Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-30T05:36:59.525Z Has data issue: false hasContentIssue false

Part II - Cardiovascular Diseases Associated with Human Skeletal Remains

Published online by Cambridge University Press:  31 March 2023

Michaela Binder
Affiliation:
Novetus GmbH Archaeological Services
Charlotte A. Roberts
Affiliation:
Durham University
Daniel Antoine
Affiliation:
British Museum, London
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Allam, A. H., Thompson, R. C., Wann, L. S., Miyamoto, M. I. and Thomas, G. S. (2009). Computed tomographic assessment of atherosclerosis in ancient Egyptian mummies. Journal of the American Medical Association, 302(19), 2091–4.Google ScholarPubMed
Aufderheide, A. C. and Rodríguez-Martín, C. (1998). The Cambridge Encyclopaedia of Human Paleopathology. Cambridge: Cambridge University Press.Google Scholar
Bartova, J., Sommerova, P., Lyuya-Mi, , et al. (2014). Periodontitis as a risk factor of atherosclerosis. Journal of Immunology Research, 2014, 636893.CrossRefGoogle ScholarPubMed
Beck, J. D. and Offenbacher, S. (2001). The association between periodontal diseases and cardiovascular diseases: A state-of-the-science review. Annals of Periodontology, 6(1), 915.CrossRefGoogle ScholarPubMed
Binder, M. (2011). The tenth–nineth century BC: New evidence from Cemetery C of Amara West. Sudan and Nubia, 15, 3953.Google Scholar
Binder, M. (2014). Health and diet in Upper Nubia through climate and political change: A bioarchaeological investigation of health and living conditions at ancient Amara West between 1300 and 800BC. Unpublished PhD thesis, Durham University.Google Scholar
Binder, M. (2017). The New Kingdom cemeteries at Amara West. In Spencer, N., Stevens, A. and Binder, M., eds., Nubia in the New Kingdom: Lived Experience, Pharaonic Control and Indigenous Traditions. Proceedings of the Annual Egyptological Colloquium, British Museum 11–12 July 2013. Leuven: Peeters, pp. 589612.Google Scholar
Binder, M. (2019). The role of physical anthropology in Nubian archaeology. In Raue, D., ed., The Handbook of Nubian Archaeology. Berlin: DeGruyter, pp. 103–28.Google Scholar
Binder, M. and Spencer, N. (2014). The bioarchaeology of Amara West in Nubia: Investigating the impacts of political, cultural and environmental change on health and diet. In Fletcher, A., Antoine, D. and Hill, J. D., eds., Regarding the Dead. London: British Museum Press, pp. 125–39.Google Scholar
Binder, M., Spencer, N. and Millet, M. (2011). Cemetery D at Amara West: The Ramesside Period and its aftermath. British Museum Studies in Ancient Egypt and Sudan, 16, 4799.Google Scholar
Brickley, M. and McKinley, J. I. (eds.) (2004). Guidelines to the Standards for Recording Human Remains. Reading: Institute of Field Archaeologists.Google Scholar
Brooks, S. and Suchey, J. M. (1990). Skeletal age determination based on the os pubis: A comparison of the Acsádi–Nemeskéri and Suchey–Brooks methods. Human Evolution, 5(3), 227–38.Google Scholar
Brothwell, D. R. (1981). Digging Up Bones. Ithaca, NY: Cornell University Press.Google Scholar
Bruzek, J. (2002). A method for visual determination of sex, using the human hip bone. American Journal of Physical Anthropology, 117(2), 157–68.Google Scholar
Buikstra, J. E. (ed.) (2019). Ortner’s Identification of Pathological Conditions in Human Skeletal Remains, 3rd ed. New York: Academic Press.Google Scholar
Buikstra, J. E. and Ubelaker, D. H. (1994). Standards for Data Collection from Human Remains. Lafayetteville, AK: Arkansas Archaeological Survey.Google Scholar
Buzon, M. R. (2006). Health of the non-elites at Tombos: Nutritional and disease stress in New Kingdom Nubia. American Journal of Physical Anthropology, 130(1), 2637.CrossRefGoogle ScholarPubMed
Centers for Disease Control. (2010). Cardiovascular diseases. In How Tobacco Smoke Causes Disease: The Biology and Behavioral Basis for Smoking-Attributable Disease. A Report of the Surgeon General. Atlanta, GA: Centers for Disease Control and Prevention. Available at www.ncbi.nlm.nih.gov/books/NBK53012/Google Scholar
Davies, W. V. and Walker, R. (eds.) (1993). Biological Anthropology and the Study of Ancient Egypt. London: British Museum Press.Google Scholar
Davies-Barrett, A., Antoine, D. and Roberts, C. A. (2019). Inflammatory periosteal reaction on ribs associated with lower respiratory tract disease: A method for recording prevalence from sites with differing preservation. American Journal of Physical Anthropology, 15(3), 530–42.Google Scholar
Danielsen, P. H., Moller, P., Jensen, K. A., et al. (2011). Oxidative stress, DNA damage, and inflammation induced by ambient air and wood smoke particulate matter in human A549 and THP-1 cell lines. Chemical Research in Toxicology, 24, 168–84.Google Scholar
Dupras, T. L., Williams, L. J., Willems, H. and Peeters, C. (2010). Pathological skeletal remains from ancient Egypt: The earliest case of diabetes mellitus? Practical Diabetes International, 27, 358–63.Google Scholar
Engelhorn, C. A., Engelhorn, A. L., Cassou, M. F., et al. (2006). Intima–media thickness in the origin of the right subclavian artery as an early marker of cardiovascular risk. Arquivos Brasileros de Cardiologia, 87(5), 609–14.Google ScholarPubMed
Eyler, W. R., Monsein, L. H., Beute, G. H., et al. (1996). Rib enlargement in patients with chronic pleural disease. American Journal of Roentgenology, 167, 921–6.Google Scholar
Fatmi, Z. and Coggon, D. (2016). Coronary heart disease and household air pollution from use of solid fuel: A systematic review. British Medical Bulletin, 118(1), 91109.Google Scholar
Feigin, R. (2004). Textbook of Pediatric Infectious Diseases, 5th ed. Philadelphia: W. B. Saunders, p. 299.Google Scholar
Haynes, W. G. and Stanford, C. (2003). Periodontal disease and atherosclerosis: From dental to arterial plaque. Arteriosclerosis, Thrombosis and Vascular Biology, 23, 1309–11.CrossRefGoogle ScholarPubMed
Kahraman, H., Ozaydin, M., Varol, E., et al. (2006). The diameters of the aorta and its major branches in patients with isolated coronary artery ectasia. Texas Heart Institute Journal, 33(4), 463–8.Google Scholar
Keller, A., Graefen, A., Ball, M., et al. (2012). New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing. Nature Communications, 3, 698.CrossRefGoogle ScholarPubMed
Kelley, M. A. and Micozzi, M. (1984). Rib lesions in chronic pulmonary tuberculosis. American Journal of Physical Anthropology, 65, 381–6.CrossRefGoogle ScholarPubMed
Kovacic, S. and Bakran, M. (2012). Genetic susceptibility to atherosclerosis. Stroke Research and Treatment, 2012, 5.Google Scholar
Lambert, P. M. (2002). Rib lesions in a prehistoric Puebloan sample from southwestern Colorado. American Journal of Physical Anthropology, 117, 281–92.Google Scholar
Lehto, S., Niskanen, L., Suhonen, M., Rönnemaa, T. and Laakso, M. (1996). Medial artery calcification: A neglected harbinger of cardiovascular complications in non-insulin-dependent diabetes mellitus. Arteriosclerosis, Thrombosis and Vascular Biology, 16(8), 978–83.Google Scholar
Loriaux, D. L. (2006). Diabetes and the Ebers Papyrus: 1552 B.C. The Endocrinologist, 16(2), 55–6.CrossRefGoogle Scholar
Lovejoy, C. O., Meindl, R. S., Pryzbeck, T. R. and Mensforth, R. P. (1985). Chronological metamorphosis of the auricular surface of the ilium: A new method for the determination of adult skeletal age at death. American Journal of Physical Anthropology, 68, 1528.Google Scholar
Lusis, A. J. (2012). Genetics of atherosclerosis. Trends in Genetics, 28(6), 267–75.Google Scholar
Lusis, A. J. (2000). Atherosclerosis. Nature, 407(6801), 233–41.Google Scholar
Malnar, D., Klasan, G. S., Miletic, D., et al. (2010). Properties of the celiac trunk: anatomical study. Collegium Antropologicum, 34(3), 917–21.Google Scholar
Marx, M. and D’Auria, S. H. (1986). CT examination of eleven Egyptian mummies. Radiographics, 6(2), 321–30.Google Scholar
Müller, R., Roberts, C. A. and Brown, T. A. (2014). Biomolecular identification of ancient Mycobacterium tuberculosis complex DNA in human remains from Britain and continental Europe. American Journal of Physical Anthropology, 153(2), 178–89.CrossRefGoogle ScholarPubMed
Nicklisch, N., Maixner, F., Ganslmeier, R., et al. (2012). Rib lesions in skeletons from early Neolithic sites in Central Germany: On the trail of tuberculosis at the onset of agriculture. American Journal of Physical Anthropology, 149(3), 391404.Google Scholar
Nunn, J. F. (1996). Ancient Egyptian Medicine. London: British Museum Press.Google Scholar
Ortner, D. J. (2003). Identification of Pathological Conditions in Human Skeletal Remains. London: Academic Press.Google Scholar
Pandey, A. K., Blaha, M. J., Sharma, K., et al. (2013). Family history of coronary heart disease and the incidence and progression of coronary artery calcification: Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis, 232(2), 369–76.Google Scholar
Richards, J. E. (2005). Society and Death in Ancient Egypt: Mortuary Landscapes of the Middle Kingdom. Cambridge: Cambridge University Press.Google Scholar
Roberts, C. A. (1999). Rib lesions and tuberculosis: the current stage of play. In Pálfi, G., Dutour, O., Deák, J., and Hutás, I., eds., Tuberculosis: Past and Present. Budapest/Szeged: Golder Book Publishers and Tuberculosis Foundation, pp. 311–16.Google Scholar
Roberts, C. A., Lucy, D. and Manchester, K. (1994). Inflammatory lesions of ribs: An analysis of the Terry Collection. American Journal of Physical Anthropology, 95(2), 169–82.Google Scholar
Rosenfeld, M. E. and Campbell, L. A. (2011). Pathogens and atherosclerosis: update on the potential contribution of multiple infectious organisms to the pathogenesis of atherosclerosis. Thrombosis and Haemostasis, 106(5), 858–67.Google Scholar
Ryan, P., Cartwright, C. and Spencer, N. (2012). Archaeobotanical research in a pharaonic town in ancient Nubia. British Museum Technical Research Bulletin, 6, 97107.Google Scholar
Sandgren, T, Sonesson, B., Ahlgren, A. and Länne, T. (1999). The diameter of the common femoral artery in healthy human: Influence of sex, age, and body size. Journal of Vascular Surgery, 29(3), 503–10.Google Scholar
Sandison, A. T. (1962). Degenerative vascular disease in the Egyptian mummy. Medical History, 6(1), 7781.Google Scholar
Santos, A. L. and Roberts, C. A. (2006). Anatomy of a serial killer: Differential diagnosis of tuberculosis based on rib lesions of adult individuals from the Coimbra Identified Skeletal Collection, Portugal. American Journal of Physical Anthropology, 130(1), 3849.Google Scholar
Sessa, R., Pietro, M. D., Filardo, S. and Turriziani, O. (2014). Infectious burden and atherosclerosis: A clinical issue. World Journal of Clinical Cases, 2(7), 240–9.Google Scholar
Shan, M., Yang, X., Ezzati, M., et al. (2014). A feasibility study of the association of exposure to biomass smoke with vascular function, inflammation, and cellular aging. Environmental Research, 135, 165–72.Google Scholar
Sinha, S., Eddington, H. and Kalra, P. A. (2008). Vascular calcification: Mechanisms and management. British Journal of Cardiology, 15(6), 316–21.Google Scholar
Spencer, N. (2009). Cemeteries and a late Ramesside suburb at Amara West. Sudan and Nubia, 13, 4761.Google Scholar
Spencer, N. (2014). Amara West: Considerations on urban life in occupied Kush. In Welsby, D. and Anderson, J. R., eds., The Fourth Cataract and Beyond: Proceedings of the 12th International Conference for Nubian Studies. Leuven: Peeters, pp. 457–85.Google Scholar
Spencer, N. (2017). Building on new ground: The foundation of a colonial town at Amara West. In Spencer, N., Stevens, A. and Binder, M., eds., Nubia in the New Kingdom: Lived Experience, Pharaonic Control and Indigenous Traditions. Proceedings of the Annual Egyptological Colloquium, British Museum 11–12 July 2013. Leuven: Peeters, pp. 323–97.Google Scholar
Spencer, N., Macklin, M. G. and Woodward, J. C. (2012). Reassessing the abandonment of Amara West: The impact of a changing Nile? Sudan and Nubia, 16, 3743.Google Scholar
Thompson, R. C., Allam, A. H., Lombardi, G. P., et al. (2013). Atherosclerosis across 4000 years of human history: The Horus study of four ancient populations. Lancet, 381(9873), 1211–22.Google Scholar
Towler, D. A. (2008). Vascular calcification: A perspective on an imminent disease epidemic. IBMS BoneKEy, 5(2), 4158.Google Scholar
Unosson, J., Blomberg, A., Sandström, T., et al. (2013). Exposure to wood smoke increases arterial stiffness and decreases heart rate variability in humans. Particle and Fibre Toxicology, 10, 20.CrossRefGoogle ScholarPubMed
Wapler, U., Crubézy, E. and Schultz, M. (2004). Is cribra orbitalia synonymous with anemia? Analysis and interpretation of cranial pathology in Sudan. American Journal of Physical Anthropology, 123, 333–9.CrossRefGoogle ScholarPubMed
Woodward, J., Macklin, M., Spencer, N., et al. (2017). Living with a changing river and desert landscape at Amara West. In Spencer, N., Stevens, A. and Binder, M., eds., Nubia in the New Kingdom: Lived Experience, Pharaonic Control and Indigenous Traditions. Proceedings of the Annual Egyptological Colloquium, British Museum 11–12 July 2013. Leuven: Peeters, pp. 225–52.Google Scholar
World Health Organization. (2018). Noncommunicable Diseases: Country Profiles 2018. Geneva: WHO. Available at https://apps.who.int/iris/handle/10665/274512 (accessed 15 July 2019).Google Scholar
Zink, A. R., Gostner, P., Selim, A., Pusch, C. M. and Hawass, Z. (2011). Epidemiology and prevalence of atherosclerosis in royal Egyptian mummies. Paper presented at the 38th Annual Meeting of the Paleopathology Association, Minneapolis, Minnesota, 11–13 April 2011. Abstract available at https://paleopathology-association.wildapricot.org/resources/Documents/PPA%20Progs%20and%20Abstracts/38th%20Annual%20Meeting%202011%20Program%20_%20Abstracts.pdfGoogle Scholar

References

Arcini, C. (1999). Health and disease in early Lund: Osteo-pathologic studies of 3,305 individuals buried in the first cemetery area of Lund 990–1536. Dissertation, Lund University.Google Scholar
Arcini, C. (2003). Åderförkalkning och portvinstår: Välfärdssjukdomar i medeltidens Åhus. Stockholm: Riksantikvarieämbetets förlag.Google Scholar
Arcini, C. (2015a). Hidden killer: A modern disease in a Medieval monastery. Current World Archaeology, 73, 36–8.Google Scholar
Arcini, C. (2015b). Living conditions in time of plague. In Lagerås, P., ed., Environment, Society and the Black Death: An Interdisciplinary Approach to the Late-Medieval Crisis in Sweden. Oxford: Oxbow Books, pp. 104–40.Google Scholar
Black, M. (1992). The Medieval Cook Book. London: British Museum Press.Google Scholar
Bond, J. (2001). Production and consumption of food and drink in the Medieval monastery. In Keevill, G., Aston, M. and Hala, T., eds., Monastic Archaeology: Papers on the Study of Medieval Monasteries. Oxford: Oxbow Books, pp. 5487.Google Scholar
Buikstra, J. E. and Ubelaker, D. H. (1994). Standards for Data Collection from Human Remains. Fayetteville, AK: Arkansas Archaeological Survey.Google Scholar
Cardell, A. (2009). Osteologisk analys av fiskbensmaterialet. Havsfisk – Munkarnas preferens. In Konsmar, A. and Menander, H., eds., S:t Olofs Konvent. Arkeologisk Undersökning – Skänninge Projektet. Riksantikvariämbetet, UV Öst Rapport 2009:5.Google Scholar
Driban, J. B., Harkey, M. S., Liu, S. H., et al. (2020) Osteoarthritis and aging: Young adults with osteoarthritis. Current Epidemiology Reports, 7, 915.Google Scholar
Gejrot, C. (1988). Diarium Vadstenense: The Memorial Book of Vadstena Abbey. Stockholm: Almqvist & Wiksell.Google Scholar
Heimdahl, J. (2009). Makroskopisk analys av jordprover från S:t Olofs konvent, Skänninge. In Konsmar, A. and Menander, H., eds., S:t Olofs Konvent. Arkeologisk Undersökning - Skänningeprojektet. Riksantikvariämbetet, UV Öst Rapport 2009:5.Google Scholar
Hoek, G., Krishnan, R. M., Beelen, R., et al. (2013). Long-term air pollution exposure and cardio-respiratory mortality: A review. Environmental Health, 12(1), 43.Google Scholar
Jakobsen, J. J. G. (2008). Prædikebrødrenes Samfundsrolle I Middelalderens Danmark. PhD dissertation, Afhandling Institut for Historie, Kultur og Samfundsbeskrivelse, Syddansk Universitet, Odense, Denmark.Google Scholar
Loewe, W. (1993). Tobaksspinnarna och tobaksfabrikanterna i 1600-talets Stockholm. Stockholm: Komm. för Stockholmsforskning.Google Scholar
Menander, H. (2018). Den Goda Döden: Arkeologiska Studier Av Gravar och Begravningspraxis I S:t Olofkonventet I Skänninge. Dissertation, Uppsala University, Uppsala.Google Scholar
Menander, H. and Arcini, C. (2013). Dominikankonventet S:t Olof. In Hedvall, R., Lindeblad, K. and Menander, H., eds., Borgare, Bröder Och Bönder. Arkeologiska Perspektiv På Skänninges äldre Historia. Stockholm: Riksantikvarieämbetet, pp. 191227.Google Scholar
Milner, G. R., Ousley, S. D. and Boldsen, J. L. (2021). Adult Age Estimated From New Skeletal Traits and Enhanced Computer-Based Transition Analysis. US Department of Justice Document No. 300659. Available at https://nij.ojp.gov/library/publications/adult-age-estimated-new-skeletal-traits-and-enhanced-computer-based-transitionGoogle Scholar
Odelman, E. and Melefors, E. (2008). Visbyfranciskanernas Bok. Handskriften B 99 I Kungliga Biblioteket. Latinsk Text Utgiven Med översättning, Inledning Och Register. Arkiv På Gotland 5. Visby: Skriftserie för Landsarkivet i Visby och Gotlands Kommunarkiv.Google Scholar
Vretemark, M. (2009). Osteologis rapport: Animalosteologisk analys. In Konsmar, A. and Menander, H., eds., S:t Olofs Konvent. Arkeologisk Undersökning – Skänningeprojektet. Riksantikvariämbetet, UV Öst Rapport 2009:5.Google Scholar
Zandian, A., Osiro, S., Hudson, R., et al. (2014). The neurologist’s dilemma: a comprehensive clinical review of Bell’s palsy, with emphasis on current management trends. Medical Science Monitor, 20, 8390.Google ScholarPubMed

References

Adachi, B. (1928). Das Arteriensystem der Japaner. Kyoto: KenkyuSha.Google Scholar
Adeloye, A., Anomah, N. V. and Latunde, O. E. (1970). Traumatic aneurysm of the first portion of the right vertebral artery. British Journal of Surgery, 57, 312–14.Google Scholar
Alves, A. M. and Black, C. (1972). Post-traumatic extracranial aneurysm of the vertebral artery. International Surgery, 57, 422–6.Google Scholar
Anderson, R. E. and Shealy, C. N. (1970). Cervical pedicle erosion and rootlet compression caused by a tortuous vertebral artery. Radiology, 96, 537–8.CrossRefGoogle ScholarPubMed
Ando, M., Igari, T., Yokohama, H. and Satokawa, H. (2003). CT features of chronic contained rupture of an abdominal aortic aneurysm. Annals of Thoracic and Cardiovascular Surgery, 9, 274–8.Google Scholar
Andoh, T., Shirakami, S., Nakashima, T., et al. (1992). Clinical analysis of a series of vertebral aneurysm cases. Neurosurgery, 31, 987–93.Google Scholar
Antoine, D. (2010). Pain in the neck? An abnormality from HK27C. Nekhen News, 22, 23.Google Scholar
Argenon, C., Francke, J. P., Sylla, S., et al. (1980). The vertebral arteries (segments V1 and V2). Anatomia Clinica, 2, 2941.Google Scholar
Babin, E. and Haller, M. (1974). Correlation between bony radiological signs and dolichoarterial loops of the cervical vertebral artery. Neuroradiology, 7, 1517.Google Scholar
Barrett, J. G. (1974). Enlargement of cervical intervertebral foramina by coiling of the vertebral artery. Australasian Radiology, 18, 171–4.Google Scholar
Billard, M. and Fantino, O. (2011). Erosions osseuses du rachis cervical par l’artère vertébrale: Aspects anatomiques à propos d’une observation ostéoarchéologique. Paleobios, 16, 5862.Google Scholar
Brahee, D. D. and Guebert, G. M. (2000). Tortuosity of the vertebral artery resulting in vertebral erosion. Journal of Manipulative and Physiological Therapy, 23, 4851.Google Scholar
Broadribb, A. J. (1970). Vertebral artery aneurysm in a case of Ehlers–Danlos syndrome. British Journal of Surgery, 57, 148–51.Google Scholar
Brooks, S. and Suchey, J. (1990). Skeletal age determination based on the os pubis: A comparison of the Acsadi–Nemeskeri and Suchey–Brooks methods. Human Evolution, 5, 227–38.Google Scholar
Bruneau, M., Cornelius, J. F., Marneffe, V., Triffaux, M. and George, B. (2006). Anatomical variations of the V2 segment of the vertebral artery. Neurosurgery, 59(1 Suppl 1), ONS20–4.Google Scholar
Bruzek, J. (2002). A method for visual determination of sex using the human hip bone. American Journal of Physical Anthropology, 117, 157–68.Google Scholar
Buerger, T., Lippert, H., Meyer, F. and Halloul, Z. (1999). Aneurysm of the vertebral artery near the atlas arch. Journal of Cardiovascular Surgery (Torino), 40, 387–9.Google Scholar
Buerger, T., Meyer, F. and Halloul, Z. (2000). Non-traumatic aneurysm of the extracranial vertebral artery. European Journal of Surgery, 166, 180–2.Google Scholar
Buikstra, J. E. and Ubelaker, D. H. (1994). Standards for Data Collection from Human Skeletal Remains. Arkansas Archaeological Survey Research Series No. 44. Fayetteville, AK: Arkansas Archaeological Survey.Google Scholar
Burnett, K. R. and Staple, T. W. (1981). Case report 132. Skeletal Radiology, 6, 51–3.Google Scholar
Catala, M., Rancurel, G., Koskas, F., Martindelassalle, E. and Keiffer, E. (1993). Ischemic stroke due to spontaneous extracranial vertebral giant aneurysm. Cerebrovascular Disease, 3, 322–6.Google Scholar
Cavdar, S. and Arisan, E. (1989). Variations in the extracranial origin of the human vertebral artery. Acta Anatomica, 135, 236–8.Google Scholar
Chassaing, N., Martin, L., Calvas, P., Le Bert, M. and Hovnanian, A. (2005). Pseudoxanthoma elasticum: A clinical, pathophysiological and genetic update including 11 novel ABCC6 mutations. Journal of Medical Genetics, 42, 881–92.CrossRefGoogle ScholarPubMed
Cooper, D. F. (1980). Bone erosion of the cervical vertebrae secondary to tortuosity of the vertebral artery. Journal of Neurosurgery, 53, 106–8.Google Scholar
Cory, D. A., Fritsch, S. A., Cohen, M. D., et al. (1989). Aneurysmal bone cysts: Imaging findings and embolotherapy. American Journal of Roentgenology, 153, 369–73.Google Scholar
Curylo, L. J., Mason, H. C., Bohlman, H. H. and Yoo, J. U. (2000). Tortuous course of the vertebral artery and anterior cervical decompression: A cadaveric and clinical case study. Spine, 25(22), 2860–4.Google Scholar
Danziger, J. and Bloch, S. (1975). The widened cervical intervertebral foramen. Radiology, 116, 671–4.CrossRefGoogle ScholarPubMed
Darton, Y. (2014). Cervical vertebral erosion caused by bilateral vertebral artery tortuosity, predisposing to spinal, sprain: A medieval case study. International Journal of Paleopathology, 4, 4752.Google Scholar
Davidson, K. C., Weiford, E. C. and Dixon, G. D. (1975). Traumatic vertebral artery pseudoaneurysm following chiropractic manipulation. Radiology, 115, 651–2.Google Scholar
Deutsch, H. J. (1969). Aneurysm of the vertebral artery: Medicine in Vietnam. Laryngoscope, 79, 134–40.CrossRefGoogle ScholarPubMed
Diekerhof, C. H., Reedt Dortland, R. W. H., Oner, F. C. and Verbout, A. J. (2002). Severe erosion of lumbar vertebral body because of abdominal aortic false aneurysm. Spine, 27(16), 382–4.Google Scholar
Dory, M. A. (1985). CT demonstration of cervical vertebral erosion by tortuous vertebral artery. American Journal of Neuroradiology, 6, 641–2.Google Scholar
Edwards, A. (1969). Ehlers–Danlos syndrome with vertebral artery aneurysm. Proceedings of the Royal Society of Medicine, 62, 1416.Google Scholar
Egnor, M. R., Page, L. K. and David, C. (1991). Vertebral artery aneurysm: A unique hazard of head banging by heavy metal rockers. Pediatric Neurosurgery, 17, 135–8.Google Scholar
Ekeström, S., Bergdahl, L. and Huttunen, H. (1983). Extracranial carotid and vertebral artery aneurysms. Scandinavian Journal of Thoracic and Cardiovascular Surgery, 17, 135–9.Google Scholar
Elkin, D. C. and Harris, M. H. (1946). Arteriovenous aneurysm of the vertebral vessels. Annals of Surgery, 124, 934–9.Google Scholar
Eskander, M. S., Drew, J. M., Aubin, M. E., et al. (2010). Vertebral artery anatomy: A review of two hundred fifty magnetic resonance imaging scans. Spine, 35(23), 2035–40.Google Scholar
Fakhry, S. M., Jacques, P. F. and Prater, H. J. (1988). Cervical vessel injury after blunt trauma. Journal of Vascular Surgery, 8, 501–8.Google Scholar
Freilich, M., Virapongse, C., Kier, E. L., Sarwar, M. and Bhimani, S. (1986). Foramen transversarium enlargement due to tortuosity of the vertebral artery. Spine, 11, 95–8.CrossRefGoogle ScholarPubMed
Gatti, J.-M., Juan, L. H., Bironne, Ph. and Glowinski, J. (1983). Elargissement d’un trou de conjugaison cervical par une mégadolichoartère vertébrale. La Presse Médicale, 24, 2056.Google Scholar
George, B. and Laurian, C. (1980). Surgical approaches to the whole length of the vertebral artery with special reference to the third portion. Acta Neurochirurgica, 51, 259–72.CrossRefGoogle Scholar
George, B. and Laurian, C. (1987). The Vertebral Artery: Pathology and Surgery. Wien: Springer-Verlag.Google Scholar
Glover, J. R., Kennedy, C. and Coral, A. (1990). Case report: Tortuous vertebral artery: Onset of symptoms during pregnancy. Clinical Radiology, 41, 66–8.Google Scholar
Gluncie, V., Ivkic, G., Marin, D. and Percac, S. (1999). Anomalous origin of both vertebral arteries. Clinical Anatomy, 12, 281–4.Google Scholar
Gottesman, R. F., Sharma, P., Robinson, K. A., et al. (2012). Clinical characteristics of symptomatic vertebral artery dissection: A systematic review. Neurologist, 18(5), 245–54.Google Scholar
Guiffré, R. and Sherkat, S. (1999). The vertebral artery: Developmental pathology. Journal of Neurosurgical Sciences, 43, 175–89.Google Scholar
Habozit, B. and Battistelli, J.-M. (1990). Spontaneous aneurysm of the extracranial vertebral artery associated with spinal osseous anomaly. Annals of Vascular Surgery, 4, 600–3.Google Scholar
Hadley, M. (1958). Tortuosity and deflection of the vertebral artery. American Journal of Roentgenology, 80, 306–12.Google Scholar
Hadley, M. N., Spetzler, R. F., Masferrer, R., Martin, N. A. and Carter, L. P. (1985). Occipital artery to vertebral artery bypass procedure. Journal of Neurosurgery, 63, 622–5.Google Scholar
Harzer, K. and Töndbury, G. (1966). Zum Verhalten der Arteria vertebralis in der alternden Halswirbelsäule. Röntgenfortschritte, 104, 696–7.Google Scholar
Heifetz, G. J. (1945). Traumatic aneurysm of the first portion of the left vertebral artery. Annals of Surgery, 122, 102–10.Google Scholar
Holden, A., Adler, B. and Song, S. (1996). Bilateral vertebral artery tortuosity with concomitant vertebral erosion: CT and MRA findings. Australasian Radiology, 40, 65–7.CrossRefGoogle ScholarPubMed
Hong, J. T., Park, D. K., Lee, M. J., Kim, S. W. and An, H. S. (2008). Anatomical variations of the vertebral artery segment in the lower cervical spine. Analysis by three-dimensional computed tomography angiography. Spine, 33(22), 2422–6.Google Scholar
Husni, E. A. and Storer, J. (1967). The syndrome of mechanical occlusion of the vertebral artery: further observations. Angiology, 18, 106–16.CrossRefGoogle ScholarPubMed
Hyypä, S. E., Laasonen, E. M. and Halonen, V. (1974). Erosion of cervical vertebrae caused by elongaged and tortuous vertebral artery. Neuroradiology, 7, 4951.Google Scholar
Iyer, A. A. (1927). Some anomalies of the origin of the vertebral artery. Journal of Anatomy, 62, 121–2.Google ScholarPubMed
Jewell, K. L. (1977). Bilateral extracranial vertebral artery aneurysms. American Journal of Roentgenology, 128, 324–5.Google Scholar
Kelley, M. A. (1979). Skeletal changes produced by aortic aneurysms. American Journal of Physical Anthropology, 51, 35–8.Google Scholar
Kikuchi, K. and Kowada, M. (1983). Nontraumatic extracranial aneurysm of the vertebral artery. Surgical Neurology, 19, 425–7.Google Scholar
Kim, H. S., Lee, J. H., Cheh, G. and Lee, S. H. (2010). Cervical radiculopathy caused by vertebral artery loop formation: a case report and review of the literature. Journal of Korean Neurosurgical Society, 48(5), 465–8.Google Scholar
Kister, S. J and Rankow, R. M. (1966). Traumatic aneurysm of the first portion of the left vertebral artery: a case report. Plastic and Reconstructive Surgery, 37, 546–51.Google Scholar
Koenigsberg, R. A., Aletich, V., DeBrun, G., Camras, L. R. and Ausman, J. L. (1997). Cervical vertebral arteriovenous fistula balloon embolization in a patient with neurofibromatosis type 1. Surgical Neurology, 47, 265–73.Google Scholar
Koniyama, M., Nakajima, H., Yamanaka, K. and Iwai, Y. (1999). Dual origin of the vertebral artery: Case report. Neurologica Medica Chirurgica (Tokyo), 39, 932–7.Google Scholar
Kono, A. K., Higashi, M., Morisaki, H., et al. (2010). High prevalence of vertebral artery tortuosity of Loeys–Dietz syndrome in comparison with Marfan syndrome. Japanese Journal of Radiology, 28, 273–7.Google Scholar
Kricun, R., Levitt, L. P. and Winn, H. R. (1992). Tortuous vertebral artery shown by MR and CT. American Journal of Roentgenology, 159, 613–15.Google Scholar
Kurata, A., Suzuki, S., Iwamoto, K., et al. (2012). Altered hemodynamics associated with pathogenesis of the vertebral artery dissecting aneurysms. Stroke Research and Treatment, 2012, 716919.Google Scholar
Kwiatkowska, B., Szczurowski, J. and Nowakowski, D. (2014). Variation in foramina transversaria of human cervical vertebrae in the medieval population from Sypniewo (Poland). Anthropological Review, 77(2), 175–88.Google Scholar
Lasjaunias, P., Vallee, B., Person, H., Brugge, K. T. and Chu, M. (1985). The lateral spinal artery of the upper cervical spinal cord: Anatomy, normal variations, and angiographic aspects. Journal of Neurosurgery, 63, 235–41.Google Scholar
Laurian, C., George, B., Richard, T., Derome, D. and Guilmet, D. (1980). Intérét de l’abord chirurgical de l’artère vertébrale dans son segment extracranien à propos d’un anévrysme de l’artère vertébrale en C3. Journal des Maladies Vasculaires (Paris), 5, 149–50.Google Scholar
Lemke, A.-J., Benndorf, G., Liebig, T. and Felix, R. (1999). Anomalous origin of the right vertebral artery: Review of the literature and case report of right vertebral artery origin distal to the left subclavian artery. American Journal of Neuroradiology, 20, 1318–21.Google Scholar
Lindsey, R. W., Piepmeier, J. and Burkus, K. (1985). Tortuosity of the vertebral artery: An adventitious finding after cervical trauma. Journal of Bone and Joint Surgery, 67A, 806–8.Google Scholar
Matula, C., Trattnig, S., Tschabitscher, M., Day, J. D. and Koos, W. Th. (1997). The course of the prevertebral segment of the vertebral artery: anatomy and clinical significance. Surgical Neurology, 48, 125–31.Google Scholar
Negoro, M., Nakaya, T., Terashima, K. and Sugita, K. (1990). Extracranial vertebral artery aneurysm with neurofibromatosis: endovascular treatment by detachable balloon. Neuroradiology, 31, 533–6.CrossRefGoogle ScholarPubMed
Nourbakhsh, A., Yang, J., Gallagher, S., et al. (2010). A safe approach to explore/identify the V2 segment of the vertebral artery during anterior approaches to cervical spine and/or arterial repairs: Anatomical study. Journal of Neurosurgery: Spine, 12(1), 2532.Google Scholar
Obayashi, T., Furuse, M., Tanaka, O. and Aihara, T. (1986). Tortuous vertebral artery simulating extradural spinal tumour. Neurochirurgia, 29, 96–8.Google Scholar
O’Connell, J., Sutton, D. and Kendal, D. (1975). Traumatic vertebral artery aneurysm. British Journal of Radiology, 48, 670–3.Google Scholar
Oga, M., Yuge, I., Terada, K., Shimizu, A. and Sugioka, Y. (1996). Tortuosity of the vertebral artery in patients with cervical spondylotic myelopathy. Spine, 21, 1085–9.Google Scholar
Oh, Y. M. and Eun, J. P. (2008). Congenital absence of a cervical spine pedicle: Report of two cases and review of the literature. Journal of Korean Neurosurgical Society, 44(6), 389–91.Google Scholar
Ortner, D. J. (2003). Identification of Pathological Conditions in Human Skeletal Remains, 2nd ed. San Diego, CA: Academic Press.Google Scholar
Palmer, F. J. and Sequiera, M. (1980). Cervical vertebral erosion and vertebral tortuosity: An angiographic study. Australasian Radiology, 24, 20–3.CrossRefGoogle ScholarPubMed
Peyre, M., Ozanne, A., Bhangoo, R., et al. (2007). Pseudotumoral presentation of a cervical extracranial vertebral artery aneurysm in neurofibromatosis type 1: Case report. Neurosurgery, 61(3), E658.Google Scholar
Pritz, M. B., Chandler, W. F. and Kindt, G. W. (1981). Vertebral artery disease: Radiological evaluation, medical management, and microsurgical treatment. Neurosurgery, 9, 524–30.Google Scholar
Rameshbabu, C., Gupta, O. P., Gupta, K. K. and Qasim, M. (2014). Bilateral asymmetrical duplicated origin of vertebral arteries: Multidetector row CT angiographic study. Indian Journal of Radiology and Imaging, 24(1), 61–5.Google Scholar
Randall, J. M., Griffiths, P. D., Gardner-Medwin, D. and Gholkar, A. (1994). Thalamic infarction in childhood due to extracranial vertebral artery abnormalities. Neuropediatrics, 25, 262–4.Google Scholar
Rifkinson-Mann, S., Laub, J. and Haimov, M. (1986). A traumatic extracranial vertebral artery aneurysm: Case report and review of the literature. Journal of Vascular Surgery, 4, 288–93.CrossRefGoogle Scholar
Roy-Camille, R., Thibierge, M. and Metzger, J. (1982). Exploration d’une lacune de l’axis chez une patiente cervicalgigue. La Nouvelle Presse Médicale, 11, 453–4.Google Scholar
Salvador, M. R., Solé-Llenas, J. and Salvá, M. A. Q. (1981). Bilateral bone erosion of the cervical vertebrae caused by tortuosity of the vertebral arteries. Neurochirurgia, 24(6), 212–13.Google Scholar
Santos-Franco, J. A., Zenteno, M. and Lee, A. (2008). Dissecting aneurysms of the vertebrobasilar system: A comprehensive review on natural history and treatment options. Neurosurgical Review, 31(2), 131–40.Google Scholar
Sato, K., Watanabe, T., Yoshimoto, T. and Kameyama, M. (1994). Magnetic resonance imaging of C2 segmental type of vertebral artery. Surgical Neurology, 41, 4551.Google Scholar
Schievink, W. I. and Piepgras, D. G. (1991). Cervical vertebral aneurysms and arteriovenous fistulae in neurofibromatosis type 1: Case reports. Neurosurgery, 29, 760–5.CrossRefGoogle ScholarPubMed
Schima, W., Stigbauer, R., Trattnig, S., et al. (1993). Case report: Cervical intervertebral foramen widening caused by vertebral artery tortuosity: Diagnosis with MR and color-coded Doppler sonography. British Journal of Radiology, 66, 165–7.Google Scholar
Schimmel, D. H., Newton, T. H. and Mani, J. (1976). Widening of the cervical intervertebral foramen. Neuroradiology, 12, 310.Google Scholar
Schittek, A. (1999). Pseudoaneurysm of the vertebral artery. Texas Heart Institute Journal, 26, 90–5.Google Scholar
Schubiger, O. and Yasargil, M. G. (1978). Extracranial vertebral artery aneurysm with neurofibromatosis. Neuroradiology, 15, 171–3.Google Scholar
Sganzerla, E. P., Grimoldi, N., Vaccri, U., Rampini, P. M. and Gaini, S. M. (1987). Cervical vertebral erosion due to tortuous vertebral artery. Surgical Neurology, 28, 385–9.Google Scholar
Sheeran, S. R. and Sclafani, S. J. A. (2000). Syphilitic aneurysm of descending thoracic aorta causing vertebral body erosion and spastic paraparesis. Emergency Radiology, 7, 245–7.Google Scholar
Slover, W. P. and Kiley, R. F. (1965). Cervical vertebral erosion caused by tortuous vertebral artery. Radiology, 84, 112–14.CrossRefGoogle ScholarPubMed
Sukuki, S., Kuwubara, K., Hatano, R. and Iwai, T. (1978). Duplicate origin of the left vertebral artery. Neuroradiology, 29, 27–9.Google Scholar
Sumimura, J., Nakao, K., Miyata, M., et al. (1988). Vertebral aneurysm of the neck. Journal of Cardiovascular Surgery (Torino), 29, 63–5.Google Scholar
Taitz, C. and Arensburg, B. (1991). Vertebral artery tortuosity with concomitant erosion of the foramen of the transverse process of the axis: Possible clinical implications. Acta Anatomica, 141, 104–8.Google Scholar
Takahashi, Y., Sasaki, Y., Toshihiko, S. and Suehiro, S. (2007). Descending thoracic aortic aneurysm complicated with severe vertebral erosion. European Journal of Cardiothoracic Surgery, 31, 941–3.Google Scholar
Takasato, Y., Hayashi, H., Kobayashi, T. and Hashimoto, Y. (1992). Duplicated origin of the right vertebral artery with rudimentary and accessory left vertebral arteries. Neuroradiology, 34, 287–9.Google Scholar
Talla, R., Galea, M., Lythgo, N., Angeli, T. and Eser, P. (2011) Contralateral comparison of bone geometry, BMD and muscle function in the lower leg and forearm after stroke. Journal of Musculoskeletal and Neuronal Interactions, 11(4), 306–13.Google Scholar
Thompson, J. E., Eilber, F. and Baker, J. D. (1979). Vertebral artery aneurysm: case report and review of the literature. Surgery, 85, 583–5.Google Scholar
Tulsi, R. S. and Perrett, L. V. (1975). The anatomy and radiology of the cervical vertebrae and the tortuous vertebral artery. Australasian Radiology, 19, 258–64.Google Scholar
Vanrietvelde, F., Lemmerling, M., deRooy, J., et al. (1999). Non-invasive diagnostic assessment of extensive vertebral artery tortuosity with enlargement of the intervertebral foramen. European Journal of Radiology, 32, 149–52.Google Scholar
Viswani, M. and Waldron, H. A. (1997). The earliest case of extracranial aneurysm of the vertebral artery. British Journal of Neurosurgery, 11, 164–5.Google Scholar
Wackenheim, A. (1977). Eléments de séméiologie radiologique de l’artère vertébrale. In Kehr, P. and Jung, A., eds., Pathologie et chirurgie de l’artère vertébrale. Paris: Expansion Scientifique Francaise, pp. 3141.Google Scholar
Wackenheim, A. and Babin, E. (1969). Excursion extratransversaire de l’artére vertébrale. La Presse Medicale, 77, 1213–14.Google Scholar
Wakely, J. and Smith, A. (1998). A possible eighteenth to nineteenth century example of a popliteal aneurysm from Leicester. International Journal of Osteoarchaeology, 8, 5660.Google Scholar
Waldron, T. (2009). Palaeopathology. Cambridge: Cambridge University Press.Google Scholar
Waldron, T. and Antoine, D. (2002). Tortuosity or aneurysm? The palaeopathology of some abnormalities of the vertebral artery. International Journal of Osteoarchaeology, 12, 7988.CrossRefGoogle Scholar
Walker, E. G. (1983). Evidence for prehistoric cardiovascular disease of syphilitic origin on the Northern Plains. American Journal of Physical Anthropology, 60, 499503.Google Scholar
Welsby, D. A. and Antoine, D. (2014). Kawa, the Pharaonic and Kushite Town of Gematon: History and Archaeology of the Site. London: Sudan Archaeological Research Society.Google Scholar
Youll, B. D., Coutellier, A., Dubois, B., Leger, J. M. and Bousser, M. G. (1990). Three cases of spontaneous extracranial vertebral artery dissection. Stroke, 21, 618–25.Google Scholar
Yuan, S. M. (2016). Aberrant origin of vertebral artery and its clinical implications. Brazilian Journal of Cardiovascular Surgery, 31(1), 52–9.Google ScholarPubMed
Yünten, N., Alper, H., Calli, C., Selcuki, D. and Ustün, E.-E. (1998). Cervical osseous changes associated with vertebral artery tortuosity. Journal of Neuroradiology, 25, 136–9.Google Scholar
Zimmerman, H. B. and Farrell, W. J. (1970). Cervical vertebral erosion caused by vertebral artery tortuosity. American Journal of Roentgenology, 108, 767–70.Google Scholar

References

American Heart Association. (2016). What is pericarditis? www.heart.org/en/health-topics/pericarditis/what-is-pericarditis (accessed 18 March 2019).Google Scholar
Aufderheide, A. C. and Rodríguez-Martín, C. (1998). The Cambridge Encyclopedia of Human Paleopathology. Cambridge: Cambridge University Press.Google Scholar
Bergmann, M., Vitrai, J. and Salman, H. (2006). Constrictive pericarditis: A reminder of a not so rare disease. European Journal of Internal Medicine, 17(7), 457–64.Google Scholar
Biehler-Gomez, L., Cappella, A., Castoldi, E., Martrille, L. and Cattaneo, C. (2018). Survival of atherosclerotic calcifications in skeletonized material: Forensic and pathological implications. Journal of Forensic Sciences, 63, 386–94.Google Scholar
Binder, M. and Roberts, C. A. (2014). Calcified structures associated with human skeletal remains: Possible atherosclerosis affecting the population buried at Amara West, Sudan (1300–800 BC). International Journal of Paleopathology, 6, 20–9.CrossRefGoogle Scholar
Brandenburg, R. O. and McGoon, D. C. (1987). The pericardium. In Brandenburg, R.O., Fuster, V., Giuliani, E. R., McGoon, D. C., eds., Cardiology: Fundamentals and Practice. Chicago: Year Book Medical, pp. 1654–70.Google Scholar
Buikstra, J. E. (ed.) (2019). Ortner’s Identification of Pathological Conditions in Human Skeletal Remains, 3rd ed. London: Academic Press.Google Scholar
Cameron, J., Oesterle, S. N., Baldwin, J. C. and Hancock, E. W. (1987). The etiologic spectrum of constrictive pericarditis. American Heart Journal, 113(2.1), 354–60.Google Scholar
Cinar, B., Enç, Y., Göksel, O., et al. (2006). Chronic constrictive tuberculous pericarditis: Risk factors and outcome of pericardiectomy. International Journal of Tuberculosis and Lung Disease, 10(6), 701–6.Google Scholar
Ferguson, E. C. and Berkowitz, E. A. (2010). Cardiac and pericardial calcifications on chest radiographs. Clinical Radiology, 65(9), 685–94.Google Scholar
Ghavidel, A. A., Gholampour, M., Kyavar, M., Mirmesdagh, Y. and Tabatabaie, M. B. (2012). Constrictive pericarditis treated by surgery. Texas Heart Institute Journal, 39(2), 199205.Google Scholar
Khalid, N., Ahmad, S. A. and Shlofmitz, E. (2019). Pericardial calcification. In StatPearls. Treasure Island, FL: StatPearls Publishing. Available at www.ncbi.nlm.nih.gov/books/NBK538342/ (accessed 31 October 2022).Google Scholar
McKinney, A. M. (2017). Dural calcifications: Normal locations and appearances. In McKinney, A. M., ed., Atlas of Normal Imaging Variations of the Brain, Skull, and Craniocervical Vasculature. Cham, Switzerland: Springer, pp. 391411.Google Scholar
Maisch, B. (1994). Pericardial diseases, with a focus on etiology, pathogenesis, pathophysiology, new diagnostic imaging methods, and treatment. Current Opinion in Cardiology, 9(3), 379–88.Google Scholar
Nguyen, T., Phillips, C. and Movahed, A. (2014). Incidental findings of pericardial calcification. World Journal of Clinical Cases, 2(9), 455–8.Google Scholar
Ortner, D. J. (2003). Identification of Pathological Conditions in Human Skeletal Remains, 2nd ed. London: Academic Press.Google Scholar
Ortner, D. J. and Putschar, W. (1981). Identification of Pathological Conditions in Human Skeletal Remains. Washington, DC: Smithsonian Institution Press.Google Scholar
Pandian, N. G., Vignola, P., Johnson, R. A. and Scannell, J. G. (1989). Pericardial diseases. In Eagle, K. A., Haber, E., DeSanctis, R. W and Austen, W. G, eds., The Practice of Cardiology. Boston: Little, Brown, pp. 9771011.Google Scholar
Schamall, D., Haring, E., Nebot, E., et al. (2016). Actinomycosis versus tuberculosis in ancient human bone: A pilot study. Poster presentation at 21st Congress of the European Paleopathology Association.Google Scholar
Schwefer, M., Aschenbach, R., Heidemann, J., Mey, C. and Lapp, H. (2009). Constrictive pericarditis, still a diagnostic challenge: Comprehensive review of clinical management. European Journal of Cardiothoracic Surgery, 36(3), 502–10.Google Scholar
Teschler-Nicola, M. and Winter, E. (2013). Meaningful stones: examples from the body stone collection of the Pathological–Anatomical Collection in the ‘Fools Tower’ Museum for Natural History Vienna (PASiN-NHM). Archäologie Österreichs, 24, 43–8.Google Scholar
World Health Organization. (2021). Cardiovascular diseases (CVDs). www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed 31 October 2022).Google Scholar

References

Abedin, M., Tintut, Y. and Demer, L. L. (2004). Vascular calcification: Mechanisms and clinical ramifications. Arteriosclerosis, Thrombosis and Vascular Biology, 24, 1161–70.Google Scholar
Baud, C.-A. and Kramar, C. (1991). Soft tissue calcifications in paleopathology. In Ortner, D. J. and Aufderheide, A. C., eds., Human Paleopathology: Current Syntheses and Future Options. Washington, DC: Smithsonian Institution Press, pp. 87–9.Google Scholar
Bibb, R., Eggbeer, D. and Paterson, A. (2015). Medical Modelling. Oxford: Elsevier.Google Scholar
Binder, M. and Roberts, C. (2014). Calcified structures associated with human skeletal remains: Possible atherosclerosis affecting the population buried at Amara West, Sudan (1300–800 BC). International Journal of Paleopathology, 6, 20–9.Google Scholar
Binder, M., Berner, M., Krause, H., Kucera, M. and Patzak, B. (2016). Scientific analysis of a calcified object from a post-medieval burial in Vienna, Austria. International Journal of Paleopathology, 14, 2430.Google Scholar
Boyce, N. (2020). Bills of Mortality: Tracking disease in early modern London. Lancet, 395, 1186–7.Google Scholar
Demer, L. L. and Tintut, Y. (2008). Vascular calcification: Pathobiology of a multifaceted disease. Circulation, 117, 2938–48.Google Scholar
Dobson, M. (2008). Disease: The Extraordinary Stories Behind History’s Deadliest Killers. London: Quercus.Google Scholar
Doherty, T. M., Asotra, K., Fitzpatrick, L. A., et al. (2003). Calcification in atherosclerosis: Bone biology and chronic inflammation at the arterial crossroads. Proceedings of the National Academy of Sciences USA, 100, 11201–6.Google Scholar
Donoghue, H. D., Spigelman, M., Zias, J., Gernaey-Child, A. M. and Minnikin, D. E. (1998). Mycobacterium tuberculosis complex DNA in calcified pleura from remains 1400 years old. Letters in Applied Microbiology, 27, 265–9.Google Scholar
Edwards, D. N. (2013). African perspectives on death, burial, and mortuary archaeology. In Tarlow, S. and Nilsson Stutz, L., eds., The Oxford Handbook of the Archaeology of Death and Burial. Oxford: Oxford University Press, pp. 209–26.Google Scholar
Efremov, I. A. (1940). Taphonomy: new branch of paleontology. Pan-American Geologist, 74, 8193.Google Scholar
Fibiger, L. and Marquez-Grant, N. (eds.) (2013). The Routledge Handbook of Archaeological Human Remains and Legislation: An International Guide to Laws and Practice in the Excavation and Treatment of Archaeological Human Remains. London: Routledge.Google Scholar
Gill-Frerking, H. (2021). Showing respect to the dead: The ethics of studying, displaying, and repatriating mummified human remains. In Shin, D. H. and Bianucci, R., eds., The Handbook of Mummy Studies. Singapore: Springer, pp. 5988.Google Scholar
Komar, D. and Buikstra, J. E. (2003). Differential diagnosis of a prehistoric biological object from the Koster (Illinois) Site. International Journal of Osteoarchaeology, 13, 157–64.Google Scholar
Kristjánsdóttir, S. and Collins, C. (2011). Cases of hydatid disease in medieval Iceland. International Journal of Osteoarchaeology, 21, 479–86.Google Scholar
Lewis, M. E. (2007). The Bioarchaeology of Children: Perspectives from Biological and Forensic Anthropology. Cambridge: Cambridge University Press.Google Scholar
Lindsay, W. L. (1979). Chemical Equlibria in Soil. New York: Wiley.Google Scholar
Lyman, R. (2010). What taphonomy is, what it isn’t, and why taphonomists should care about the difference. Journal of Taphonomy, 8, 116.Google Scholar
McKinley, J. I. and Roberts, C. A. (1993). Excavation and post-excavation treatment of cremated and inhumed remains. Technical Paper Number 13. Birmingham: Institute of Field Archaeologists.Google Scholar
Martin, D. L., Harrod, R. P. and Pérez, V. R. (2013). Bioarchaeology: An Integrated Approach to Working with Human Remains. New York: Springer Science and Business Media.Google Scholar
Mays, S. (1998). The Archaeology of Human Bones. London: Routledge.Google Scholar
Mays, S., Vincent, S. and Campbell, G. (2012). The value of sieving of grave soil in the recovery of human remains: an experimental study of poorly preserved archaeological inhumations. Journal of Archaeological Science, 39, 248–54.Google Scholar
Nawrocki, S. P. (1995). Taphonomic processes in historic cemeteries. In Grauer, A., ed., Bodies of Evidence: Reconstructing History Through Skeletal Analysis. New York: Wiley-Liss, pp. 4966.Google Scholar
Nawrocki, S. P. (2016). Forensic taphonomy. In Blau, S. and Ubelaker, D., eds., Handbook of Forensic Anthropology and Archaeology. London: Routledge, pp. 284–94.Google Scholar
Oxenham, M. and Buckley, H. R. (2015). The Routledge Handbook of Bioarchaeology in Southeast Asia and the Pacific Islands. London: Taylor & Francis.Google Scholar
Perry, M., Newnam, J. and Gilliland, M. (2008). Differential diagnosis of a calcified object from a fourth to fifth century AD burial in Aqaba, Jordan. International Journal of Osteoarchaeology, 18, 507–22.Google Scholar
Quintelier, K. (2009). Calcified uterine leiomyomata from a post-medieval nunnery in Brussels, Belgium. International Journal of Osteoarchaeology, 19, 436–42.CrossRefGoogle Scholar
Roberts, C. A. (2018). Human Remains in Archaeology: A Handbook, 2nd ed. York: Council for British Archaeology.Google Scholar
Roberts, C. A., Boylston, A., Buckley, L., Chamberlain, A. and Murphy, E. (1998). Rib lesions and tuberculosis: The palaeopathological evidence. Tubercle and Lung Disease, 79(1), 5560.Google Scholar
Saba, L. and Mallarin, G. (2009). Window settings for the study of calcified carotid plaques with multidetector CT angiography. American Journal of Neuroradiology, 30(7), 1445–50.Google Scholar
Schotsmans, E., Marquez-Grant, N. and Forbes, S. (eds.) (2017). Taphonomy of Human Remains: Forensic Analysis of the Dead and the Depositional Environment. New York: Wiley.Google Scholar
Steckel, R. H. and Rose, J. C. (eds.) (2002). The Backbone of History: Health and Nutrition in the Western Hemisphere. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Steckel, R. H., Larsen, C. S., Roberts, C. A. and Baten, J. (eds.) (2019). The Backbone of Europe: Health, Diet, Work and Violence Over Two Millennia. Cambridge: Cambridge University Press.Google Scholar
Steinbock, R. T. (1989). Studies in ancient calcified soft tissues and organic concretions. I: A review of structures, diseases, and conditions. Journal of Paleopathology, 3, 35–8.Google Scholar
Strouhal, E. and Jungwirth, J. (1977). Ein verkalktes Myoma uteri aus der späten Römerzeit in Aegyptisch-Nubien. Mitteilungen der anthropologischen Gesellschaft in Wien, 107, 215–21.Google Scholar
Thompson, R. C., Allam, A. H., Lombardi, G. P., et al. (2013). Atherosclerosis across 4000 years of human history: The Horus study of four ancient populations. Lancet, 381, 1211–22.Google Scholar
Toussaint, N. D., Lau, K. K., Polkinghorne, K. R. and Kerr, P. G. (2007). Measurement of vascular calcification using CT fistulograms. Nephrolology Dialysis and Transplantation, 22, 484–90.Google ScholarPubMed
Villa, C. and Lynnerup, N. (2012). Hounsfield units ranges in CT-scans of bog bodies and mummies. Anthropologischer Anzeiger, 69, 127–45.Google Scholar
Waldron, T. (1987). The relative survival of the human skeleton: implications for palaeopathology. In Boddington, A., Garland, A. N. and Janaway, R. C., eds., Death, Decay and Reconstruction: Approaches to Archaeology and Forensic Science. Manchester: Manchester University Press, pp. 5564.Google Scholar
Waters-Rist, A. L., Faccia, K., Lieverse, A., et al. (2014). Multicomponent analyses of a hydatid cyst from an Early Neolithic hunter–fisher–gatherer from Lake Baikal, Siberia. Journal of Archaeological Sciences, 50, 5162.Google Scholar
Weiss, D. L. and Møller-Christensen, V. (1971). Leprosy, echinococcosis and amulets: A study of a medieval Danish inhumation. Medical History, 15, 260–7.Google Scholar
White, T. D., Black, M. T. and Folkens, P. A. (2011). Human Osteology, 3rd ed. Cambridge, MA: Academic Press.Google Scholar
Wu, M., Rementer, C. and Giachelli, C. M. (2013). Vascular calcification: An update on mechanisms and challenges in treatment. Calcified Tissue International, 93, 365–73.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×