation system in propionibacteria. Journal of Bioscience and Bioengineering 93, 1–8.CrossRefGoogle ScholarPubMed
Koussemon, M., Combet-Blanc, Y. & Ollivier, B. (2003). Glucose fermentation by Propionibacterium microaerophilum: effect of pH on metabolism and bioenergetics. Current Microbiology 46, 141–145.Google Scholar
Seeliger, S., Janssen, P. H. & Schink, B. (2002). Energetics and kinetics of lactate fermentation to acetate and propionate via methylmalonyl-CoA or acrylyl-CoA. FEMS Microbiology Letters 211, 65–70.CrossRefGoogle ScholarPubMed
Quesada-Chanto, A., Silveira, M. M., Schmidmeyer, A. C., Schroeder, A. G., Dacosta, J. P. C. L., Lopez, J., Carvalhojonas, M. F., Artolozaga, M. J. & Jonas, R. (1998). Effect of oxygen supply on pattern of growth, and corrinoid and organic acid production of Propionibacterium shermanii. Applied Microbiology and Biotechnology 49, 732–736.CrossRefGoogle Scholar
Tholozan, J. L., Grivet, J. P. & Vallet, C. (1994). Metabolic pathway to propionate of Pectinatus frisingensis, a strictly anaerobic beer-spoilage bacterium. Archives of Microbiology 162, 401–408.CrossRefGoogle Scholar
Ye, K. M., Shijo, M., Miyano, K. & Shimizu, K. (1999). Metabolic pathway of Propionibacterium growing with oxygen: enzymes, C-13 NMR analysis, and its application for vitamin B-12 production with periodic fermentation. Biotechnology Progress 15, 201–207.CrossRefGoogle Scholar
Buckel, W. (2001). Unusual enzymes involved in five pathways of glutamate fermentation. Applied Microbiology and Biotechnology 57, 263–273.CrossRefGoogle ScholarPubMed
Lan, J. & Newman, E. B. (2003). A requirement for anaerobically induced redox functions during aerobic growth of Escherichia coli with serine, glycine and leucine as carbon source. Research in Microbiology 154, 191–197.CrossRefGoogle ScholarPubMed
Menes, R. J. & Muxi, L. (2002). Anaerobaculum mobile sp. nov., a novel anaerobic, moderately thermophilic, peptide-fermenting bacterium that uses crotonate as an electron acceptor, and emended description of the genus Anaerobaculum. International Journal of Systematic and Evolutionary Microbiology 52, 157–164.CrossRefGoogle ScholarPubMed
Wallace, R. J., McKain, N., McEwan, N. R., Miyagawa, E., Chaudhary, L. C., King, T. P., Walker, N. D., Apajalahti, J. H. A. & Newbold, C. J. (2003). Eubacterium pyruvativorans sp. nov., a novel non-saccharolytic anaerobe from the rumen that ferments pyruvate and amino acids, forms caproate and utilizes acetate and propionate. International Journal of Systematic and Evolutionary Microbiology 53, 965–970.CrossRefGoogle ScholarPubMed
Duncan, S. H., Richardson, A. J., Kaul, P., Holmes, R. P., Allison, M. J. & Stewart, C. S. (2002). Oxalobacter formigenes and its potential role in human health. Applied and Environmental Microbiology 68, 3841–3847.CrossRefGoogle ScholarPubMed
Janssen, P. H. & Hugenholtz, P. (2003). Fermentation of glycolate by a pure culture of a strictly anaerobic Gram-positive bacterium belonging to the family Lachnospiraceae. Archives of Microbiology 179, 321–328.CrossRefGoogle ScholarPubMed
Sahin, N. (2003). Oxalotrophic bacteria. Research in Microbiology 154, 399–407.CrossRefGoogle ScholarPubMed
Sidhu, H., Hoppe, B., Hesse, A., Tenbrock, K., Bromme, S., Rietschel, E. & Peck, A. B. (1998). Absence of Oxalobacter formigenes in cystic fibrosis patients: a risk factor for hyperoxaluria. Lancet 352, 1026–1029.CrossRefGoogle ScholarPubMed
Stewart, C. S., Duncan, S. H. & Cave, D. R. (2004). Oxalobacter formigenes and its role in oxalate metabolism in the human gut. FEMS Microbiology Letters 230, 1–7.CrossRefGoogle ScholarPubMed
Ye, L., Jia, Z., Jung, T. & Maloney, P. C. (2001). Topology of OxlT, the oxalate transporter of Oxalobacter formigenes, determined by site-directed fluorescence labeling. Journal of Bacteriology 183, 2490–2496.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×