Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-16T02:36:08.820Z Has data issue: false hasContentIssue false

5 - Biochar as an Integrated and Decentralised Environmental Management Tool in the Botanic Garden Berlin-Dahlem

from Part I - The Interdisciplinary Approach

Published online by Cambridge University Press:  01 December 2016

Viktor J. Bruckman
Affiliation:
Austrian Academy of Sciences
Esin Apaydın Varol
Affiliation:
Anadolu University, Turkey
Bașak B. Uzun
Affiliation:
Anadolu University, Turkey
Jay Liu
Affiliation:
Pukyong National University, South Korea
Get access

Summary

Abstract

Within the research project TerraBoGa, located at the Botanic Garden Berlin-Dahlem, biochar was explored as a means to achieve a closed-loop recycling system. The annual quantity of plant residues, as well as the potential amount of valuable nutrient resources like urine and faeces of the employees and visitors, was determined and an integrated sustainable sanitation system was developed. A carbonisation plant was installed to provide energy and to produce biochar from green waste. The addition of biochar to the composting process reduced the emission of greenhouse gases and showed substantial improvements in the moisture, odour and substrate structure parameters when compared with pure compost. In all plant trials undertaken, the amendment of biochar resulted in either better or similar plant growth when compared with the plant-specific standard substrates traditionally used. Biochar as an additive for horticultural substrates can reduce the use of peat by up to one-third without adversely affecting plant growth. The production and application of biochar as a nutrient carrier and nutrient storage medium has great potential to close the regional/small material cycles in conjunction with sustainable biomass and organic waste management.

Type
Chapter
Information
Biochar
A Regional Supply Chain Approach in View of Climate Change Mitigation
, pp. 96 - 120
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amlinger, F., Peyr, S., Geszti, J., Dreher, P., Weinfurther, H. and Nortcliff, S. (2006). Evaluierung der nachhaltig positiven Wirkung von Kompost auf die Fruchtbarkeit und Produktivität von Böden. Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien.Google Scholar
Andersen, J. K., Boldrin, A., Christensen, T. H. and Scheutz, C. (2010). Greenhouse gas emissions from home composting of organic household waste. Waste Management, 30, pp. 24752482.CrossRefGoogle ScholarPubMed
BBodSchV (1999). Federal Soil Protection and Contaminated Sites Ordinance (BBodSchV).Google Scholar
Bernal, M. P., Alburquerque, J. A. and Moral, R. (2009). Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresource Technology, 100, pp. 54445453.CrossRefGoogle ScholarPubMed
Bettendorf, T., Wendland, C. and Schuetze, T. (2015). Terra Preta sanitation systems and technologies. Terra Preta Sanitation, 1, pp. 6285.Google Scholar
Blackwell, P., Riethmuller, G. and Collins, M. (2009). Biochar application to soil. In: Lehmann, J. and Joseph, S. (eds.) Biochar for Environmental Management: Science and Technology. London: Earthscan, pp. 207226.Google Scholar
Böttger, S., Töws, I., Bleicher, J., Krüger, M., Scheinemann, H., Dorgeloh, E., Khan, P. and Philipp, O. (2013). Applicability of Terra Preta produced from sewage sludge of decentralized wastewater systems in Germany. In: Bettendorf, T., Wendland, C. and Otterpohl, R. (eds.) Terra Preta Sanitation. Deutsche Bundesstiftung Umwelt, ISBN 978-3-00-046586-4.Google Scholar
Boh, M. Y., Germer, J., Müller, T. and Sauerborn, J. (2013). Comparative effect of human urine and ammonium nitrate application on maize (Zea mays L.) grown under various salt (NaCl) concentrations. Soil Science, 176, pp. 703711.Google Scholar
Dias, B. O., Silva, C. A., Higashikawa, F. S., Roig, A. and Sanchez-Monedero, M. A. (2010). Use of biochar as bulking agent for the composting of poultry manure: effect on organic matter degradation and humification. Bioresource Technology, 101, pp. 12391246.CrossRefGoogle ScholarPubMed
DIN 19527 (2012). Leaching of solid materialsBatch test for the examination of the leaching behaviour of organic substances at a liquid to solid ratio of 2 l/kg.Google Scholar
DIN 19528 (2009). Leaching of solid materialsPercolation method for the joint examination of the leaching behaviour of inorganic and organic substances.Google Scholar
DIN 19529 (2009). Leaching of solid materialsBatch test for the examination of the leaching behaviour of inorganic substances at a liquid to solid ratio of 2 l/kg.Google Scholar
DIN EN 303–5 (2012). Heating boilersPart 5: Heating boilers for solid fuels, manually and automatically stoked, nominal heat output of up to 500 kW – Terminology, requirements, testing and marking; German version EN 303–5:2012.Google Scholar
DIN EN ISO 14240–1 (2010). Soil qualityDetermination of soil microbial biomass – Part 1: Substrate-induced respiration method (ISO 14240–1:1997).Google Scholar
DüMV (2012). Verordnung über das Inverkehrbringen von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln. (Düngemittelverordnung) (BGBl. I S. 2482).Google Scholar
DWA (2008). Neuartige Sanitärsysteme. Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V., Hennef.Google Scholar
EBC (2012). European Biochar Certificate – Guidelines for a Sustainable Production of Biochar. European Biochar Foundation (EBC), Arbaz, Switzerland. [online] Available at: www.european-biochar.org/en/download. Version 4.8 of 13 December 2013 [Accessed 3 February 2015].Google Scholar
Elad, Y., Cytryn, E., Meller Harel, Y., Lew, B. and Graber, E. R. (2011). The biochar effect: plant resistance to biotic stresses. Phytopathologia Mediterranea, 50, pp. 335349.Google Scholar
Erben, G. A. (2011). Carbon dynamics and stability of biochar compost – an evaluation of three successive composting experiments. Bachelor Thesis, University of Bayreuth.Google Scholar
Fascella, G., Dispensa, V., De Pasquale, C., Fontana, G. and Zizzo, G. (2013). Evaluation of biochar as growing substrate for ornamental plants. 1st Mediterranen Biochar Symposium. [online] Available at: http://meditbiochar2.weebly.com/uploads/1/1/0/8/1108765/sp1_09_poster_fascella_et_al.pdf [Accessed 15 June 2015].Google Scholar
Fischer, D. and Glaser, B. (2012). Synergisms between compost and biochar for sustainable soil amelioration. In: Sunil, K. and Bharti, A. (eds.) Management of Organic Waste. Rijeka, Croatia: In Tech, pp. 167198.Google Scholar
Fuchs, J. (1996). Komposteinsatz im Gartenbau: Möglichkeiten und Limiten aus der Sicht der biologischen Komposteigenschaften. Branchenmagazin G’plus, 12, p. 19.Google Scholar
Germer, J., Addai, S. and Sauerborn, J. (2011). Response of grain sorghum to fertilisation with human urine. Field Corps Research, 122, pp. 234241.CrossRefGoogle Scholar
Glaser, B., and Woods, W. I. (eds.) (2004). Amazonian Dark Earths: Explorations in Space and Time. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Glaser, B. (2007). Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century. Philosophical Transactions of the Royal Society, B: Biological Sciences, 362, pp. 187196.CrossRefGoogle Scholar
Heinonen-Tanski, H. and Van Wijk-Sijbesma, C. (2004). Human excreta for plant production. Bioresource Technology, 96, pp. 403411.CrossRefGoogle Scholar
Hua, L., Chen, Y. and Wu, W. (2012). Impacts upon soil quality and plant growth of bamboo charcoal addition to composted sludge. Environmental Technology, 33, pp. 6168.CrossRefGoogle ScholarPubMed
Jeffreys, S., Verheijen, F. G. A., van der Velde, M. and Bastos, A. C. (2011). A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agricultures, Ecosystem & Environment, 144, pp. 175187.Google Scholar
Jindo, K., Suto, K., Matsumoto, K., Garcia, C., Sonoki, T. and Sanchez-Monedero, M. A. (2012). Chemical and biochemical characterisation of biochar-blended composts prepared from poultry manure. Bioresource Technology, 110, pp. 396404.CrossRefGoogle ScholarPubMed
Kammann, C., Ratering, S., Eckhard, C. and Muller, C. (2012). Biochar and hydrochar effects on greenhouse gas (carbon dioxide, nitrous oxide, and methane) fluxes from soils. Journal of Environmental Quality, 41, pp. 10521066.CrossRefGoogle ScholarPubMed
Kammann, C., Glaser, B. and Schmidt, H. P. (2016). Combining biochar and organic amendments. In: Shackley, S. Ruysschaert, G. and Zwart, K. (eds.) Biochar in European Soils and Agriculture: Science and Practice. London: Earthscan, Routledge, pp. 136164.Google Scholar
Kehres, B., Kirsch, A., Luyten-Naujoks, K. et al. (2006). Methodenhandbuch zur Analyse organischer Düngemittel, Bodenverbesserungsmittel und Substrate. Bundesgütegemeinschaft Kompost e.V.Google Scholar
Körschens, M., Albert, E., Armbruster, M. et al. (2013). Effect of mineral and organic fertilization on crop yield, nitrogen uptake, carbon and nitrogen balances, as well as soil organic carbon content and dynamics: results from 20 European long-term field experiments of the twenty-first century. Archives of Agronomy and Soil Science, 59, pp. 10171040.CrossRefGoogle Scholar
Lashari, M. S., Liu, Y., Li, L., Pan, W., Fu, J., Pan, G., Zheng, Ju, Zheng, Ji, Zhang, X. and Yu, A. (2013). Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China Great Plain. Field Crops Research, 144, pp. 113118.CrossRefGoogle Scholar
Lehmann, J., Czimczik, C., Laird, D. and Sohi, S. (2009). Stability of biochar in soil. In: Lehmann, J. and Joseph, S. (eds) Biochar for Environmental Management: Science and Technology. London: Earthscan, pp. 183205.Google Scholar
Lehmann, J., da SilvaJr., J. P., Steiner, C., Nehls, T., Zech, W. and Glaser, B. (2003). Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil, 249, pp. 343357.CrossRefGoogle Scholar
Lehmann, J. and Joseph, S. (2009). Biochar for environmental management: an introduction. In: Lehmann, J. and Joseph, S. (eds.) Biochar for Environmental Management: Science and Technology. London: Earthscan, pp. 112.Google Scholar
Ma, J., Wilson, K., Zhao, Q., Yorgey, G. and Frear, C. (2013). Odor in commercial scale compost: literature review and critical analysis. Washington State Department of Ecology, p. 74.Google Scholar
Major, J., Steiner, C., Downie, A. and Lehmann, J. (2009). Biochar effects on nutrient leaching. In: Lehmann, J. and Joseph, S. (eds.) Biochar for Environmental Management: Science and Technology. London: Earthscan, pp. 271287.Google Scholar
Mnkeni, P. N. S., Kutu, F. R., Muchaonyerwa, P. and Austin, L. M. (2008). Evaluation of human urine as a source of nutrients for selected vegetables and maize under tunnel house conditions in the Eastern Cape, South Africa. Waste Management & Research, 26, pp. 132139.CrossRefGoogle ScholarPubMed
Prost, K., Borchard, N., Siemens, J., Kautz, T., Möller, A. and Amelung, A. (2013). Biochar affected by composting with farmyard manure. Journal of Environmental Quality, 42, 164172.CrossRefGoogle ScholarPubMed
Reinhold, J. (2013). Betrachtung zu Möglichkeiten der Optimierung der offenen Mietenkompostierung. [online] Available at: www.guetegemeinschaftkompostbbs.de/wordpress/wp-content/uploads/2013/03/02-Mietenkompostierung-Dr.Reinhold.pdf [Accessed 03 February 2015].Google Scholar
Schmidt, Hans-Peter (2013): Schweiz bewilligt Pflanzenkohle zur Bodenverbesserung. Journal für Terroirwein und Biodiversität, 2010, ISSN 1663-0521. Available at: www.ithaka-journal.net/schweiz-bewilligt-pflanzenkohle-zur-bodenverbesserungGoogle Scholar
Schuetze, M. and Thomas, P. (2013). Terra Preta sanitation – a key component in sustainable urban resource management systems. In: Bettendorf, T., Wendland, C. and Otterpohl, R. (eds.) Terra Preta Sanitation. Deutsche Bundesstiftung Umwelt, ISBN 978-3-00-046586-4.Google Scholar
Schimmelpfennig, S. and Glaser, B. (2012). One step forward toward characterization: some important material properties to distinguish biochar. Journal of Environmental Quality, 41, pp. 10011013.CrossRefGoogle Scholar
Steiner, C., Das, K. C., Melear, N. and Lakly, D. (2010). Reducing nitrogen loss during poultry litter composting using biochar. Journal of Environmental Quality, 39, pp. 12361242.CrossRefGoogle ScholarPubMed
Steiner, C., Melear, N., Harris, K. and Das, K. C. (2011). Biochar as bulking agent for poultry litter composting. Carbon Management, 2, pp. 227230.CrossRefGoogle Scholar
Thomas, S. C., Frye, S., Gale, N., Garmon, M., Launchbury, R., Machado, N., Melamed, S., Murray, J., Petroff, A. and Winsborough, C. (2013). Biochar mitigates negative effects of salt additions on two herbaceous plant species. Journal of Environmental Management, 129, pp. 6268.CrossRefGoogle ScholarPubMed
Tian, Y., Sun, X., Li, S. et al. (2012). Biochar made from green waste as peat substitute in growth media for Calathea rotundifola cv. Fasciata. Scientia Horticulturae, 143, pp. 1518.CrossRefGoogle Scholar
Wang, C. Lu, H., Dong, D., Deng, H., Strong, P. J., Wang, H. and Wu, W. (2013). Insight into the effects of biochar on manure composting: evidence supporting the relationship between N2O emissions and denitrifying community. Environmental Science & Technology, 47, pp. 73417349.CrossRefGoogle ScholarPubMed
Wu, Y., Xu, G. and Shao, H. B. (2014). Furfural and its biochar improve the general properties of a saline soil. Solid Earth, 5, pp. 665671.CrossRefGoogle Scholar
Yao, Y., Gao, B., Zhang, M., Inyang, M. and Zimmerman, A. R. (2012). Effect of biochar amendment on sorption and leaching of nitrate, ammonium and phosphate in a sandy soil. Chemosphere, 89, pp. 14671471.CrossRefGoogle Scholar
Zhang, L., Sun, X.-Y., Tian, Y. et al. (2014). Biochar and humic acid amendments improve the quality of composted green waste as a growth medium for the ornamental plant Calathea insignis. Scientia Horticulturae, 176, pp. 7078.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×