Skip to main content Accessibility help
×
  • Cited by 4
  • Garrett P. Wheeler, Brookhaven National Laboratory, New York, Lei Wang, Brookhaven National Laboratory, New York, Amy C. Marschilok, Brookhaven National Laboratory, New York and Stony Brook University, State University of New York
Publisher:
Cambridge University Press
Online publication date:
June 2022
Print publication year:
2022
Online ISBN:
9781009030359

Book description

In order to improve the resiliency of the grid and to enable integration of renewable energy sources into the grid, the utilization of battery systems to store energy for later demand is of the utmost importance. The implementation of grid-scale electrical energy storage systems can aid in peak shaving and load leveling, voltage and frequency regulation, as well as emergency power supply. Although the predominant battery chemistry currently used is Li-ion; due to cost, safety and sourcing concerns, incorporation of other battery technologies is of interest for expanding the breadth and depth of battery storage system installations. This Element discusses existing technologies beyond Li-ion battery storage chemistries that have seen grid-scale deployment, as well as several other promising battery technologies, and analyzes their chemistry mechanisms, battery construction and design, and corresponding advantages and disadvantages.

References

[1]Fan, X., Liu, B., Liu, J. et al., “Battery Technologies for Grid-Level Large-Scale Electrical Energy Storage,” Transactions of Tianjin University, vol. 26, pp. 92103, 2020. https://doi.org/10.1007/s12209-019-00231-w
[2]Byrne, R. H., Nguyen, T. A., Copp, D. A., Chalamala, B. R., and Gyuk, I., “Energy management and optimization methods for grid energy storage systems,” IEEE Access, vol. 6, pp. 1323113260, 2018.
[3]“Case 18-E-0130, in the Matter of Energy Storage Deployment Program, Order Establishing Energy Storage Goal and Deployment Policy (issued December 13, 2018),” New York Public Service Commission, 2018.
[4]“Solving Challenges in Energy Storage,” US Department of Energy, Office of Technology Transitions. Accessed at www.energy.gov/sites/default/files/2019/07/f64/2018-OTT-Energy-Storage-Spotlight.pdf, 2019.
[5]Al Shaqsi, A. Z., Sopian, K., and Al-Hinai, A., “Review of energy storage services, applications, limitations, and benefits,” Energy Reports, vol. 6, pp.288306, 2020.
[6]Pasta, M., Wessells, C. D., Huggins, R. A., and Cui, Y., “A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage,” Nature Communications, vol. 3, 1149, 2012.
[7]Bowen, T., Chernyakhovski, I., Denholm, P., and National Renewable Energy Laboratory, “Grid-scale battery storage: frequently asked questions,” www.nrel.gov/docs/fy19osti/74426.pdf.
[8]Kubota, K., Dahbi, M., Hosaka, T., Kumakura, S., and Komaba, S., “Towards K‐ion and Na‐ion batteries as ‘beyond Li‐ion’,” The Chemical Record, vol. 18, pp. 459479, 2018.
[9]Chen, H., Cong, T. N., Yang, W. et al., “Progress in electrical energy storage system: a critical review,” Progress in Natural Science, vol. 19, pp.291312, 2009.
[10]Faunce, T. A., Prest, J., Su, D., Hearne, S. J., and Iacopi, F., “On-grid batteries for large-scale energy storage: challenges and opportunities for policy and technology,” MRS Energy & Sustainability, vol. 5, p. E11, 2018.
[11]“DOE OE Global Energy Storage Database,” National Technology & Engineering Sciences of Sandia, 2020. Accessed at https://sandia.gov/ess-ssl/gesdb/public/index.html.
[12]Hernández, J., Gyuk, I., and Christensen, C., “DOE global energy storage database – a platform for large scale data analytics and system performance metrics,” in 2016 IEEE International Conference on Power System Technology (POWERCON), 2016, pp. 16. doi: https://doi.org/10.1109/POWERCON.2016.7754009.
[13]“Distributed Energy Resources Database,” New York State Energy Research and Development Authority, 2020. Accessed at https://der.nyserda.ny.gov/search/
[14]Ali, M. U., Zafar, A., Nengroo, S. H. et al., “Towards a smarter battery management system for electric vehicle applications: a critical review of lithium-ion battery state of charge estimation,” Energies, vol. 12, p. 446, 2019.
[15]Posada, J. O. G., Rennie, A. J. R., Villar, S. P. et al., “Aqueous batteries as grid scale energy storage solutions,” Renewable and Sustainable Energy Reviews, vol. 68, pp.11741182, 2017.
[16]Subburaj, A. S., Pushpakaran, B. N., and Bayne, S. B., “Overview of grid connected renewable energy based battery projects in USA,” Renewable and Sustainable Energy Reviews, vol. 45, pp.219234, 2015.
[17]May, G. J., Davidson, A., and Monahov, B., “Lead batteries for utility energy storage: a review,” Journal of Energy Storage, vol. 15, pp.145157, 2018.
[18]Enos, D. G., “Chapter 3 – Lead-acid batteries for medium- and large-scale energy storage,” in Menictas, C., Skyllas-Kazacos, M., and Lim, T. M., eds., Advances in Batteries for Medium and Large-Scale Energy Storage, Woodhead Publishing, 2015, pp. 5771.
[19]Nelson, R., “The basic chemistry of gas recombination in lead-acid batteries,” JOM, vol. 53, pp. 2833, 2001.
[20]Beck, F. and Rüetschi, P., “Rechargeable batteries with aqueous electrolytes,” Electrochimica Acta, vol. 45, pp. 24672482, 2000.
[21]Cooper, A., Furakawa, J., Lam, L., and Kellaway, M., “The UltraBattery – a new battery design for a new beginning in hybrid electric vehicle energy storage,” Journal of Power Sources, vol. 188, pp. 642649, 2009.
[22]Lai, S.-B., Jamesh, M.-I., Wu, X.-C. et al., “A promising energy storage system: rechargeable Ni–Zn battery,” Rare Metals, vol. 36, pp.381396, 2017.
[23]Pop, V., “State-of-the-art of battery state-of-charge determination,” in Pop, V., Bergveld, H. J., Danilov, D., Regtien, P. P. L., and Notten, P. H. L., eds., Battery Management Systems: Accurate State-of-Charge Indication for Battery-Powered Applications, Dordrecht: Springer Netherlands, 2008, pp. 1145.
[24]Putois, F., “Market for nickel-cadmium batteries,” Journal of Power Sources, vol. 57, pp.6770, 1995.
[25]Dhar, S. K., Ovshínsky, S. R., Gifford, P. R. et al., “Nickel/metal hydride technology for consumer and electric vehicle batteries – a review and up-date,” Journal of Power Sources, vol. 65, pp.17, 1997.
[26]Parker, J. F., Chervin, C. N., Pala, I. R. et al., “Rechargeable nickel–3D zinc batteries: an energy-dense, safer alternative to lithium-ion,” Science, vol. 356, pp. 415418, 2017.
[27]Dunn, B., Kamath, H., and Tarascon, J.-M., “Electrical energy storage for the grid: A battery of choices,” Science, vol. 334, p. 928, 2011.
[28]Yang, Z., Zhang, J., Kintner-Meyer, M. C. W. et al., “Electrochemical energy storage for green grid,” Chemical Reviews, vol. 111, pp. 35773613, 2011.
[29]Doughty, D. H., Butler, P. C., Akhil, A. A., Clark, N. H., and Boyes, J. D., “Batteries for large-scale stationary electrical energy storage,” The Electrochemical Society Interface, vol. 19, pp. 4953, 2010.
[30]Duduta, M., Ho, B., Wood, V. C. et al., “Semi-solid lithium rechargeable flow battery,” vol. 1, pp. 511516, 2011.
[31]Yuan, X.-Z., Song, C., Platt, A. et al., “A review of all-vanadium redox flow battery durability: degradation mechanisms and mitigation strategies,” vol. 43, pp. 65996638, 2019.
[32]Kim, K. J., Park, M.-S., Kim, Y.-J. et al., “A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries,” Journal of Materials Chemistry A, vol. 3, pp. 1691316933, 2015.
[33]Weber, S., Peters, J. F., Baumann, M., and Weil, M., “Life cycle assessment of a vanadium redox flow battery,” Environmental Science & Technology, vol. 52, pp. 1086410873, 2018.
[34]Choi, C., Kim, S., Kim, R. et al., “A review of vanadium electrolytes for vanadium redox flow batteries,” Renewable and Sustainable Energy Reviews, vol. 69, pp.263274, 2017.
[35]Rahman, F. and Skyllas-Kazacos, M., “Solubility of vanadyl sulfate in concentrated sulfuric acid solutions,” Journal of Power Sources, vol. 72, pp.105110, 1998.
[36]Qian, P., Zhang, H., Chen, J. et al., “A novel electrode-bipolar plate assembly for vanadium redox flow battery applications,” Journal of Power Sources, vol. 175, pp.613620, 2008.
[37]Kear, G., Shah, A. A., and Walsh, F. C., “Development of the all-vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects,” International Journal of Energy Research, vol. 36, pp. 11051120, 2012.
[38]Xie, W., Darling, R. M., and Perry, M. L., “Processing and pretreatment effects on vanadium transport in nafion membranes,” Journal of The Electrochemical Society, vol. 163, pp. A5084A5089, 2015.
[39]Luo, Q., Zhang, H., Chen, J., Qian, P., and Zhai, Y., “Modification of Nafion membrane using interfacial polymerization for vanadium redox flow battery applications,” Journal of Membrane Science, vol. 311, pp. 98103, 2008.
[40]Teng, X., Zhao, Y., Xi, J. et al., “Nafion/organic silica modified TiO2 composite membrane for vanadium redox flow battery via in situ sol–gel reactions,” Journal of Membrane Science, vol. 341, pp.149154, 2009.
[41]Skyllas-Kazacos, M., Chakrabarti, M. H., Hajimolana, S. A., Mjalli, F. S., and Saleem, M., “Progress in flow battery research and development,” Journal of The Electrochemical Society, vol. 158, p. R55, 2011.
[42]Pan, F. and Wang, Q., “Redox species of redox flow batteries: a review,” Molecules (Basel, Switzerland), vol. 20, pp. 2049920517, 2015.
[43]Zhou, H., Zhang, H., Zhao, P., and Yi, B., “A comparative study of carbon felt and activated carbon based electrodes for sodium polysulfide/bromine redox flow battery,” Electrochimica Acta, vol. 51, pp. 63046312, 2006.
[44]Zhao, P., Zhang, H., Zhou, H., and Yi, B., “Nickel foam and carbon felt applications for sodium polysulfide/bromine redox flow battery electrodes,” Electrochimica Acta, vol. 51, pp. 10911098, 2005.
[45]Leung, P., Li, X., Ponce de León, C. et al., “Progress in redox flow batteries, remaining challenges and their applications in energy storage,” RSC Advances, vol. 2, pp. 1012510156, 2012.
[46]Dean Frankel, C. L., Minnihan, S., See, K., and Xie, L., “Flow battery cost reduction: exploring strategies to improve market adoption,” Lux Research State of the Market Report, https://members.luxresearchinc.com/research/report/15909, 2014.
[47]Mongird, V. F. K., Viswanathan, V., Koritarov, V. et al., “Energy storage technology and cost characterization report,” https://energystorage.pnnl.gov/pdf/PNNL-28866.pdf, 2019.
[48]Reed, D., Thomsen, E., Li, B. et al., “Stack developments in a kW class all vanadium mixed acid redox flow battery at the Pacific Northwest National Laboratory,” Journal of The Electrochemical Society, vol. 163, pp. A5211A5219, 2015.
[49]Guo, S.-P., Li, J.-C., Xu, Q.-T., Ma, Z., and Xue, H.-G., “Recent achievements on polyanion-type compounds for sodium-ion batteries: syntheses, crystal chemistry and electrochemical performance,” Journal of Power Sources, vol. 361, pp.285299, 2017.
[50]Harrington, K., “Flow battery makers battle over new electrolyte,” https://www.aiche.org/chenected/2014/09/flow-battery-makers-battle-over-new-electrolyte, 2014.
[51]Shinkle, A. A., Sleightholme, A. E. S., Thompson, L. T., and Monroe, C. W., “Electrode kinetics in non-aqueous vanadium acetylacetonate redox flow batteries,” Journal of Applied Electrochemistry, vol. 41, pp. 11911199, 2011.
[52]Liu, Q., Shinkle, A. A., Li, Y. et al., “Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries,” Electrochemistry Communications, vol. 12, pp. 16341637, 2010.
[53]Sleightholme, A. E. S., Shinkle, A. A., Liu, Q. et al., “Non-aqueous manganese acetylacetonate electrolyte for redox flow batteries,” Journal of Power Sources, vol. 196, pp. 57425745, 2011.
[54]Duduta, M., Ho, B., Wood, V. C. et al., “Semi-solid lithium rechargeable flow battery,” Advanced Energy Materials, vol. 1, pp. 511516, 2011.
[55]Li, Z., Li, S., Liu, S. et al., “Electrochemical properties of an all-organic redox flow battery using 2,2,6,6-tetramethyl-1-piperidinyloxy and N-methylphthalimide,” Electrochemical and Solid-State Letters, vol. 14, p. A171, 2011.
[56]Yang, B., Hoober-Burkhardt, L., Wang, F., Surya Prakash, G. K., and Narayanan, S. R., “An inexpensive aqueous flow battery for large-scale electrical energy storage based on water-soluble organic redox couples,” Journal of The Electrochemical Society, vol. 161, pp.A1371A1380, 2014.
[57]Wang, L., Abraham, A., Lutz, D. M. et al., “Toward environmentally friendly lithium sulfur batteries: probing the role of electrode design in MoS2-containing Li–S batteries with a green electrolyte,” ACS Sustainable Chemistry & Engineering, vol. 7, pp. 52095222, 2019.
[58]Wang, Y.-X., Zhang, B., Lai, W. et al., “Room-temperature sodium-sulfur batteries: a comprehensive review on research progress and cell chemistry,” Advanced Energy Materials, vol. 7, p. 1602829, 2017.
[59]Kummer, J. T. and Weber, N., “A sodium-sulfur secondary battery,” SAE Technical Paper 670179, https://doi.org/10.4271/670179, 1967.
[60]Nikiforidis, G., van de Sanden, M. C. M., and Tsampas, M. N., “High and intermediate temperature sodium–sulfur batteries for energy storage: development, challenges and perspectives,” RSC Advances, vol. 9, pp. 56495673, 2019.
[61]Xin, S., Yin, Y.-X., Guo, Y.-G., and Wan, L.-J., “A high-energy room-temperature sodium-sulfur battery,” Advanced Materials, vol. 26, pp. 12611265, 2014.
[62]Steudel, R. and Steudel, Y., “Polysulfide chemistry in sodium–sulfur batteries and related systems – a computational study by G3X(MP2) and PCM calculations,” Chemistry – A European Journal, vol. 19, pp. 31623176, 2013.
[63]Yu, X. and Manthiram, A., “Sodium-sulfur batteries with a polymer-coated NASICON-type sodium-ion solid electrolyte,” Matter, vol. 1, pp.439451, 2019.
[64]Armstrong, R. D., Dickinson, T., and Reid, M., “Alternating current impedance measurements of the vitreous carbon/sodium polysulphide interphase at 350°C,” Electrochimica Acta, vol. 21, pp. 935942, 1976.
[65]Kim, G., Park, Y.-C., Lee, Y. et al., “The effect of cathode felt geometries on electrochemical characteristics of sodium sulfur (NaS) cells: planar vs. tubular,” Journal of Power Sources, vol. 325, pp.238245, 2016.
[66]Okuyama, R., Nakashima, H., Sano, T., and Nomura, E., “The effect of metal sulfides in the cathode on Na/S battery performance,” Journal of Power Sources, vol. 93, pp.5054, 2001.
[67]Sudworth, J. L., “The sodium/sulphur battery,” Journal of Power Sources, vol. 11, pp. 143154, 1984.
[68]Lu, X., Xia, G., Lemmon, J. P., and Yang, Z., “Advanced materials for sodium-beta alumina batteries: status, challenges and perspectives,” Journal of Power Sources, vol. 195, pp. 24312442, 2010.
[69]Miyoshi, M. M. T., Kusakabe, Y., Hatou, H. et al., US Pat., Application No. 10/246703, 2003.
[70]Li, F., Wei, Z., Manthiram, A. et al., “Sodium-based batteries: from critical materials to battery systems,” Journal of Materials Chemistry A, vol. 7, pp. 94069431, 2019.
[71]Manthiram, A. and Yu, X., “Ambient temperature sodium–sulfur batteries,” Small, vol. 11, pp. 21082114, 2015.
[72]Ohki, Y., IEEE Electrical Insulation Magazine, vol. 33, pp. 5961, 2017.
[73]Tan, X., Li, Q., and Wang, H., “Advances and trends of energy storage technology in Microgrid,” International Journal of Electrical Power & Energy Systems, vol. 44, pp. 179191, 2013.
[74]Andriollo, M., Benato, R., Dambone Sessa, S. et al., “Energy intensive electrochemical storage in Italy: 34.8 MW sodium–sulphur secondary cells,” Journal of Energy Storage, vol. 5, pp.146155, 2016.
[75]Staffell, I. and Rustomji, M., “Maximising the value of electricity storage,” Journal of Energy Storage, vol. 8, pp.212225, 2016.
[76]Hueso, K. B., Armand, M., and Rojo, T., “High temperature sodium batteries: status, challenges and future trends,” Energy & Environmental Science, vol. 6, pp. 734749, 2013.
[77]Sudworth, J., “The sodium/nickel chloride (ZEBRA) battery,” Journal of Power Sources, vol. 100, pp. 149163, 2001.
[78]Coetzer, J., “A new high energy density battery system,” Journal of Power Sources, vol. 18, pp.377380, 1986.
[79]Gao, X., Hu, Y., Li, Y. et al., “High-rate and long-life intermediate-temperature Na–NiCl2 battery with dual-functional Ni–carbon composite nanofiber network,” ACS Applied Materials & Interfaces, vol. 12, pp. 2476724776, 2020.
[80]Li, Y., Wu, X., Wang, J. et al., “Ni-less cathode with 3D free-standing conductive network for planar Na-NiCl2 batteries,” Chemical Engineering Journal, vol. 387, p. 124059, 2020.
[81]Ahn, B.-M., Ahn, C.-W., Hahn, B.-D. et al., “Easy approach to realize low cost and high cell capacity in sodium nickel-iron chloride battery,” Composites Part B: Engineering, vol. 168, pp.442447, 2019.
[82]Zhan, X., Bowden, M. E., Lu, X. et al., “A low-cost durable Na-FeCl2 battery with ultrahigh rate capability,” Advanced Energy Materials, vol. 10, 1903472, 2020.
[83]Lu, X., Chang, H. J., Bonnett, J. F. et al., “An intermediate-temperature high-performance Na–ZnCl2 battery,” ACS Omega, vol. 3, pp. 1570215708, 2018.
[84]Lu, X., Li, G., Kim, J. Y. et al., “A novel low-cost sodium–zinc chloride battery,” Energy & Environmental Science, vol. 6, pp. 18371843, 2013.
[85]Hueso, K. B., Palomares, V., Armand, M., and Rojo, T., “Challenges and perspectives on high and intermediate-temperature sodium batteries,” Nano Research, vol. 10, pp. 40824114, 2017.
[86]Christensen, R., “Na-NiCl2 batteries.” In Technology Data for Energy storage: November 2018 (pp. 147160), vol. 183. Danish Energy Agency. https://ens.dk/en/our-services/projections-and-models/technology-data, 2018.
[87]Li, F., Wei, Z. X., Manthiram, A. et al., “Sodium-based batteries: from critical materials to battery systems,” Journal of Materials Chemistry A, vol. 7, pp. 94069431, Apr. 2019.
[88]Li, M. Y., Du, Z. J., Khaleel, M. A., and Belharouak, I., “Materials and engineering endeavors towards practical sodium-ion batteries,” Energy Storage Materials, vol. 25, pp. 520536, Mar. 2020.
[89]Adelhelm, P., Hartmann, P., Bender, C. L. et al., “From lithium to sodium: cell chemistry of room temperature sodium-air and sodium-sulfur batteries,” Beilstein Journal of Nanotechnology, vol. 6, pp. 10161055, Apr. 2015.
[90]Yu, H., Guo, S., Zhu, Y., Ishida, M., and Zhou, H., “Novel titanium-based O3-type NaTi0.5Ni0.5O2 as a cathode material for sodium ion batteries,” Chemical Communications, vol. 50, pp. 457459, 2014.
[91]Zatovsky, I., “NASICON-type Na3V2(PO4)3,” Acta Crystallographica Section E, vol. 66, p. i12, 2010.
[92]Wu, X., Wu, C., Wei, C. et al., “Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-ion batteries,” ACS Applied Materials & Interfaces, vol. 8, pp. 53935399, 2016.
[93]Matei Ghimbeu, C., Górka, J., Simone, V. et al., “Insights on the Na+ ion storage mechanism in hard carbon: discrimination between the porosity, surface functional groups and defects,” Nano Energy, vol. 44, pp.327335, 2018.
[94]El Kharbachi, A., Zavorotynska, O., Latroche, M. et al., “Exploits, advances and challenges benefiting beyond Li-ion battery technologies,” Journal of Alloys and Compounds, vol. 817, p. 153261, 2020.
[95]Shannon, R. D., “Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallographica Section A, vol. 32, pp. 751767, 1976.
[96]Su, D., Ahn, H. J., and Wang, G., “Hydrothermal synthesis of alpha-MnO2 and beta-MnO2 nanorods as high capacity cathode materials for sodium ion batteries,” Journal of Materials Chemistry A, vol. 1, pp. 48454850, 2013.
[97]Su, D. W., Ahn, H. J., and Wang, G. X., “Beta-MnO2 nanorods with exposed tunnel structures as high-performance cathode materials for sodium-ion batteries,” Npg Asia Materials, vol. 5, Nov. 2013.
[98]Huang, J., Poyraz, A. S., Lee, S.-Y. et al., “Silver-containing α-MnO2 nanorods: electrochemistry in Na-based battery systems,” ACS Applied Materials & Interfaces, vol. 9, pp. 43334342, 2017.
[99]Lee, S.-Y., Housel, L. M., Huang, J. et al., “Inhomogeneous structural evolution of silver-containing Alpha-MnO2 nanorods in sodium-ion batteries investigated by comparative transmission electron microscopy approach,” Journal of Power Sources, vol. 435, 226779, 2019.
[100]Qian, J., Wu, C., Cao, Y. et al., “Prussian blue cathode materials for sodium‐ion batteries and other ion batteries,” Advanced Energy Materials, vol. 8, 2018.
[101]Wu, X., Sun, M., Guo, S. et al., “Vacancy‐free Prussian blue nanocrystals with high capacity and superior cyclability for aqueous sodium‐ion batteries,” ChemNanoMat, vol. 1, pp. 188193, 2015.
[102]Wessells, C. D., Huggins, R. A., and Cui, Y., “Copper hexacyanoferrate battery electrodes with long cycle life and high power,” Nature Communications, vol. 2, 550, 2011.
[103]Song, J., Wang, L., Lu, Y. et al., “Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery,” Journal of the American Chemical Society, vol. 137, pp. 26582664, 2015.
[104]Wu, X., Deng, W., Qian, J. et al., “Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries,” Journal of Materials Chemistry A, vol. 1, pp. 1013010134, 2013.
[105]Jiang, Y., Yu, S., Wang, B. et al., “Prussian Blue@C composite as an ultrahigh‐rate and long‐life sodium‐ion battery cathode,” Advanced Functional Materials, vol. 26, pp. 53155321, 2016.
[106]You, Y., Yao, H. R., Xin, S. et al., “Subzero‐temperature cathode for a sodium‐ion battery,” Advanced Materials, vol. 28, pp. 72437248, 2016.
[107]Fang, Y., Yu, X. Y., and Lou, X. W., “A practical high‐energy cathode for sodium‐ion batteries based on uniform P2‐Na0.7CoO2 Microspheres,” Angewandte Chemie International Edition, vol. 56, pp. 58015805, 2017.
[108]Komaba, S., Takei, C., Nakayama, T., Ogata, A., and Yabuuchi, N., “Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2,” Electrochemistry Communications, vol. 12, pp. 355358, 2010.
[109]Kubota, K., Asari, T., Yoshida, H. et al., “Understanding the structural evolution and redox mechanism of a NaFeO2–NaCoO2 solid solution for sodium‐ion batteries,” Advanced Functional Materials, vol. 26, pp. 60476059, 2016.
[110]Komaba, S., Yabuuchi, N., Nakayama, T. et al., “Study on the reversible electrode reaction of Na1xNi0.5Mn0.5O2 for a rechargeable sodium-ion battery,” Inorganic Chemistry, vol. 51, pp. 62116220, 2012.
[111]Buchholz, D., Moretti, A., Kloepsch, R. et al., “Toward Na-ion batteries – synthesis and characterization of a novel high capacity Na ion intercalation material,” Chemistry of Materials, vol. 25, pp.142148, 2013.
[112]Chagas, L. G., Buchholz, D., Wu, L. M., Vortmann, B., and Passerini, S., “Unexpected performance of layered sodium-ion cathode material in ionic liquid-based electrolyte,” Journal of Power Sources, vol. 247, pp. 377383, Feb. 2014.
[113]Hwang, J.-Y., Myung, S.-T., Choi, J. U. et al., “Resolving the degradation pathways of the O3-type layered oxide cathode surface through the nano-scale aluminum oxide coating for high-energy density sodium-ion batteries,” Journal of Materials Chemistry A, vol. 5, pp. 2367123680, 2017.
[114]Yu, H. J., Guo, S. H., Zhu, Y. B., Ishida, M., and Zhou, H. S., “Novel titanium-based O-3-type NaTi0.5Ni0.5O2 as a cathode material for sodium ion batteries,” Chemical Communications, vol. 50, pp. 457459, 2014.
[115]Yao, H.-R., Wang, P.-F., Gong, Y. et al., “Designing air-stable O3-type cathode materials by combined structure modulation for Na-ion batteries,” Journal of the American Chemical Society, vol. 139, pp. 84408443, 2017.
[116]Vassilaras, P., Dacek, S. T., Kim, H. et al., “Communication – O3-type layered oxide with a quaternary transition metal composition for Na-ion battery cathodes: NaTi0.25Fe0.25Co0.25Ni0.25O2,” Journal of The Electrochemical Society, vol. 164, pp.A3484A3486, 2017.
[117]Billaud, J., Clément, R. J., Armstrong, A. R. et al., “β-NaMnO2: a high-performance cathode for sodium-ion batteries,” Journal of the American Chemical Society, vol. 136, pp. 1724317248, 2014.
[118]Barpanda, P., Oyama, G., Nishimura, S.-i., Chung, S.-C., and Yamada, A., “A 3.8-V earth-abundant sodium battery electrode,” Nature Communications, vol. 5, 4358, 2014.
[119]Saravanan, K., Mason, C. W., Rudola, A., Wong, K. H., and Balaya, P., “The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries,” Advanced Energy Materials, vol. 3, pp. 444450, 2013.
[120]Park, Y.-U., Seo, D.-H., Kwon, H.-S. et al., “A new high-energy cathode for a Na-ion battery with ultrahigh stability,” Journal of the American Chemical Society, vol. 135, pp. 1387013878, 2013.
[121]Bianchini, M., Xiao, P., Wang, Y., and Ceder, G., “Additional sodium insertion into polyanionic cathodes for higher‐energy Na‐ion batteries,” Advanced Energy Materials, vol. 7, 2017.
[122]Tang, W., Song, X., Du, Y. et al., “High-performance NaFePO4 formed by aqueous ion-exchange and its mechanism for advanced sodium ion batteries,” Journal of Materials Chemistry A, vol. 4, pp. 48824892, 2016.
[123]Fang, Y., Xiao, L., Ai, X., Cao, Y., and Yang, H., “Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high‐rate and extended lifespan cathode for sodium‐ion batteries,” Advanced Materials, vol. 27, pp. 58955900, 2015.
[124]Yang, G., Song, H., Wu, M., and Wang, C., “Porous NaTi2(PO4)3 nanocubes: a high-rate nonaqueous sodium anode material with more than 10 000 cycle life,” Journal of Materials Chemistry A, vol. 3, pp. 1871818726, 2015.
[125]Chen, C. Y., Matsumoto, K., Nohira, T. et al., “Pyrophosphate Na2FeP2O7 as a low-cost and high-performance positive electrode material for sodium secondary batteries utilizing an inorganic ionic liquid,” Journal of Power Sources, vol. 246, pp. 783787, Jan. 2014.
[126]Jiao, S., Tuo, J., Xie, H. et al., “The electrochemical performance of Cu3[Fe(CN)6]2 as a cathode material for sodium-ion batteries,” Materials Research Bulletin, vol. 86, pp. 194200, 2017.
[127]Lee, H.-W., Wang, R. Y., Pasta, M. et al., “Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries,” Nature Communications, vol. 5, 5280, 2014.
[128]Takachi, M., Matsuda, T., and Moritomo, Y., “Cobalt hexacyanoferrate as cathode material for Na+ secondary battery,” Applied Physics Express, vol. 6, Feb. 2013.
[129]You, Y., Wu, X.-L., Yin, Y.-X., and Guo, Y.-G., “A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries,” Journal of Materials Chemistry A, vol. 1, pp. 1406114065, 2013.
[130]Lee, H., Kim, Y.-I., Park, J.-K., and Choi, J. W., “Sodium zinc hexacyanoferrate with a well-defined open framework as a positive electrode for sodium ion batteries,” Chemical Communications, vol. 48, pp. 84168418, 2012.
[131]Komaba, S., Murata, W., Ishikawa, T. et al., “Electrochemical Na insertion and solid electrolyte interphase for hard‐carbon electrodes and application to Na‐ion batteries,” Advanced Functional Materials, vol. 21, pp. 38593867, 2011.
[132]Zhao, J., Zhao, L., Chihara, K. et al., “Electrochemical and thermal properties of hard carbon-type anodes for Na-ion batteries,” Journal of Power Sources, vol. 244, pp.752757, 2013.
[133]Stevens, D. A. and Dahn, J. R., “High capacity anode materials for rechargeable sodium-ion batteries,” Journal of the Electrochemical Society, vol. 147, pp. 12711273, Apr. 2000.
[134]Qiao, Y., Han, R., Liu, Y. et al., “Bio‐inspired synthesis of an ordered N/P dual‐doped porous carbon and application as an anode for sodium‐ion batteries,” Chemistry – A European Journal, vol. 23, pp. 1605116058, 2017.
[135]Wang, Z., Qie, L., Yuan, L. et al., “Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance,” Carbon, vol. 55, pp.328334, 2013.
[136]Ma, Y., Guo, Q., Yang, M. et al., “Highly doped graphene with multi-dopants for high-capacity and ultrastable sodium-ion batteries,” Energy Storage Materials, vol. 13, pp.134141, 2018.
[137]Wen, Y., He, K., Zhu, Y. et al., “Expanded graphite as superior anode for sodium-ion batteries,” Nature Communications, vol. 5, 4033, 2014.
[138]Xiao, W., Sun, Q., Liu, J. et al., “Utilizing the full capacity of carbon black as anode for Na-ion batteries via solvent co-intercalation,” Nano Research, vol. 10, pp. 43784387, 2017.
[139]Li, Y., Mu, L., Hu, Y.-S. et al., “Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries,” Energy Storage Materials, vol. 2, pp.139145, 2016.
[140]Sun, N., Liu, H., and Xu, B., “Facile synthesis of high performance hard carbon anode materials for sodium ion batteries,” Journal of Materials Chemistry A, vol. 3, pp. 2056020566, 2015.
[141]Hwang, J. Y., Myung, S. T., and Sun, Y. K., “Recent progress in rechargeable potassium batteries,” Advanced Functional Materials, vol. 28, Oct. 2018.
[142]Komaba, S., Hasegawa, T., Dahbi, M., and Kubota, K., “Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors,” Electrochemistry Communications, vol. 60, pp. 172175, 2015.
[143]Huie, M. M., Bock, D. C., Takeuchi, E. S., Marschilok, A. C., and Takeuchi, K. J., “Cathode materials for magnesium and magnesium-ion based batteries,” Coordination Chemistry Reviews, vol. 287, pp. 1527, Mar. 2015.
[144]Rashad, M., Asif, M., Wang, Y., He, Z., and Ahmed, I., “Recent advances in electrolytes and cathode materials for magnesium and hybrid-ion batteries,” Energy Storage Materials, vol. 25, pp.342375, 2020.
[145]Mao, M. L., Gao, T., Hou, S. Y., and Wang, C. S., “A critical review of cathodes for rechargeable Mg batteries,” Chemical Society Reviews, vol. 47, pp. 88048841, Dec. 2018.
[146]Yoo, H. D., Shterenberg, I., Gofer, Y. et al., “Mg rechargeable batteries: an on-going challenge,” Energy & Environmental Science, vol. 6, pp. 22652279, 2013.
[147]Xu, Y., Deng, X., Li, Q. et al., “Vanadium oxide pillared by interlayer Mg2+ ions and water as ultralong-life cathodes for magnesium-ion batteries,” Chem, vol. 5, pp.11941209, 2019.
[148]Kondrashev, Y. D. and Zaslavskii, A., “The structure of the modifications of manganese (IV) oxide,” Izvestiya Akademii Nauk SSSR, Seriya Fizicheskaya, vol. 15, pp. 179186, 1951.
[149]Baur, W. H., “Rutile-type compounds. V. Refinement of MnO2 and MgF2,” Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, vol. 32, pp. 22002204, 1976.
[150]Miura, H., Kudou, H., Choi, J. H., and Hariya, Y., “The crystal structure of ramsdellite from Pirika Mine,” Journal of the Faculty of Science, vol. 22, pp. 611617, 1990.
[151]Post, J. E. and Veblen, D. R., “Crystal structure determinations of synthetic sodium, magnesium, and potassium birnessite using TEM and the Rietveld method,” American Mineralogist, vol. 75, pp. 477489, 1990.
[152]Aurbach, D., Lu, Z., Schechter, A. et al., “Prototype systems for rechargeable magnesium batteries,” Nature, vol. 407, pp.724727, 2000.
[153]Lancry, E., Levi, E., Gofer, Y. et al., “Leaching chemistry and the performance of the Mo6S8 cathodes in rechargeable Mg batteries,” Chemistry of Materials, vol. 16, pp. 28322838, 2004.
[154]Lancry, E., Levi, E., Mitelman, A., Malovany, S., and Aurbach, D., “Molten salt synthesis (MSS) of Cu2Mo6S8 – new way for large-scale production of Chevrel phases,” Journal of Solid State Chemistry, vol. 179, pp. 18791882, 2006.
[155]Novák, P., Imhof, R., and Haas, O., “Magnesium insertion electrodes for rechargeable nonaqueous batteries – a competitive alternative to lithium?,” Electrochimica Acta, vol. 45, pp. 351367, 1999.
[156]Imamura, D., Miyayama, M., Hibino, M., and Kudo, T., “Mg intercalation properties into V2O5 gel/carbon composites under high-rate condition,” Journal of the Electrochemical Society, vol. 150, pp. A753–A758, Jun 2003.
[157]Jiao, L., Yuan, H., Wang, Y., Cao, J., and Wang, Y., “Mg intercalation properties into open-ended vanadium oxide nanotubes,” Electrochemistry Communications, vol. 7, pp. 431436, 2005.
[158]Gershinsky, G., Yoo, H. D., Gofer, Y., and Aurbach, D., “Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides: V2O5 and MoO3,” Langmuir, vol. 29, pp. 1096410972, 2013.
[159]Petkov, V., Trikalitis, P. N., Bozin, E. S. et al., “Structure of V2O5·nH2O xerogel solved by the atomic pair distribution function technique,” Journal of the American Chemical Society, vol. 124, pp. 1015710162, 2002.
[160]Sa, N., Kinnibrugh, T. L., Wang, H. et al., “Structural evolution of reversible Mg insertion into a bilayer structure of V2O5·nH2O xerogel material,” Chemistry of Materials, vol. 28, pp. 29622969, 2016.
[161]Sai Gautam, G., Canepa, P., Richards, W. D., Malik, R., and Ceder, G., “Role of structural H2O in intercalation electrodes: the case of Mg in nanocrystalline xerogel-V2O5,” Nano Letters, vol. 16, pp. 24262431, 2016.
[162]Novak, P., Scheifele, W., Joho, F., and Haas, O., “Electrochemical insertion of magnesium into hydrated vanadium bronzes,” Journal of the Electrochemical Society, vol. 142, pp. 25442550, Aug. 1995.
[163]Lee, S. H., DiLeo, R. A., Marschilok, A. C., Takeuchi, K. J., and Takeuchi, E. S., “Sol gel based synthesis and electrochemistry of magnesium vanadium oxide: a promising cathode material for secondary magnesium ion batteries,” Ecs Electrochemistry Letters, vol. 3, pp. 8790, 2014.
[164]Deng, X., Xu, Y., An, Q. et al., “Manganese ion pre-intercalated hydrated vanadium oxide as a high-performance cathode for magnesium ion batteries,” Journal of Materials Chemistry A, vol. 7, pp. 1064410650, 2019.
[165]Hu, X., Kitchaev, D. A., Wu, L. et al., “Revealing and rationalizing the rich polytypism of todorokite MnO2,” Journal of the American Chemical Society, vol. 140, pp. 69616968, 2018.
[166]Kumagai, N., Komaba, S., Sakai, H., and Kumagai, N., “Preparation of todorokite-type manganese-based oxide and its application as lithium and magnesium rechargeable battery cathode,” Journal of Power Sources, vol. 97–98, pp. 515517, 2001.
[167]Zhang, R., Yu, X., Nam, K.-W. et al., ”α-MnO2 as a cathode material for rechargeable Mg batteries,” Electrochemistry Communications, vol. 23, pp. 110113, 2012.
[168]Rasul, S., Suzuki, S., Yamaguchi, S., and Miyayama, M., “High capacity positive electrodes for secondary Mg-ion batteries,” Electrochimica Acta, vol. 82, pp. 243249, 2012.
[169]Arthur, T. S., Zhang, R., Ling, C. et al., “Understanding the electrochemical mechanism of K-αMnO2 for magnesium battery cathodes,” ACS Applied Materials & Interfaces, vol. 6, pp. 70047008, 2014.
[170]Wang, L., Asheim, K., Vullum, P. E., Svensson, A. M., and Vullum-Bruer, F., “Sponge-like porous manganese(II,III) oxide as a highly efficient cathode material for rechargeable magnesium ion batteries,” Chemistry of Materials, vol. 28, pp. 64596470, 2016.
[171]Wang, L., Vullum, P. E., Asheim, K. et al., “High capacity Mg batteries based on surface-controlled electrochemical reactions,” Nano Energy, vol. 48, pp. 227237, 2018.
[172]Cabello, M., Alcántara, R., Nacimiento, F. et al., “Electrochemical and chemical insertion/deinsertion of magnesium in spinel-type MgMn2O4 and lambda-MnO2 for both aqueous and non-aqueous magnesium-ion batteries,” CrystEngComm, vol. 17, pp. 87288735, 2015.
[173]Feng, Z., Chen, X., Qiao, L. et al., “Phase-controlled electrochemical activity of epitaxial Mg-spinel thin films,” ACS Applied Materials & Interfaces, vol. 7, pp. 2843828443, 2015.
[174]Kim, C., Phillips, P. J., Key, B. et al., “Direct observation of reversible magnesium ion intercalation into a spinel oxide host,” Advanced Materials, vol. 27, pp. 33773384, 2015.
[175]Mizrahi, O., Amir, N., Pollak, E. et al., “Electrolyte solutions with a wide electrochemical window for rechargeable magnesium batteries,” Journal of The Electrochemical Society, vol. 155, p. A103, 2008.
[176]Aurbach, D., Suresh, G. S., Levi, E. et al., “Progress in rechargeable magnesium battery technology,” Advanced Materials, vol. 19, pp. 4260-+, Dec. 2007.
[177]Liang, Y. L., Feng, R. J., Yang, S. Q. et al., “Rechargeable Mg batteries with graphene-like MoS2 cathode and ultrasmall Mg nanoparticle anode,” Advanced Materials, vol. 23, pp. 640643, Feb. 2011.
[178]Lipson, A. L., Han, S.-D., Kim, S. et al., “Nickel hexacyanoferrate, a versatile intercalation host for divalent ions from nonaqueous electrolytes,” Journal of Power Sources, vol. 325, pp. 646652, 2016.
[179]Lu, Z., Schechter, A., Moshkovich, M., and Aurbach, D., “On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions,” Journal of Electroanalytical Chemistry, vol. 466, pp. 203217, 1999.
[180]Gregory, T. D., Hoffman, R. J., and Winterton, R. C., “Nonaqueous electrochemistry of magnesium – applications to energy-storage,” Journal of the Electrochemical Society, vol. 137, pp. 775780, Mar. 1990.
[181]Aurbach, D., Weissman, I., Gofer, Y., and Levi, E., “Nonaqueous magnesium electrochemistry and its application in secondary batteries,” Chemical Record, vol. 3, pp. 6173, 2003.
[182]Aurbach, D., Gofer, Y., Lu, Z. et al., “A short review on the comparison between Li battery systems and rechargeable magnesium battery technology,” Journal of Power Sources, vol. 97–98, pp. 2832, 2001.
[183]Aurbach, D., Gizbar, H., Schechter, A. et al., “Electrolyte solutions for rechargeable magnesium batteries based on organomagnesium chloroaluminate complexes,” Journal of the Electrochemical Society, vol. 149, pp. A115A121, Feb. 2002.
[184]Nelson, E. G., Brody, S. I., Kampf, J. W., and Bartlett, B. M., “A magnesium tetraphenylaluminate battery electrolyte exhibits a wide electrochemical potential window and reduces stainless steel corrosion,” Journal of Materials Chemistry A, vol. 2, pp. 1819418198, 2014.
[185]Pour, N., Gofer, Y., Major, D. T., and Aurbach, D., “Structural analysis of electrolyte solutions for rechargeable Mg batteries by stereoscopic means and DFT calculations,” Journal of the American Chemical Society, vol. 133, pp. 62706278, 2011.
[186]Liu, T., Shao, Y., Li, G. et al., “A facile approach using MgCl2 to formulate high performance Mg2+ electrolytes for rechargeable Mg batteries,” Journal of Materials Chemistry A, vol. 2, pp. 34303438, 2014.
[187]Barile, C. J., Barile, E. C., Zavadil, K. R., Nuzzo, R. G., and Gewirth, A. A., “Electrolytic conditioning of a magnesium aluminum chloride complex for reversible magnesium deposition,” The Journal of Physical Chemistry C, vol. 118, pp. 2762327630, 2014.
[188]See, K. A., Liu, Y.-M., Ha, Y., Barile, C. J., and Gewirth, A. A., “Effect of concentration on the electrochemistry and speciation of the magnesium aluminum chloride complex electrolyte solution,” ACS Applied Materials & Interfaces, vol. 9, pp. 3572935739, 2017.
[189]Muldoon, J., Bucur, C. B., Oliver, A. G. et al., “Corrosion of magnesium electrolytes: chlorides – the culprit,” Energy & Environmental Science, vol. 6, pp. 482487, 2013.
[190]Mohtadi, R., Matsui, M., Arthur, T. S., and Hwang, S. J., “Magnesium borohydride: from hydrogen storage to magnesium battery,” Angewandte Chemie International Edition, vol. 51, pp. 97809783, 2012.
[191]Shao, Y., Liu, T., Li, G. et al., “Coordination chemistry in magnesium battery electrolytes: how ligands affect their performance,” Scientific Reports, vol. 3, 3130, 2013.
[192]Niu, J., Zhang, Z., and Aurbach, D., “Alloy anode materials for rechargeable Mg ion batteries,” Advanced Energy Materials, vol. n/a, 2000697, 2020.
[193]Liu, F., Wang, T., Liu, X., and Fan, L.-Z., “Challenges and recent progress on key materials for rechargeable magnesium batteries,” Advanced Energy Materials, vol. n/a, 2000787, 2020.
[194]Shao, Y., Gu, M., Li, X. et al., “Highly reversible Mg insertion in nanostructured Bi for Mg ion batteries,” Nano Letters, vol. 14, pp. 255260, 2014.
[195]Kravchyk, K. V., Piveteau, L., Caputo, R. et al., “Colloidal bismuth nanocrystals as a model anode material for rechargeable Mg-ion batteries: atomistic and mesoscale insights,” ACS Nano, vol. 12, pp. 82978307, 2018.
[196]Arthur, T. S., Singh, N., and Matsui, M., “Electrodeposited Bi, Sb and Bi1-xSbx alloys as anodes for Mg-ion batteries,” Electrochemistry Communications, vol. 16, pp. 103106, 2012.
[197]DiLeo, R. A., Zhang, Q., Marschilok, A. C., Takeuchi, K. J., and Takeuchi, E. S., “Composite anodes for secondary magnesium ion batteries prepared via electrodeposition of nanostructured bismuth on carbon nanotube substrates,” ECS Electrochemistry Letters, vol. 4, pp. A10–A14, 2014.
[198]Attias, R., Salama, M., Hirsch, B., Goffer, Y., and Aurbach, D., “Anode-electrolyte interfaces in secondary magnesium batteries,” Joule, vol. 3, pp. 2752, 2019.
[199]Singh, N., Arthur, T. S., Ling, C., Matsui, M., and Mizuno, F., “A high energy-density tin anode for rechargeable magnesium-ion batteries,” Chemical Communications, vol. 49, pp. 149151, 2013.
[200]Wang, L., Welborn, S. S., Kumar, H. et al., “High-rate and long cycle-life alloy-type magnesium-ion battery anode enabled through (de)magnesiation-induced near-room-temperature solid–liquid phase transformation,” Advanced Energy Materials, vol. 9, 1902086, 2019.
[201]Cheng, Y., Shao, Y., Parent, L. R. et al., “Interface promoted reversible Mg insertion in nanostructured tin–antimony alloys,” Advanced Materials, vol. 27, pp. 65986605, 2015.
[202]Niu, J., Gao, H., Ma, W. et al., “Dual phase enhanced superior electrochemical performance of nanoporous bismuth-tin alloy anodes for magnesium-ion batteries,” Energy Storage Materials, vol. 14, pp. 351360, 2018.
[203]Niu, J., Yin, K., Gao, H. et al., “Composition- and size-modulated porous bismuth–tin biphase alloys as anodes for advanced magnesium ion batteries,” Nanoscale, vol. 11, pp. 1527915288, 2019.
[204]Song, M., Niu, J., Yin, K. et al., “Self-supporting, eutectic-like, nanoporous biphase bismuth-tin film for high-performance magnesium storage,” Nano Research, vol. 12, pp. 801808, 2019.
[205]Nguyen, D.-T., Tran, X. M., Kang, J., and Song, S.-W., “Magnesium storage performance and surface film formation behavior of tin anode material,” ChemElectroChem, vol. 3, pp. 18131819, 2016.
[206]Fang, G., Zhou, J., Pan, A., and Liang, S., “Recent advances in aqueous zinc-ion batteries,” ACS Energy Letters, vol. 3, pp. 24802501, 2018.
[207]Tang, B. Y., Shan, L. T., Liang, S. Q., and Zhou, J., “Issues and opportunities facing aqueous zinc-ion batteries,” Energy & Environmental Science, vol. 12, pp. 32883304, Nov. 2019.
[208]Xu, W. W. and Wang, Y., “Recent progress on zinc-ion rechargeable batteries,” Nano-Micro Letters, vol. 11, Oct 2019.
[209]Li, C., Zhang, X., He, W., Xu, G., and Sun, R., “Cathode materials for rechargeable zinc-ion batteries: from synthesis to mechanism and applications,” Journal of Power Sources, vol. 449, 227596, 2020.
[210]Liu, X. Y., Yi, J., Wu, K. et al., “Rechargeable Zn-MnO2 batteries: advances, challenges and perspectives,” Nanotechnology, vol. 31, Mar. 2020.
[211]Wan, F. and Niu, Z., “Design strategies for vanadium-based aqueous zinc-ion batteries,” Angewandte Chemie International Edition, vol. 58, pp. 1635816367, 2019.
[212]Lee, B., Lee, H. R., Kim, H. et al., “Elucidating the intercalation mechanism of zinc ions into α-MnO2 for rechargeable zinc batteries,” Chemical Communications, vol. 51, pp. 92659268, 2015.
[213]Lee, B., Yoon, C. S., Lee, H. R. et al., “Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide,” Scientific Reports, vol. 4, 6066, 2014.
[214]Wei, C., Xu, C., Li, B., Du, H., and Kang, F., “Preparation and characterization of manganese dioxides with nano-sized tunnel structures for zinc ion storage,” Journal of Physics and Chemistry of Solids, vol. 73, pp. 14871491, 2012.
[215]Xu, C. J., Li, B. H., Du, H. D., and Kang, F. Y., “Energetic zinc ion chemistry: the rechargeable zinc ion battery,” Angewandte Chemie-International Edition, vol. 51, pp. 933935, 2012.
[216]Pan, H., Shao, Y., Yan, P. et al., “Reversible aqueous zinc/manganese oxide energy storage from conversion reactions,” Nature Energy, vol. 1, 16039, 2016.
[217]Sun, W., Wang, F., Hou, S. et al., “Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion,” Journal of the American Chemical Society, vol. 139, pp. 97759778, 2017.
[218]Zhang, N., Cheng, F., Liu, J. et al., “Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities,” Nature Communications, vol. 8, 405, 2017.
[219]Islam, S., Alfaruqi, M. H., Mathew, V. et al., “Facile synthesis and the exploration of the zinc storage mechanism of β-MnO2 nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries,” Journal of Materials Chemistry A, vol. 5, pp. 2329923309, 2017.
[220]Alfaruqi, M. H., Mathew, V., Gim, J. et al., “Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system,” Chemistry of Materials, vol. 27, pp. 36093620, 2015.
[221]Lee, J., Ju, J. B., Cho, W. I., Cho, B. W., and Oh, S. H., “Todorokite-type MnO2 as a zinc-ion intercalating material,” Electrochimica Acta, vol. 112, pp. 138143, 2013.
[222]Jin, Y., Zou, L. F., Liu, L. L. et al., “Joint charge storage for high-rate aqueous zinc-manganese dioxide batteries,” Advanced Materials, vol. 31, Jul. 2019.
[223]Nam, K. W., Kim, H., Choi, J. H., and Choi, J. W., “Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries,” Energy & Environmental Science, vol. 12, pp. 19992009, Jun. 2019.
[224]Ren, H., Zhao, J., Yang, L. et al., “Inverse opal manganese dioxide constructed by few-layered ultrathin nanosheets as high-performance cathodes for aqueous zinc-ion batteries,” Nano Research, vol. 12, pp. 13471353, 2019.
[225]Ko, J. S., Sassin, M. B., Parker, J. F., Rolison, D. R., and Long, Jeffrey W., “Combining battery-like and pseudocapacitive charge storage in 3D MnOx@carbon electrode architectures for zinc-ion cells,” Sustainable Energy & Fuels, vol. 2, pp. 626636, 2018.
[226]Alfaruqi, M. H., Gim, J., Kim, S. et al., “A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications,” Electrochemistry Communications, vol. 60, pp. 121125, 2015.
[227]Zhang, N., Cheng, F., Liu, Y. et al., “Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery,” Journal of the American Chemical Society, vol. 138, pp. 1289412901, 2016.
[228]Fang, G., Zhu, C., Chen, M. et al., “Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery,” Advanced Functional Materials, vol. 29, 1808375, 2019.
[229]Shan, L. T., Zhou, J., Zhang, W. Y. et al., “Highly reversible phase transition endows V6O13 with enhanced performance as aqueous zinc-ion battery cathode,” Energy Technology, vol. 7, Jun 2019.
[230]Zhou, J., Shan, L. T., Wu, Z. X. et al., “Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode,” Chemical Communications, vol. 54, pp. 44574460, Apr. 2018.
[231]Yan, M., He, P., Chen, Y. et al., “Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries,” Advanced Materials, vol. 30, 1703725, 2018.
[232]Kundu, D., Adams, B. D., Duffort, V., Vajargah, S. H., and Nazar, L. F., “A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode,” Nature Energy, vol. 1, 16119, 2016.
[233]Xia, C., Guo, J., Li, P., Zhang, X., and Alshareef, H. N., “Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode,” Angewandte Chemie International Edition, vol. 57, pp. 39433948, 2018.
[234]He, P., Zhang, G., Liao, X. et al., “Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries,” Advanced Energy Materials, vol. 8, 1702463, 2018.
[235]Yang, Y., Tang, Y., Fang, G. et al., “Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode,” Energy & Environmental Science, vol. 11, pp. 31573162, 2018.
[236]He, P., Quan, Y. L., Xu, X. et al., “High-performance aqueous zinc-ion battery based on layered H2V3O8 nanowire cathode,” Small, vol. 13, Dec 2017.
[237]Hu, P., Zhu, T., Wang, X. et al., “Highly durable Na2V6O16·1.63H2O nanowire cathode for aqueous zinc-ion battery,” Nano Letters, vol. 18, pp. 17581763, 2018.
[238]Wan, F., Zhang, L., Dai, X. et al., “Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers,” Nature Communications, vol. 9, 1656, 2018.
[239]Yufit, V., Tariq, F., Eastwood, D. S. et al., “Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries,” Joule, vol. 3, pp. 485502, 2019.
[240]Lu, W. J., Xie, C. X., Zhang, H. M., and Li, X. F., “Inhibition of zinc dendrite growth in zinc-based batteries,” Chemsuschem, vol. 11, pp. 39964006, Dec. 2018.
[241]Parker, J. F., Chervin, C. N., Nelson, E. S., Rolison, D. R., and Long, J. W., “Wiring zinc in three dimensions re-writes battery performance – dendrite-free cycling,” Energy & Environmental Science, vol. 7, pp. 11171124, 2014.
[242]Hopkins, B. J., Sassin, M. B., Chervin, C. N. et al., “Fabricating architected zinc electrodes with unprecedented volumetric capacity in rechargeable alkaline cells,” Energy Storage Materials, vol. 27, pp. 370376, 2020.
[243]Parker, J. F., Chervin, C. N., Pala, I. R. et al., “Rechargeable nickel–3D zinc batteries: an energy-dense, safer alternative to lithium-ion,” Science, vol. 356, 415, 2017.
[244]Kang, Z., Wu, C., Dong, L. et al., “3D porous copper skeleton supported zinc anode toward high capacity and long cycle life zinc ion batteries,” ACS Sustainable Chemistry & Engineering, vol. 7, pp. 33643371, 2019.
[245]Li, H. F., Xu, C. J., Han, C. P. et al., “Enhancement on cycle performance of Zn anodes by activated carbon modification for neutral rechargeable zinc ion batteries,” Journal of the Electrochemical Society, vol. 162, pp. A1439A1444, 2015.
[246]Wang, X., Wang, F., Wang, L. et al., “An aqueous rechargeable Zn//Co3O4 battery with high energy density and good cycling behavior,” Advanced Materials, vol. 28, pp. 49044911, 2016.
[247]Wang, L.-P., Li, N.-W., Wang, T.-S. et al., “Conductive graphite fiber as a stable host for zinc metal anodes,” Electrochimica Acta, vol. 244, pp. 172177, 2017.
[248]Qiu, W., Li, Y., You, A. et al., “High-performance flexible quasi-solid-state Zn–MnO2 battery based on MnO2 nanorod arrays coated 3D porous nitrogen-doped carbon cloth,” Journal of Materials Chemistry A, vol. 5, pp. 1483814846, 2017.
[249]Zhao, Z., Zhao, J., Hu, Z. et al., “Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase,” Energy & Environmental Science, vol. 12, pp. 19381949, 2019.
[250]Zhao, K. N., Wang, C. X., Yu, Y. H. et al., “Ultrathin surface coating enables stabilized zinc metal anode,” Advanced Materials Interfaces, vol. 5, 1800848, Aug. 2018.
[251]Kang, L., Cui, M., Jiang, F. et al., “Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-Life zinc rechargeable aqueous batteries,” Advanced Energy Materials, vol. 8, 1801090, 2018.
[252]Xie, X., Liang, S., Gao, J. et al., “Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes,” Energy & Environmental Science, vol. 13, pp. 503510, 2020.
[253]Ming, J., Guo, J., Xia, C., Wang, W., and Alshareef, H. N., “Zinc-ion batteries: materials, mechanisms, and applications,” Materials Science and Engineering: R: Reports, vol. 135, pp. 5884, 2019.
[254]Ding, F., Xu, W., Graff, G. L. et al., “Dendrite-free lithium deposition via self-healing electrostatic shield mechanism,” Journal of the American Chemical Society, vol. 135, pp. 44504456, 2013.
[255]Banik, S. J. and Akolkar, R., “Suppressing dendrite growth during zinc electrodeposition by PEG-200 additive,” Journal of the Electrochemical Society, vol. 160, pp. D519D523, 2013.
[256]Banik, S. J. and Akolkar, R., “Suppressing dendritic growth during alkaline zinc electrodeposition using polyethylenimine additive,” Electrochimica Acta, vol. 179, pp. 475481, 2015.
[257]Hou, Z., Zhang, X., Li, X. et al., “Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery,” Journal of Materials Chemistry A, vol. 5, pp. 730738, 2017.
[258]Lee, C. W., Sathiyanarayanan, K., Eom, S. W., Kim, H. S., and Yun, M. S., “Novel electrochemical behavior of zinc anodes in zinc/air batteries in the presence of additives,” Journal of Power Sources, vol. 159, pp. 14741477, 2006.
[259]Alfaruqi, M. H., Islam, S., Putro, D. Y. et al., “Structural transformation and electrochemical study of layered MnO2 in rechargeable aqueous zinc-ion battery,” Electrochimica Acta, vol. 276, pp. 111, 2018.
[260]Wu, X. W., Xiang, Y. H., Peng, Q. J. et al., “Green-low-cost rechargeable aqueous zinc-ion batteries using hollow porous spinel ZnMn2O4 as the cathode material,” Journal of Materials Chemistry A, vol. 5, pp. 1799017997, Sep. 2017.
[261]Kim, S. H. and Oh, S. M., “Degradation mechanism of layered MnO2 cathodes in Zn/ZnSO4/MnO2 rechargeable cells,” Journal of Power Sources, vol. 72, pp. 150158, 1998.
[262]Jo, J. H., Sun, Y.-K., and Myung, S.-T., “Hollandite-type Al-doped VO1.52(OH)0.77 as a zinc ion insertion host material,” Journal of Materials Chemistry A, vol. 5, pp. 83678375, 2017.
[263]Lai, J., Zhu, H., Zhu, X., Koritala, H., and Wang, Y., “Interlayer-expanded V6O13·nH2O architecture constructed for an advanced rechargeable aqueous zinc-ion battery,” ACS Applied Energy Materials, vol. 2, pp. 19881996, 2019.
[264]Li, Y. and Lu, J., “Metal–air batteries: will they be the future electrochemical energy storage device of choice?,” ACS Energy Letters, vol. 2, pp. 13701377, 2017.
[265]Zhang, J., Zhou, Q., Tang, Y., Zhang, L., and Li, Y., “Zinc–air batteries: are they ready for prime time?,” Chemical Science, vol. 10, pp. 89248929, 2019.
[266]Li, Y. and Dai, H., “Recent advances in zinc–air batteries,” Chemical Society Reviews, vol. 43, pp. 52575275, 2014.
[267]Suen, N.-T., Hung, S.-F., Quan, Q. et al., “Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives,” Chemical Society Reviews, vol. 46, pp. 337365, 2017.
[268]Mainar, A. R., Colmenares, L. C., Leonet, O. et al., “Manganese oxide catalysts for secondary zinc air batteries: from electrocatalytic activity to bifunctional air electrode performance,” Electrochimica Acta, vol. 217, pp. 8091, 2016.
[269]Stock, D., Dongmo, S., Janek, J., and Schröder, D., “Benchmarking anode concepts: the future of electrically rechargeable zinc–air batteries,” ACS Energy Letters, vol. 4, pp. 12871300, 2019.
[270]Parker, J. F., Ko, J. S., Rolison, D. R., and Long, J. W., “Translating materials-level performance into device-relevant metrics for zinc-based batteries,” Joule, vol. 2, pp. 25192527, 2018.
[271]Mainar, A. R., Iruin, E., Colmenares, L. C. et al., “An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on zinc,” Journal of Energy Storage, vol. 15, pp. 304328, 2018.
[272]Clark, S., Mainar, A. R., Iruin, E. et al., “Towards rechargeable zinc–air batteries with aqueous chloride electrolytes,” Journal of Materials Chemistry A, vol. 7, pp. 1138711399, 2019.
[273]Weaver, J., “Zinc-air battery being deployed in New York aims for extremely low $45/kWh cost,” PV Magazine, Jan. 27, 2020.
[274]Fu, J., Cano, Z. P., Park, M. G. et al., “Electrically rechargeable zinc–air batteries: progress, challenges, and perspectives,” vol. 29, 1604685, 2017.
[275]Fan, X., Liu, B., Liu, J. et al., “Battery technologies for grid-level large-scale electrical energy storage,” Transactions of Tianjin University, vol. 26, pp. 92103, 2020.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.