Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-15T08:41:10.229Z Has data issue: false hasContentIssue false

6 - An Integrated Approach to Assess Sustainable Forest Biomass Potentials at Country Level

from Part II - Sustainable Biomass Resources

Published online by Cambridge University Press:  01 December 2016

Viktor J. Bruckman
Affiliation:
Austrian Academy of Sciences
Esin Apaydın Varol
Affiliation:
Anadolu University, Turkey
Bașak B. Uzun
Affiliation:
Anadolu University, Turkey
Jay Liu
Affiliation:
Pukyong National University, South Korea
Get access

Summary

Abstract

Forests are important for providing wood for products and energy, and the demand for wood is expected to increase over the next decades. The potential woody biomass supply was estimated for the period 2000–2020 for stem wood as well as residues, taking into account economic, environmental and technical restrictions. Constraints reducing the availability of forest biomass were defined and quantified for three mobilisation scenarios and five wood price scenarios in order to estimate the realisable potentials. The theoretical biomass potential was estimated from Austrian forest inventory data and applying the PROGNAUS forest growth simulator. It lies between 32.7 and 38.4 million m3 equivalents yr-1 over bark for the period 2000–2020. The realisable potential in Austria was estimated in a range between 23.9 and 31.1 million m3 equivalents yr-1 over bark for the period 2000–2020. These potentials represent 73–84% of the theoretical potential. Nutrient sustainability in the context of whole-tree harvesting appeared to be an important constraint when considering how much biomass is realisable from forests. The attitude of private forest owners towards increased harvest of forest biomass is also of major importance for the realisable potential, given the small-scale structure of forest ownership in Austria.

Type
Chapter
Information
Biochar
A Regional Supply Chain Approach in View of Climate Change Mitigation
, pp. 123 - 138
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amacher, G. S., Conway, M. C. and Sullivan, J. (2003). Econometric analyses of nonindustrial forest landowners: is there anything left to study? Journal of Forest Economics, 9, pp. 137164.Google Scholar
Bauer, R. (2001). Maschinenkostenrechnung nach dem FBVA-Schema. FBVA-Berichte, 124, pp. 3538.Google Scholar
Baumgarten, A. (2012). Richtlinie für den sachgerechten Einsatz von Pflanzenaschen zur Verwertung auf land- und forstwirtschaftlich genutzten Flächen. Fachbeirat für Bodenfruchtbarkeit und Bodenschutz. [online] Available at: https://dx.doi.org/10.2785/388553 [Accessed 15 February 2015]Google Scholar
BFW (2012). The Austrian Forest Inventory 2007/09. [online] Available at: http://bfw.ac.at/rz/wi.home. [Accessed 15 February 2015]Google Scholar
BFW (2015). Ergebnisse der österreichischen Waldinventur (= Results of the Austrian Forest Inventory). [online] Available at: http://bfw.ac.at/rz/wi.home [Accessed 15 February 2015]Google Scholar
Bitterlich, W. (1948). Die Winkelzählprobe. Allgemeine Forst- und Holzwirtschaftliche Zeitung, 59, pp. 45.Google Scholar
Bitterlich, W. (1952). Die Winkelzählprobe. Forstwissenschaftliches Centralblatt, 71, pp. 215225.CrossRefGoogle Scholar
Cambia, M., Certini, G., Neri, F. and Marchi, E. (2015). The impact of heavy traffic on forest soils: a review. Forest Ecology and Management, 338, pp. 124138.CrossRefGoogle Scholar
CEC (1992). Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. [online] Available at: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31992L0043:EN:HTML [Accessed 15 February 2015]Google Scholar
CEC (2009). Directive 2009/147/EC of the European Parliament and of the Council of 30 November 2009 on the conservation of wild birds. [online] Available at: http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32009L0147 [Accessed 15 February 2015]Google Scholar
CEC (2010). Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. [online] Available at: http://ec.europa.eu/energy/renewables/action_plan_en.htm [Accessed 15 February 2015]Google Scholar
De Vries, W., Posch, M., Reinds, G. J. and Kämäri, J. (1993). Critical Loads and Their Exceedance on Forest Soils in Europe. Report 58 (revised version). Wageningen, NL: DLO Winand Staring Centre.Google Scholar
De Vries, W., Reinds, G. J. and Posch, M. (1994). Assessment of critical loads and their exceedances on European forests using a one-layer steady-state model. Water, Air and Soil Pollution, 72, pp. 357394.CrossRefGoogle Scholar
Eckmüllner, O. and Schedl, P. (2009): Neue Ausformung in marktkonforme Sortimente. BFW-Praxisinformation, 18, pp. 89.Google Scholar
Eckmüllner, O., Schedl, P. and Sterba, H. (2007). Neue Schaftkurven für die Hauptbaumarten Österreichs und deren Ausformung in marktkonforme Sortimente. Austrian Journal of Forest Science, 124, pp. 215236.Google Scholar
Egnell, G. and Valinger, E. (2003). Survival, growth, and growth allocation of planted Scots pine trees after different levels of biomass removal in clear felling. Forest Ecology and Management, 177, pp. 6574.CrossRefGoogle Scholar
Eitzinger, J., Haberl, H., Amon, B. et al. (2014). Land- und Forstwirtschaft, Wasser, Ökosysteme und Biodiversität. Österreichischer Sachstandsbericht Klimawandel 2014 (AAR14). Austrian Panel on Climate Change (APCC). Vienna: Austrian Academy of Sciences, pp. 771856.Google Scholar
Englisch, M. and Reiter, R. (2009). Standörtliche Nährstoff-Nachhaltigkeit der Biomassenutzung. BFW Praxisinformation, 18, pp. 1315.Google Scholar
Erni, V., Lemm, R., Frutig, F., Breitenstein, M., Riechsteiner, D., Oswald, K. and Thees, O. (2003). HeProMo – Produktivitätsmodelle für Holzerntearbeiten. Windows-Software. Version 1.xx. Birmensdorf, Eidg. Forschungsanstalt WSL.Google Scholar
European Union (2015). Eurostat statistical books. Energy balance sheets edition 2015. doi: 10.2785/388553. [Accessed 31 August 2015]CrossRefGoogle Scholar
FBVA (ed.) (1992). Österreichische Waldboden-Zustandsinventur, Ergebnisse. Mitt. FBVA, 168.Google Scholar
Fernholz, K., Bratkovich, S., Bowyer, J. and Lindburg, A. (2009). Energy from Woody Biomass: A Review of Harvesting Guidelines and a Discussion of Related Challenges. Minneapolis: Dovetail Partners.Google Scholar
FHP (Forst Holz Papier) (1996). Holzernte im Schleppergelände 1.3: ÖBf-Schleppertabelle Nadelholz. Vienna: FHP.Google Scholar
ForstG (1975). (= Forstgesetz 1975) BGBl. Nr. 440/1975 as amended on 9.9.2015. [online] Available at: www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen& Gesetzesnummer=10010371 [Accessed 9 September 2015]Google Scholar
Fürst, A. (2009). Austrian Bioindicator Grid. [online] Available at: http://bfw.ac.at/rz/bfwcms.web?dok=2824 [Accessed 15 February 2015]Google Scholar
Fürst, A. and Kristöfel, F. (2012). Level II online. [online] Available at: http://bfw.ac.at/rz/bfwcms.web?dok=2824 [Accessed 15 February 2015]Google Scholar
Glatzel, G. (1991). The impact of historic land use and modern forestry on nutrient relations of Central European forest ecosystems. Fertilizer Research, 27, pp. 18.CrossRefGoogle Scholar
Gschwantner, T., Gabler, K. and Schadauer, K. (2010). Austria. In: Tomppo, E. et al. (eds) National Forest Inventories. Dordrecht: Springer Science Business Media B.V., pp. 5771.Google Scholar
Helmisaari, H.-S., Hanssen, K. H., Jacobson, S., Kukkola, M., Luiro, J., Saarsalmi, A., Tamminen, P. and Tveite, B. (2011). Logging residue removal after thinning in Nordic boreal forests: long-term impact on tree growth. Forest Ecology and Management, 261, pp. 19191927.CrossRefGoogle Scholar
Horn, R., Vossbrink, J. and Becker, S. (2004). Modern forestry vehicles and their impacts on soil physical properties. Soil and Tillage Research, 79, pp. 207219.CrossRefGoogle Scholar
Indinger, A., Leutgöb, K., Lutter, E. et al. (2006). Vorstudie für einen nationalen Biomasseaktionsplan für Österreich. Vienna: Austrian Energy Agency.Google Scholar
ISO, 1994. ISO 11260. Soil Quality – Determination of Effective Cation Exchange Capacity and Base Saturation Level Using Barium Chloride Solution. Geneva: International Organization for Standardization.Google Scholar
ISO, 1995. ISO 11466. Soil Quality – Extraction of Trace Elements Soluble in Aqua Regia. Geneva: International Organization for Standardization.Google Scholar
ISO, 1998. ISO 13878. Soil Quality – Determination of Total Nitrogen Content by Dry Combustion (‘Elemental Analysis’). Geneva: International Organization for Standardization.Google Scholar
Jacke, H. (2004). Holzernte im Hochlohnland. Forst und Holz, 59, pp. 6974.Google Scholar
Jacobson, S., Kukkola, M., Mälkönen, E., Tveite, B. and Möller, G. (1996). Growth response of coniferous stands to whole-tree harvesting in early thinning. Scandinavian Journal of Forest Research, 11, pp. 5059.CrossRefGoogle Scholar
Kaarakka, L., Tamminen, P., Saarsalmi, A., Kukkola, M., Helmisaari, H.-S. and Burton, A. J. (2014). Effects of repeated whole-tree harvesting on soil properties and tree growth in a Norway spruce (Picea abies (L.) Karst.) stand. Forest Ecology and Management, 313, pp. 180187.CrossRefGoogle Scholar
Katzensteiner, K. (2011). Nährstoffbilanzmodelle und forstliche Standortskarten als Basis für eine nachhaltige Biomasseproduktion (Combining nutrient balance models and site maps as a basis for sustaining forest biomass production). In: Gerzabek, M. I. and Glößl, J. (eds) Präsentation von geförderten Projekten der Stiftung ‘120 Jahre Universität für Bodenkultur’. Elektronische Publikation zur Vortragsveranstaltung der Stiftung am 25.10.2011. [online] Available at: www.boku.ac.at/fileadmin/_/H13/Stiftungen_und_Preise/Elektronische_Publikation_120_Jahre_BOKU.pdf [Accessed 15 February 2015]Google Scholar
Katzensteiner, K., Englisch, M. and Nemestothy, K. P. (2013). Impacts of increased biomass utilization on soil sustainability in Austria. In: Helmisaari, H-S. and Vanguelova, E. (eds) Proceedings of the Workshop W6.1 Forestbioenergy and Soil Sustainability at EUROSOIL Congress 2nd July to 6th July 2012, Bari, Italy. [online] Available at: www.helsinki.fi/forestsciences/eurosoil/index.html and www.oecd.org/tad/crp/ [Accessed 15 February 2015]Google Scholar
Kindermann, G. (2010). A climate sensitive refining on the basal area increment model in PROGNAUS. Austrian Journal of Forest Science, 127, pp. 147178.Google Scholar
Kooperationsplattform Forst Holz Papier (2006). Österreichische Holzhandelsusancen 2006 (= Austrian Standard Rules for Timber Classification). Vienna: Service-GmbH der Wirtschaftskammer Österreich.Google Scholar
Krapfenbauer, A. (1983). Von der Streunutzung zur Ganzbaumnutzung. Austrian Journal of Forest Science, 100, pp. 143174.Google Scholar
Krapfenbauer, A. and Buchleitner, E. (1981). Holzernte, Biomassen- und Nährstoffaustrag, Nährstoffbilanz eines Fichtenbestandes. Austrian Journal of Forest Science, 98, pp. 193223.Google Scholar
Kreutzer, K. (1979). Ökologische Fragen zur Vollbaumernte. Forstwissenschaftliches Centralblatt, 98, pp. 298308.CrossRefGoogle Scholar
Ledermann, T. (2002). Ein Einwuchsmodell aus den Daten der Österreichischen Waldinventur 1981–1996. Austrian Journal of Forest Science, 119, pp. 4077.Google Scholar
Ledermann, T. (2006). Description of PROGNAUS for Windows 2.2. In: Hasenauer, H. (ed.) Sustainable Forest Management – Growth Models for Europe. Berlin, Heidelberg, New York: Springer-Verlag, pp. 7178.CrossRefGoogle Scholar
Ledermann, T. and Neumann, M. (2009). Prognose des Waldwachstums und des Nutzungspotentials. BFW Praxisinformation, 18, pp. 57.Google Scholar
Lexer, M. J., Honninger, K. and Englisch, M. (1999): Estimating chemical soil parameters for sample plots of the Austrian Forest Inventory. Forstwissenschaftliches Centralblatt, 118, pp. 212227.CrossRefGoogle Scholar
MCPFE, EC DG Agriculture and Rural Development and UNECE/FAO (2010). Good Practice Guidance on the Sustainable Mobilisation of Wood in Europe. Brussels: EC DG Agriculture and Rural Development.Google Scholar
Meiwes, K. J., Asche, N., Block, J., Kallweit, R., Raben, G. and von Wilpert, K. (2008). Potenziale und Restriktionen der Biomassenutzung im Wald. Allgemeine Forstzeitung, 63, pp. 598604.Google Scholar
Monserud, R. A. and Sterba, H. (1996). A basal area increment model for individual trees growing in even- and uneven-aged forest stands in Austria. Forest Ecology and Management, 80, pp. 5780.CrossRefGoogle Scholar
Monserud, R. A. and Sterba, H. (1999). Modeling individual tree mortality for Austrian forest species. Forest Ecology and Management, 113, pp. 109123.CrossRefGoogle Scholar
Mutsch, F., Leitgeb, E., Hacker, R., Amann, C., Aust, G., Herzberger, E., Pock, H. and Reiter, R. (2013). Projekt BioSoil – Europäisches Waldboden-Monitoring (2006/07) Datenband Österreich Band I: Methodik, Standort- und Bodenbeschreibung, Bodendaten aus Burgenland, Kärnten, Niederösterreich und Oberösterreich Band II: Bodendaten aus Salzburg, Steiermark, Tirol und Vorarlberg, Deskriptive Statistik. BFW-Berichte, 145.Google Scholar
Nachtmann, G. (2006). Height increment models for individual trees in Austria depending on site and competition. Austrian Journal of Forest Science, 123, pp. 199222.Google Scholar
Nemestothy, K. P. (2012). Die Bedeutung von Holz als erneuerbarer Energieträger. BFW Praxisinformation, 28, pp. 58.Google Scholar
Nord-Larsen, T. (2002). Stand and site productivity response following whole tree harvesting in early thinnings of Norway spruce (Picea abies (L.) Karst.). Biomass and Bioenergy, 23, pp. 112.CrossRefGoogle Scholar
Olsson, M., Rosén, K. and Melkerud, P.-A. (1993). Regional modelling of base cation losses from Swedish forest soils due to whole-tree harvesting. Applied Geochemistry, 8, pp. 189194.CrossRefGoogle Scholar
PEFC (Programme for the Endorsement of Forest Certification) (2014). PEFC Leitlinien für die nachhaltige Waldbewirtschaftung in Österreich (Appendix 2). Version 2014. [online] Available at: www.pefc.at/content/downloadcenter/technische_dokumente.php [Accessed 31 August 2015]Google Scholar
Rehfuess, K. E. (1990). Waldböden. Entwicklung, Eigenschaften und Nutzung. Pareys Studientexte 29. Hamburg and Berlin: Verlag Paul Parey.Google Scholar
Schadauer, K. (2009). Naturschutz – Wie können Nutzungseinschränkungen ermittelt werden? BFW Praxisinformation, 18, pp. 1819.Google Scholar
Schneider, J. (1998). Kartierung der nassen Deposition in Österreich. Wien: Umweltbundesamt.Google Scholar
Schubert, G. (ed.) (2003). Hydrogeologische Karte der Republik Österreich im Maßstab 1:500.000. Wien: Geologische Bundesanstalt.Google Scholar
Siemion, J., Burns, D. A., Murdoch, P. S. and Germain, R. H. (2011). The relation of harvesting intensity to changes in soil, soil water, and stream chemistry in a northern hardwood forest, Catskill Mountains, USA. Forest Ecology and Management, 261, pp. 15101519.CrossRefGoogle Scholar
Stampfer, K., Limbeck-Lilienau, B., Kanzian, C. and Viertler, K. (2003). Baumverfahren im Seilgelände -Verfahrensbeispiele: Wanderfalke mit Prozessor Woody 50, Syncrofalke mit Prozessor Wolf 50 B. Wien: Eigenverlag, Kooperationsabkommen Forst-Platte-Papier.Google Scholar
Sterba, H., Brunner, H., Gugganig, H. and Hauser, B. (2003). Stammzahlreduktion ja, aber nicht als Ganzbaumnutzung. Österreichische Forstzeitung, 10, pp. 1819.Google Scholar
Stutter, M., Langan, S. and Cresser, M. (2003). Weathering and atmospheric deposition signatures of base cations in upland soils of NE Scotland: their application to critical load assessment. Geoderma, 116, pp. 301324.CrossRefGoogle Scholar
Sverdrup, H. (1990). The Kinetics of Base Cation Release due to Chemical Weathering. Lund: Lund University Press.Google Scholar
Van der Salm, C., Köhlenberg, L. and De Vries, W. (1998). Assessment of weathering rates in Dutch loess and river-clay soils at pH 3.5, using laboratory experiments. Geoderma, 85, pp. 4162.CrossRefGoogle Scholar
Verkerk, P. J., Anttila, P., Eggers, J., Lindner, M. and Asikainen, A. (2011). The realisable potential supply of woody biomass from forests in the European Union. Forest Ecology and Management, 261, pp. 20072015.CrossRefGoogle Scholar
Von Wilpert, K. (2006). Waldbauliche Steuerung des Stoffhaushalts von Waldökosystemen. FVA-Einblick, 10, pp. 24.Google Scholar
Weinfurter, P. (2013). Waldbau in Österreich auf ökologischer Grundlage. Eine Orientierungshilfe für die Praxis. Wien: Landwirtschaftskammer Österreich, Ländliches Fortbildungsinstitut Österreich.Google Scholar
Weiss, P. (ed.) (2006). Austrian Biomass Functions. Austrian Journal of Forest Science, 123, pp. 1102.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×