Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-19T02:05:02.265Z Has data issue: false hasContentIssue false

9 - NF-κB-dependent responses activated by bacterial–epithelial interactions

from Part III - Host cell signaling by bacteria

Published online by Cambridge University Press:  12 August 2009

Bobby J. Cherayil
Affiliation:
Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
Beth A. McCormick
Affiliation:
Harvard University, Massachusetts
Get access

Summary

INTRODUCTION

The epithelial surfaces of the skin and the intestinal, respiratory, and reproductive tracts constitute the outer frontiers of the body and are exposed continuously to the myriad microorganisms present in the external environment. Like any good frontier guard, the cells of these epithelia must carry out two important functions – establish barriers against microbial intruders and raise the alarm if the barriers are breached. The nuclear factor kappa B (NF-κB) family of transcription factors plays a vital role in these functions by controlling the expression of a number of genes involved in antimicrobial defense and in the inflammatory response. Central to this role is the ability of NF-κB to be regulated by cellular signaling pathways that are activated by a wide variety of microorganisms. This sensitivity to microbial signals allows NF-κB function to be modulated appropriately in response to any changes in the flora that is in contact with the epithelium.

This chapter reviews what is currently known about the major NF-κB-dependent inflammatory responses elicited in mammalian epithelial cells as a result of interactions with bacteria. We start with an overview of the NF-κB family and its basic regulation. In subsequent sections, we discuss the mechanisms of modulation of NF-κB function by bacteria-derived signals, the consequent alterations in cell function, and the clinical abnormalities that can result from genetic defects in NF-κB activation.

Type
Chapter
Information
Bacterial-Epithelial Cell Cross-Talk
Molecular Mechanisms in Pathogenesis
, pp. 244 - 268
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, D. W., Wilkins, A., Asara, J. M., and Cantley, L. C. (2004). The Crohn's disease protein, Nod2, requires RIP2 in order to induce ubiquitinylation of a novel site on NEMO. Curr. Biol. 14, 2217–2227.CrossRefGoogle ScholarPubMed
Adamo, R., Sokol, S., Soong, G., Gomez, M. I., and Prince, A. (2004). Pseudomonas aeruginosa flagella activate airway epithelial cells through asialoGM1 and Toll-like receptor 2 as well as Toll-like receptor 5. Am. J. Respir. Cell Mol. Biol. 30, 627–634.CrossRefGoogle ScholarPubMed
Agace, W., Hedges, S., Andersson, U., et al. (1993). Selective cytokine production by epithelial cells following exposure to Escherichia coli. Infect. Immun. 61, 602–609.Google ScholarPubMed
Ayabe, T., Satchell, D. P., Wilson, C. L., et al. (2000). Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria. Nat. Immunol. 1, 113–118.CrossRefGoogle ScholarPubMed
Ayabe, T., Ashida, T., Kohgo, Y., and Kono, T. (2004). The role of Paneth cells and their antimicrobial peptides in innate host defense. Trends Microbiol. 12, 394–398.CrossRefGoogle ScholarPubMed
Bals, R., Wang, X., Zasloff, M., and Wilson, J. M. (1998). The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc. Natl. Acad. Sci. U. S. A. 95, 9541–9546.CrossRefGoogle ScholarPubMed
Banan, A., Zhang, L. J., Shaikh, M., et al. (2004). Novel effect of NF-κB activation: carbonylation and nitration injury to cytoskeleton and disruption of monolayer barrier in intestinal epithelium. Am. J. Physiol. Cell Physiol. 287, C1139–C1151.CrossRefGoogle ScholarPubMed
Ben-Neriah, Y. (2002). Regulatory functions of ubiquitination in the immune system. Nat. Immunol. 3, 20–26.CrossRefGoogle ScholarPubMed
Birchler, T., Siebl, R., Buchner, K., et al. (2001). Human Toll-like receptor 2 mediates induction of the antimicrobial peptide human β-defensin 2 in response to bacterial lipoprotein. Eur. J. Immunol. 31, 3131–3137.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Bouma, G. and Strober, W. (2003). The immunological and genetic basis of inflammatory bowel disease. Nat. Rev. Immunol. 3, 521–533.CrossRefGoogle ScholarPubMed
Brumell, J. H., Steele-Mortimer, O., and Finlay, B. B. (1999). Bacterial invasion: force feeding by Salmonella. Curr. Biol. 9, R277–R280.CrossRefGoogle ScholarPubMed
Brummelkamp, T. R., Nijman, S. M., Dirac, A. M., and Bernards, R. (2003). Loss of the cylindromatosis tumor suppressor inhibits apoptosis by activating NF-κB. Nature 424, 797–801.CrossRefGoogle ScholarPubMed
Chamaillard, M., Girardin, S. E., Viala, J., and Philpott, D. J. (2003). Nods, Nalps and Naip: intracellular regulators of bacterial-induced inflammation. Cell. Microbiol. 5, 581–592.CrossRefGoogle ScholarPubMed
Chang, B., Amemura-Maekawa, J., Kura, F., Kawamura, I., and Watanabe, H. (2004). Expression of IL-6 and TNFα in human alveolar epithelial cells is induced by invading, but not by adhering, Legionella pneumophila. Microb. Pathog. 37, 295–302.CrossRefGoogle Scholar
Chen, L. F. and Greene, W. C. (2004). Shaping the nuclear action of NF-κB. Nat. Rev. Mol. Cell. Biol. 5, 392–401.CrossRefGoogle ScholarPubMed
Cherayil, B. J. (2003). How not to get bugged by bugs: mechanisms of cellular tolerance to microorganisms. Curr. Opin. Gastroenterol. 19, 572–577.CrossRefGoogle ScholarPubMed
Chung, J. Y., Park, Y. C., Ye, H., and Wu, H. (2002). All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J. Cell Sci. 115, 679–688.Google Scholar
Chung, W. O., Hansen, S. R., Rao, D., and Dale, B. A. (2004). Protease-activated receptor signaling increases epithelial antimicrobial peptide expression. J. Immunol. 174, 5165–5170.CrossRefGoogle Scholar
Collier-Hyams, L. S., Zeng, H., Sun, J., et al. (2002). Cutting edge: Salmonella AvrA effector inhibits the key proinflammatory, anti-apoptotic NF-κB pathway. J. Immunol. 169, 2846–2850.CrossRefGoogle Scholar
Crabtree, J. E., Farmery, S. M., Lindley, I. J., et al. (1994). CagA/cytotoxic strains of Helicobacter pylori and interleukin-8 in gastric epithelial cell lines. J. Clin. Pathol. 47, 945–950.CrossRefGoogle ScholarPubMed
Day, A. S., Su, B., Ceponis, P. J., et al. (2004). Helicobacter pylori infection induces interleukin-18 production in gastric epithelial (AGS) cells. Dig. Dis. Sci. 49, 1830–1835.CrossRefGoogle ScholarPubMed
DiMango, E., Ratner, A. J., Bryan, R., Tabibi, S., and Prince, A. (1998). Activation of NF-κB by adherent Pseudomonas aeruginosa in normal and cystic fibrosis respiratory epithelial cells. J. Clin. Invest. 101, 2598–2605.CrossRefGoogle ScholarPubMed
Ea, C. K., Sun, L., Inoue, J., and Chen, Z. J. (2004). TIFA activates IκB kinase (IKK) by promoting oligomerization and ubiquitination of TRAF6. Proc. Natl. Acad. Sci. U. S. A. 101, 15 318–15 323.CrossRefGoogle ScholarPubMed
Eckmann, L., Kagnoff, M. F., and Fierer, J. (1993). Epithelial cells secrete the chemokine interleukin-8 in response to bacterial entry. Infect. Immun. 61, 4569–4574.Google ScholarPubMed
Egan, L. J., Mays, D. C., Huntoon, C. J., et al. (1999). Inhibition of interleukin-1 stimulated NF-κB RelA/p65 phosphorylation by mesalamine is accompanied by decreased transcriptional activity. J. Biol. Chem. 274, 26 448–26 453.CrossRefGoogle ScholarPubMed
Erdman, S., Fox, J. G., Dangler, C. A., Feldman, D., and Horwitz, B. H. (2001). Typhlocolitis in NF-κB-deficient mice. J. Immunol. 166, 1443–1447.CrossRefGoogle Scholar
Fang, F. (1997). Mechanisms of nitric oxide-related antimicrobial activity. J. Clin. Invest. 99, 2818–2825.CrossRefGoogle ScholarPubMed
Fasano, A. (2002). Toxins and the gut: role in human disease. Gut 50, III9–III14.CrossRefGoogle ScholarPubMed
Frost, R. (1979). Mending wall. In The Poetry of Robert Frost: The Collected Poems, Complete and Unabridged, ed. Lathem, E. C.. New York: Henry Holt and Co., pp. 147–148.Google Scholar
Galdiero, M., Vitiello, M., Sanzari, E., et al. (2002). Porins from Salmonella enterica serovar Typhimurium activate the transcription factors AP-1 and NF-κB through the Raf-1-MAP kinase cascade. Infect. Immun. 70, 558–568.CrossRefGoogle Scholar
Ghosh, S. and Karin, M. (2002). Missing pieces in the NF-κB puzzle. Cell 109, S81–S96.CrossRefGoogle ScholarPubMed
Grassl, G. A., Kracht, M., Wiedemann, A., et al. (2003). Activation of NF-κB and IL-8 by Yersinia enterocolitica invasin protein is conferred by Rac1 and MAP kinase cascades. Cell. Microbiol. 5, 957–971.CrossRefGoogle ScholarPubMed
Greten, F. R., Eckmann, L., Greten, T. F., et al. (2004). IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296.CrossRefGoogle Scholar
Gutierrez, O., Pipaon, C., Inohara, N., et al. (2002). Induction of Nod2 in myelomonocytic and intestinal epithelial cells via NF-κB activation. J. Biol. Chem. 277, 41 701–41 705.CrossRefGoogle Scholar
Haraga, A. and Miller, S. I. (2003). A Salmonella enterica serovar Typhimurium translocated leucine-rich repeat effector protein inhibits NF-κB-dependent gene expression. Infect. Immun. 71, 4052–4058.CrossRefGoogle Scholar
Harder, J., Meyer-Hoffert, U., Teran, L. M., et al. (2000). Mucoid Pseudomonas aeruginosa, TNFα, and IL-1β, but not IL-6, induce human β-defensin-2 in respiratory epithelia. Am. J. Respir. Cell. Mol. Biol. 22, 714–721.CrossRefGoogle Scholar
Hayden, M. S. and Ghosh, S. (2004). Signaling to NF-κB. Genes Dev. 18, 2195–2224.CrossRefGoogle Scholar
He, D., Sougioultzis, S., Hagen, S., et al. (2002). Clostridium difficile toxin A triggers human colonocyte IL-8 release via mitochondrial oxygen radical generation. Gastroenterology 122, 1048–1057.CrossRefGoogle ScholarPubMed
Hobbie, S., Chen, L. M., Davis, R. J., and Galan, J. E. (1997). Involvement of mitogen-activated protein kinase pathways in the nuclear responses and cytokine production induced by Salmonella typhimurium in cultured intestinal epithelial cells. J. Immunol. 159, 5550–5559.Google ScholarPubMed
Hoffmann, J. A. (2003). The immune response of Drosophila. Nature 426, 33–38.CrossRefGoogle ScholarPubMed
Hooper, L. V. and Gordon, J. I. (2001). Commensal host-bacterial relationships in the gut. Science 292, 1115–1118.CrossRefGoogle Scholar
Huang, F. C., Werne, A., Li, Q., et al. (2004). Cooperative interactions between flagellin and SopE2 in the epithelial interleukin-8 response to Salmonella enterica serovar Typhimurium infection. Infect. Immun. 72, 5052–5062.CrossRefGoogle ScholarPubMed
Huang, Q., Yang, J., Lin, Y., et al. (2004). Differential regulation of interleukin 1 receptor and Toll-like receptor signaling by MEKK3. Nat. Immunol. 5, 98–103.CrossRefGoogle ScholarPubMed
Huang, T. T., Kudo, N., Yoshida, M., and Miyamoto, S. (2000). A nuclear export signal in the N-terminal regulatory domain of IκBα controls cytoplasmic localization of inactive NF-κB/IκBα complexes. Proc. Natl. Acad. Sci. U. S. A. 97, 1014–1019.CrossRefGoogle ScholarPubMed
Inohara, N., Koseki, T., Lin, J., et al. (2000). An induced proximity model for NF-κB activation in the Nod1/RICK and RIP signaling pathways. J. Biol. Chem. 275, 27 823–27 831.Google ScholarPubMed
Ishibashi, Y. and Nishikawa, A. (2003). Role of NF-κB in the regulation of intercellular adhesion molecule 1 after infection of human bronchial epithelial cells by Bordetella pertussis. Microb. Pathog. 35, 169–177.CrossRefGoogle ScholarPubMed
Islam, D., Veress, B., Bardhan, P. K., Lindberg, A. A., and Christenson, B. (1997). In situ characterization of inflammatory responses in the rectal mucosae of patients with shigellosis. Infect. Immun. 65, 739–749.Google ScholarPubMed
Itzkowitz, S. H. and Yio, X. (2004). Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G7–G17.CrossRefGoogle ScholarPubMed
Janssens, S. and Beyaert, R. (2003). Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members. Mol. Cell 11, 293–302.CrossRefGoogle ScholarPubMed
Jefferson, K. K., Smith, M. F., and Bobak, D. A. (1999). Roles of intracellular calcium and NF-κB in the Clostridium difficile toxin A-induced up-regulation and secretion of IL-8 from human monocytes. J. Immunol. 163, 5183–5191.Google ScholarPubMed
Jijon, H., Backer, J., Diaz, H., et al. (2004). DNA from probiotic bacteria modulates murine and human epithelial and immune function. Gastroenterology 126, 1358–1373.CrossRefGoogle ScholarPubMed
Johnson, C., Antwerp, D., and Hope, T. J. (1999). An N-terminal nuclear export signal is required for the nucleo-cytoplasmic shuttling of IκBα. EMBO J. 18, 6682–6693.CrossRefGoogle Scholar
Juliano, R. L., Reddig, P., Alahari, S., et al. (2004). Integrin regulation of cell signalling and motility. Biochem. Soc. Trans. 32, 443–446.CrossRefGoogle ScholarPubMed
Jung, H. C., Eckmann, L., Yang, S. K., et al. (1995). A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. J. Clin. Invest. 95, 55–65.CrossRefGoogle ScholarPubMed
Kanayama, A., Seth, R. B., Sun, L., et al. (2004). TAB2 and TAB3 activate the NF-κB pathway through binding to polyubiquitin chains. Mol. Cell 15, 535–548.CrossRefGoogle ScholarPubMed
Katakura, K., Lee, J., Rachmilewitz, D., et al. (2005). Toll-like receptor 9-induced type I IFN protects mice from experimental colitis. J. Clin. Invest. 115, 695–702.CrossRefGoogle ScholarPubMed
Kawai, T., Adachi, O., Ogawa, T., Takeda, K., and Akira, S. (1999). Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11, 115–122.CrossRefGoogle ScholarPubMed
Khair, O. A., Devalia, J. L., Abdelaziz, M. M., et al. (1994). Effect of Haemophilus influenzae endotoxin on the synthesis of IL-6, IL-8, TNFα and expression of ICAM-1 in cultured human bronchial epithelial cells. Eur. Respir. J. 7, 2109–2116.CrossRefGoogle ScholarPubMed
Kim, J. M., Cho, S. J., Oh, Y. K., et al. (2002). NF-κB activation pathway in intestinal epithelial cells is a major regulator of chemokine gene expression and neutrophil migration induced by Bacteroides fragilis enterotoxin. Clin. Exp. Immunol. 130, 59–66.CrossRefGoogle ScholarPubMed
Kim, J. M., Kim, J. S., Jung, H. C., et al. (2003). Helicobacter pylori infection activates NF-κB signaling pathway to induce iNOS and protect human gastric epithelial cells from apoptosis. Am. J. Physiol. Gastrointest. Liver Physiol. 285, G1171–G1180.CrossRefGoogle ScholarPubMed
Kobayashi, K. S., Chamaillard, M., Ogura, Y., et al. (2005). Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307, 731–734.CrossRefGoogle ScholarPubMed
Komatsu, Y., Shibuya, H., Takeda, N., et al. (2002). Targeted disruption of the TAB1 gene causes embryonic lethality and defects in cardiovascular and lung morphogenesis. Mech. Dev. 119, 239–249.CrossRefGoogle ScholarPubMed
Kopp, E. and Ghosh, S. (1994). Inhibition of NF-κB by sodium salicylate and aspirin. Science 265, 956–959.CrossRefGoogle ScholarPubMed
Kopp, E., and Medzhitov, R. (2003). Recognition of microbial infection by Toll-like receptors. Curr. Opin. Immunol. 15, 396–401.CrossRefGoogle ScholarPubMed
Kopp, E., Medzhitov, R., Carothers, J., et al. (1999). ECSIT is an evolutionarily conserved intermediate in the Toll/IL-1 signal transduction pathway. Genes Dev. 13, 2059–2071.CrossRefGoogle ScholarPubMed
Kovalenko, A., Chable-Bessia, C., Cantarella, G., et al. (2003). The tumor suppressor CYLD negatively regulates NF-κB signaling by deubiquitination. Nature 424, 801–805.CrossRefGoogle ScholarPubMed
Ku, C. L., Yang, K., Bustamente, J., et al. (2005). Inherited disorders of human Toll-like receptor signaling: immunological implications. Immunol. Rev. 203, 10–20.CrossRefGoogle ScholarPubMed
Kucharczak, J., Simmons, M. J., Fan, Y., and Gelinas, C. (2003). To be or not to be: NF-κB is the answer – the role of Rel/NF-κB in the regulation of apoptosis. Oncogene 22, 8961–8982.CrossRefGoogle ScholarPubMed
Kusumoto, Y., Hirano, H., Saitoh, K., et al. (2004). Human gingival epithelial cells produce chemotactic factors interleukin-8 and monocyte chemoattractant protein-1 after stimulation with Porphyromonas gingivalis via Toll-like receptor 2. J. Periodontol. 75, 370–379.CrossRefGoogle ScholarPubMed
Lamine, F., Fioramonti, J., Bueno, L., et al. (2004). Nitric oxide released by Lactobacillus farciminis improves TNBS-induced colitis in rats. Scand. J. Gastroenterol. 39, 37–45.CrossRefGoogle ScholarPubMed
Lee, T. H., Shank, J., Cusson, N., and Kelliher, M. A. (2004). The kinase activity of Rip1 is not required for tumor necrosis factor α induced IκB kinase or p38 MAP kinase activation or for ubiquitination of Rip1 by Traf2. J. Biol. Chem. 279: 33 185–33 191.CrossRefGoogle ScholarPubMed
Lehrer, R. I. (2004). Primate defensins. Nat. Rev. Microbiol. 2, 727–738.CrossRefGoogle ScholarPubMed
Lin, P. W., Simon, P. O., Gewirtz, A. T., et al. (2004). Paneth cell cryptdins act in vitro as apical paracrine regulators of the innate inflammatory response. J. Biol. Chem. 279, 19 902–19 907.CrossRefGoogle ScholarPubMed
Lomaga, M., Yeh, W. C., Sarosi, I., et al. (1999). TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40 and LPS signaling. Genes Dev. 13, 1015–1024.CrossRefGoogle ScholarPubMed
Maeda, S., Hsu, L.-C., Liu, H., et al. (2005). Nod2 mutation in Crohn's disease potentiates NF-κB activity and IL-1β processing. Science 307, 734–738.CrossRefGoogle ScholarPubMed
Mahida, Y. R., Makh, S., Hyde, S., Gray, T., and Borriello, S. P. (1996). Effect of Clostridium difficile toxin A on human intestinal epithelial cells: induction of interleukin-8 production and apoptosis after cell detachment. Gut 38, 337–347.CrossRefGoogle ScholarPubMed
Massari, P., Ram, S., Macleod, H., and Wetzler, L. M. (2003). The role of porins in neisserial pathogenesis and immunity. Trends Microbiol. 11, 87–93.CrossRefGoogle ScholarPubMed
McCormick, B. A., Colgan, S. P., Delp-Archer, C., Miller, S. I., and Madara, J. L. (1993). Salmonella typhimurium attachment to human intestinal epithelial monolayers: transcellular signalling to sub-epithelial neutrophils. J. Cell Biol. 123, 895–907.CrossRefGoogle Scholar
Meylan, E., Burns, K., Hofmann, K., et al. (2004). RIP1 is an essential mediator of Toll-like receptor 3-induced NF-κB activation. Nat. Immunol. 5, 503–507.CrossRefGoogle Scholar
Mikamo, H., Johri, A. K., Paoletti, L. C., Madoff, L. C., and Onderdonk, A. B. (2004). Adherence to, invasion by, and cytokine production in response to serotype VIII group B streptococci. Infect. Immun. 72, 4716–4722.CrossRefGoogle ScholarPubMed
Miyazawa, M., Suzuki, H., Masaoka, T., et al. (2003). Suppressed apoptosis in the inflamed gastric mucosa of Helicobacter pylori-colonized iNOS-knockout mice. Free Radic. Biol. Med. 34, 1621–1630.CrossRefGoogle ScholarPubMed
Mordmuller, B., Krappmann, D., Esen, M., Wegener, E., and Scheidereit, C. (2003). Lymphotoxin and lipopolysaccharide induce NF-ΚB p52 generation by a co-translational mechanism. EMBO Rep. 4, 82–87.CrossRefGoogle ScholarPubMed
Neish, A. S., Gewirtz, A. T., Zeng, H., et al. (2000). Prokaryotic regulation of epithelial responses by inhibition of IκBα ubiquitination. Science 289, 1560–1563.CrossRefGoogle Scholar
Neurath, M. F., Pettersson, S., Meyer zum Buschenfelde, K. H., and Strober, W. (1996). Local administration of antisense phosphorothioate oligonucleotides to the p65 subunit of NF-κB abrogates established experimental colitis in mice. Nat. Med. 2, 998–1004.CrossRefGoogle ScholarPubMed
Obonyo, M., Guiney, D. G., Harwood, J., Fierer, J., and Cole, S. P. (2002). Role of gamma interferon in Helicobacter pylori induction of inflammatory mediators during murine infection. Infect. Immun. 70, 3295–3299.CrossRefGoogle ScholarPubMed
Ogura, Y., Bonen, D. K., Inohara, N., et al. (2001). A frameshift mutation in Nod2 associated with susceptibility to Crohn's disease. Nature 411, 603–606.CrossRefGoogle ScholarPubMed
Ogushi, K., Wada, A., Niidome, T., et al. (2001). Salmonella enteritidis FliC (flagella filament protein) induces human β-defensin 2 mRNA production by Caco-2 cells. J. Biol. Chem. 276, 30 521–30 526.CrossRefGoogle ScholarPubMed
O'Neil, D. A., Porter, E. M., Elewaut, D., et al. (1999). Expression and regulation of the human beta-defensins hBD-1 and hBD-2 in intestinal epithelium. J. Immunol. 163, 6718–6724.Google ScholarPubMed
Orth, K., Palmer, L. E., Bao, Z. Q., et al. (1999). Inhibition of the mitogen-activated protein kinase kinase superfamily by a Yersinia effector. Science 285, 1920–1923.CrossRefGoogle ScholarPubMed
Orth, K., Xu, Z., Mudgett, M. B., et al. (2000). Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science 290, 1594–1597.CrossRefGoogle ScholarPubMed
Ouellette, A. J. (1997). Paneth cells and innate immunity in the crypt microenvironment. Gastroenterology 113, 1779–1784.CrossRefGoogle ScholarPubMed
Palfreyman, R. W., Watson, M. L., Eden, C., and Smith, A. W. (1997). Induction of biologically active interleukin-8 from lung epithelial cells by Burkholderia (Pseudomonas) cepacia products. Infect. Immun. 65, 617–622.Google ScholarPubMed
Patke, A., Mecklenbrauker, I., and Tarakhovsky, A. (2004). Survival signaling in resting B cells. Curr. Opin. Immunol. 16, 251–255.CrossRefGoogle ScholarPubMed
Petrof, E. O., Kojima, K., Ropeleski, M. J., et al. (2004). Probiotics inhibit NF-κB and induce heat shock proteins in colonic epithelial cells through proteasome inhibition. Gastroenterology 2004, 1474–1487.CrossRefGoogle ScholarPubMed
Platz, J., Beisswenger, C., Dalpke, A., et al. (2004). Microbial DNA induces a host defense reaction of human respiratory epithelial cells. J. Immunol. 173, 1219–1223.CrossRefGoogle ScholarPubMed
Pothoulakis, C. and Lamont, J. T. (2001). Microbes and microbial toxins: paradigms for microbial-mucosal interactions II: the integrated response of the intestine to Clostridium difficile toxins. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G178–G183.CrossRefGoogle ScholarPubMed
Rachmilewitz, D., Katakura, K., Karmeli, F., et al. (2004). Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology 126, 520–528.CrossRefGoogle ScholarPubMed
Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S., and Medzhitov, R. (2004). Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241.CrossRefGoogle ScholarPubMed
Ray, A. and Biswas, T. (2005). Porin of Shigella dysenteriae enhances Toll-like receptors 2 and 6 of mouse peritoneal B-2 cells and induces the expression of IgM, IgG2a and IgA. Immunology 114, 94–100.CrossRefGoogle Scholar
Regenhard, P., Goethe, R., and Phi, L. (2001). Involvement of PKA, PKC, and Ca2+ in LPS-activated expression of the chicken lysozyme gene. J. Leukoc. Biol. 69, 651–658.Google ScholarPubMed
Resta-Lenert, S. and Barrett, K. E. (2002). Enteroinvasive bacteria alter barrier and transport properties of human intestinal epithelium: role of iNOS and COX-2. Gastroenterology 122, 1070–1087.CrossRefGoogle ScholarPubMed
Rosenstiel, P., Fantini, M., Brautigam, K., et al. (2003). TNFα and IFNγ regulate the expression of the Nod2 (CARD15) gene in human intestinal epithelial cells. Gastroenterology 124, 1001–1009.CrossRefGoogle Scholar
Sakamoto, N., Mukae, H., Fujii, T., et al. (2005). Differential effects of alpha- and beta-defensin on cytokine production by cultured human bronchial epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 288, L508–L513.CrossRefGoogle ScholarPubMed
Sakiri, R., Ramagowda, B., and Tesh, V. L. (1998). Shiga toxin type 1 activates TNFα gene transcription and nuclear translocation of the transcriptional activators NF-κB and AP-1. Blood 92, 558–566.Google Scholar
Sanjo, H., Takeda, K., Tsujimura, T., et al. (2003). TAB2 is essential for prevention of apoptosis in fetal liver but not for interleukin-1 signaling. Mol. Cell. Biol. 23, 1231–1238.CrossRefGoogle Scholar
Sarkar, M. and Chaudhuri, K. (2004). Association of adherence and motility in interleukin-8 induction in human intestinal epithelial cells by Vibrio cholerae. Microbes Infect. 6, 676–685.CrossRefGoogle ScholarPubMed
Sartor, R. B. (2004). Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics and prebiotics. Gastroenterology 126, 1620–1633.CrossRefGoogle ScholarPubMed
Schesser, K., Spiik, A. K., Dukuzumuremyi, J. M., et al. (1998). The yopJ locus is required for Yersinia-mediated inhibition of NF-ΚB activation and cytokine expression: yopJ contains a eukaryotic SH2-like domain that is essential for its repressive activity. Mol. Microbiol. 28, 1067–1079.CrossRefGoogle ScholarPubMed
Schmid, Y., Grassl, G. A., Buhler, O. T., et al. (2004). Yersinia enterocolitica adhesin A induces production of IL-8 in epithelial cells. Infect. Immun. 72, 6780–6789.CrossRefGoogle ScholarPubMed
Senftleben, U., Cao, Y., Xiao, G., et al. (2001). Activation by IKKα of a second, evolutionarily conserved, NF-κB signaling pathway. Science 293, 1495–1499.CrossRefGoogle Scholar
Sierro, F., Dubois, B., Coste, A., et al. (2001). Flagellin stimulation of intestinal epithelial cells triggers CCL20-mediated migration of dendritic cells. Proc. Natl. Acad. Sci. U. S. A. 98, 13 722–13 727.CrossRefGoogle ScholarPubMed
Strober, W. (1998). Interactions between epithelial cells and immune cells in the intestine. Ann. N. Y. Acad. Sci. 859, 37–45.CrossRefGoogle ScholarPubMed
Sun, L., Deng, L., Ea, C. K., Xia, Z. P., and Chen, Z. J. (2004). The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol. Cell 14, 289–301.CrossRefGoogle ScholarPubMed
Suzuki, N., Suzuki, S., Duncan, G. S., et al. (2002). Severe impairment of interleukin-1 and Toll-like receptor signaling in mice lacking IRAK-4. Nature 416, 750–756.CrossRefGoogle ScholarPubMed
Vallance, B. A., Deng, W., Grado, M., et al. (2002). Modulation of inducible nitric oxide synthase expression by the attaching and effacing bacterial pathogen Citrobacter rodentium in infected mice. Infect. Immun. 70, 6424–6435.CrossRefGoogle ScholarPubMed
Vallance, B. A., Dijkstra, G., Qiu, B., et al. (2004). Relative contributions of NOS isoforms during experimental colitis: endothelial-derived NOS maintains mucosal integrity. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G865–G874.CrossRefGoogle ScholarPubMed
Phi, L. (1996). Transcriptional activation of the chicken lysozyme gene by NF-κB p65 (RelA) and c-Rel, but not by NF-κB p50. Biochem. J. 313, 39–44.Google Scholar
Viala, J., Chaput, C., Boneca, I. G., et al. (2004). Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat. Immunol. 5, 1166–1174.CrossRefGoogle ScholarPubMed
Viboud, G. I., So, S. S., Ryndak, M. B., and Bliska, J. B. (2003). Proinflammatory signaling stimulated by the type III translocation factor YopB is counteracted by multiple effectors in epithelial cells infected with Yersinia pseudotuberculosis. Mol. Microbiol. 47, 1305–1315.CrossRefGoogle ScholarPubMed
Wahl, C., Liptay, S., Adler, G., and Schmid, R. M. (1998). Sulfasalazine: a potent and specific inhibitor of NF-κB. J. Clin. Invest. 101, 1163–1174.CrossRefGoogle Scholar
Wehkamp, J., Harder, J., Weichenthal, M., et al. (2004). Nod2 (CARD15) mutations in Crohn's disease are associated with diminished mucosal α-defensin expression. Gut 53, 1658–1664.CrossRefGoogle ScholarPubMed
Wehkamp, J., Schmid, M., Fellermann, K., and Stange, E. F. (2005). Defensin deficiency, intestinal microbes, and the clinical phenotypes of Crohn's disease. J. Leukoc. Biol. 77, 460–465.CrossRefGoogle ScholarPubMed
Wilson, C. L., Ouellette, A. J., Satchell, D. P., et al. (1999). Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286, 113–117.CrossRefGoogle ScholarPubMed
Witthoft, T., Eckmann, L., Kim, J. M., and Kagnoff, M. F. (1998). Enteroinvasive bacteria directly activate expression of iNOS and NO production in human colon epithelial cells. Am. J. Physiol. 275, G564–G571.Google ScholarPubMed
Wroblewski, L. E., Noble, P. J., Pagliocca, A., et al. (2003). Stimulation of MMP-7 (matrilysin) by Helicobacter pylori in human gastric epithelial cells: role in epithelial cell migration. J. Cell Sci. 116, 3017–3026.CrossRefGoogle ScholarPubMed
Yamamoto, M., Sato, S., Hemmi, H., et al. (2002). Essential role for TIRAP in activation of the signaling cascade shared by TLR2 and TLR4. Nature 420, 324–329.CrossRefGoogle ScholarPubMed
Yamamoto, M., Sato, S., Hemmi, H., et al. (2003a). Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science 301, 640–643.CrossRefGoogle Scholar
Yamamoto, M., Sato, S., Hemmi, H., et al. (2003b). TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat. Immunol. 4, 1144–1150.CrossRefGoogle Scholar
Yang, D., Chertov, O., and Oppenheim, J. J. (2001). Participation of mammalian defensins and cathelicidins in anti-microbial immunity: receptors and activities of human defensins and cathelicidin (LL-37). J. Leukoc. Biol. 69, 691–697.Google Scholar
Yang, S. K., Eckmann, L., Panja, A., and Kagnoff, M. F. (1997). Differential and regulated expression of C-X-C, C-C, and C-chemokines by human colon epithelial cells. Gastroenterology 113, 1214–1223.CrossRefGoogle Scholar
Zhou, H., Wertz, I., O'Rourke, K., et al. (2004). Bcl10 activates the NF-κB pathway through ubiquitination of NEMO. Nature 427, 167–171.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×