Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-22T00:39:51.508Z Has data issue: false hasContentIssue false

7 - Arcellinida testate amoebae (Amoebozoa: Arcellinida): model of organisms for assessing microbial biogeography

from Part III - Unicellular eukaryotes

Published online by Cambridge University Press:  05 August 2012

Thierry J. Heger
Affiliation:
University of Geneva
Enrique Lara
Affiliation:
University of Neuchâtel
Edward A.D. Mitchell
Affiliation:
University of Neuchâtel
Diego Fontaneto
Affiliation:
Imperial College London
Get access

Summary

Introduction

Although widely recognised as essential participants in ecosystem processes and representing a significant part of the Earth's biodiversity (Clarholm, 1985; Corliss, 2002; Schröter et al., 2003; Falkowski et al., 2004), eukaryotic microorganisms are very poorly understood from evolutionary and biogeographic points of view. Major questions concerning the diversity and the distribution of protists remain completely unresolved. Arcellinida testate amoebae are an excellent group from which to get insights into these questions because they are easy to collect, present in different habitats and they build a shell of characteristic morphology that remains even after the organism's death. In this group, both cosmopolitan and restricted distribution patterns have been documented. Some morphospecies such as Apodera vas(=Nebela vas), Alocodera cockayni or the whole genus Certesella have been reported as one of the most convincing examples of heterotrophic protists with restricted distributions (Foissner, 2006; Smith and Wilkinson, 2007; Smith et al., 2008). Arcellinida testate amoebae belong to the eukaryotic supergroup Amoebozoa (Nikolaev et al., 2005) and are morphologically characterised by the presence of lobose pseudopodia and a shell (test) composed from proteinaceous, calcareous or siliceous material. It can be either self-secreted or composed of recovered and agglutinated material. The Arcellinida covers a relatively broad range of sizes (mostly between 20 and 250 μm).

Type
Chapter
Information
Biogeography of Microscopic Organisms
Is Everything Small Everywhere?
, pp. 111 - 129
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baas Becking, L.G.M. (1934). Geobiologie of inleiding tot de milieukunde. The Hague: Van Stockum and Zoon.Google Scholar
Beijerinck, M.W. (1913). De infusies en de ontdekking der backteriën. Amsterdam: Müller.Google Scholar
Bisson, I.A., Marra, P.P., Burtt, E.H., Sikaroodi, M., Gillevet, P.M. (2009). Variation in plumage microbiota depends on season and migration. Microbial Ecology 58, 212–220.CrossRefGoogle ScholarPubMed
Bonnet, L. (1959). Quelques aspects des populations Thécamoebiennes endogées. Bulletin de la Société d'Histoire Naturelle de Toulouse 94, 413–428.Google Scholar
Bonnet, L. (1977a). Faunistique et biogéographie des Thécamoebiens. I. Thécamoebiens des sols du Mexique. Bulletin de la Société d'Histoire Naturelle de Toulouse 113, 40–44.Google Scholar
Bonnet, L. (1977b). Le peuplement thécamoebien des sols du Népal et son intérêt biogéographique. Bulletin de la Société d'Histoire Naturelle de Toulouse 113, 331–348.Google Scholar
Charman, D.J. (1997). Modelling hydrological relationships of testate amoebae (Protozoa: Rhizopoda) on New Zealand peatlands. Journal of the Royal Society of New Zealand 27, 465–483.CrossRefGoogle Scholar
Charman, D.J., Warner, B.G. (1992). Relationship between testate amebas (Protozoa, Rhizopoda) and microenvironmental parameters on a forested peatland in Northeastern Ontario. Canadian Journal of Zoology – Revue Canadienne de Zoologie 70, 2474–2482.CrossRefGoogle Scholar
Charman, D.J., Brown, A.D., Hendon, D., Karofeld, E. (2004). Testing the relationship between Holocene peatland palaeoclimate reconstructions and instrumental data at two European sites. Quaternary Science Reviews 23, 137–143.CrossRefGoogle Scholar
Clarholm, M. (1985). Interactions of bacteria, protozoa and plants leading to mineralization of soil-nitrogen. Soil Biology and Biochemistry 17, 181–187.CrossRefGoogle Scholar
Clark, K.L., Lawton, R.O., Butler, P.R. (2000). The physical environment. In Nadkarni, NM, Wheelwright, NT (eds.), Monteverde, Ecology and Conservation of a Tropical Cloud Forest, pp 16–38. New York: Cambridge University Press.Google Scholar
Corliss, J.O. (2002). Biodiversity and biocomplexity of the protists and an overview of their signifiant roles in maintenance of our biosphere. Acta Protozoologica 41, 199–219.Google Scholar
Corliss, J.O., Esser, S.C. (1974). Role of cyst in life-cycle and survival of free-living protozoa. Transactions of the American Microscopical Society 93, 578–593.CrossRefGoogle ScholarPubMed
Darwin, C. (1846). An account of the fine dust which often falls on vessels in the Atlantic Ocean. Quarterly Journal of the Geological Society 2, 26–30.CrossRefGoogle Scholar
Deflandre, G. (1928). Le genre Arcella Ehrenberg. Morphologie-Biologie. Essai phylogénétique et systématiqe. Archiv für Protistenkunde 64, 152–287.Google Scholar
Deflandre, G. (1936). Etude monographique sur le genre Nebela Leidy. Annales de Protistologie 5, 201–286.Google Scholar
Vargas, C., Norris, R., Zaninetti, L., Gibb, S.W., Pawlowski, J. (1999). Molecular evidence of cryptic speciation in planktonic foraminifers and their relation to oceanic provinces. Proceedings of the National Academy of Sciences USA 96, 2864–2868.CrossRefGoogle ScholarPubMed
Wit, R., Bouvier, T. (2006). ‘Everything is everywhere, but the environment selects’; what did Baas Becking and Beijerinck really say?Environmental Microbiology 8, 755–758.CrossRefGoogle Scholar
Ehrenberg, C.G. (1838). Ein Blick in das tiefere organische Leben der Natur. In VvL, Voss (ed.), Die Infusionstheirchen als vollkommene Organismen. Leipzig.Google Scholar
Ehrenberg, C.G. (1850). On infusorial deposits on the River Chutes in Oregon. American Journal of Science 9, 140.Google Scholar
Falkowski, P.G., Katz, M.E., Knoll, A.H. et al. (2004). The evolution of modern eukaryotic phytoplankton. Science 305, 354–360.CrossRefGoogle ScholarPubMed
Finlay, B.J. (2002). Global dispersal of free-living microbial eukaryote species. Science 296, 1061–1063.CrossRefGoogle ScholarPubMed
Finlay, B.J., Esteban, G.F., Fenchel, T. (2004). Protist diversity is different?Protist 155, 15–22.CrossRefGoogle ScholarPubMed
Foissner, W. (1987). Soil protozoa: fundamental problems, ecological significance, adaptation in ciliates and testaceans, bioindicators, and guide to the literature. Progress in Protozoology 2, 69–212.Google Scholar
Foissner, W. (2006). Biogeography and dispersal of micro-organisms: a review emphasizing protists. Acta Protozoologica 45, 111–136.Google Scholar
Gilbert, D., Amblard, C., Bourdier, G., Francez, A.-J., Mitchell, E.A.D. (2000). Le régime alimentaire des thécamoebiens. L'Année Biologique 39, 57–68.CrossRefGoogle Scholar
Golemansky, V. (1967). Tecamebianos Muscicolas (Rhizopoda, Testacea) de Mexico. Revista de la Sociedad Mexicana de Historia Natural 18, 73–77.Google Scholar
Golemansky, V. (2007). Testate amoebas and monothalamous foraminifera (Protozoa) from the Bulgarian Black Sea Coast. In Fet V., Popov, A. (eds.), Biogeography and Ecology of Bulgaria, pp. 555–570. Dordrecht: Springer.CrossRef
Gorbushina, A.A., Kort, R., Schulte, A. et al. (2007). Life in Darwin's dust: intercontinental transport and survival of microbes in the nineteenth century. Environmental Microbiology 9, 2911–2922.CrossRefGoogle ScholarPubMed
Griffin, D.W., Kellogg, C.A., Garrison, V.H., Shinn, E.A. (2002). The global transport of dust – an intercontinental river of dust, microorganisms and toxic chemicals flows through the Earth's atmosphere. American Scientist 90, 228–235.CrossRefGoogle Scholar
Heger, T.J., Mitchell, E.A.D., Ledeganck, P. et al. (2009). The curse of taxonomic uncertainty in biogeographical studies of free-living terrestrial protists: a case study of testate amoebae from Amsterdam Island. Journal of Biogeography 36, 1551–1560.CrossRefGoogle Scholar
Heger, T.J., Mitchell, E.A.D., Golemansky, V. et al. (2010). Molecular phylogeny of euglyphid testate amoebae (Cercozoa: Euglyphida) suggests transitions between marine supralittoral and freshwater/terrestrial environments are infrequent. Molecular Phylogenetics and Evolution 55, 113–122.CrossRefGoogle ScholarPubMed
Heinis, F. (1911). Beiträge zur Kenntnis der Centralamerikanischen Moosfauna. Revue Suisse de Zoologie 19, 253–256.CrossRefGoogle Scholar
Heinis, F. (1914). Die Moosfauna Columbiens: In Voyage d'exploration scientifique en Colombie. Mémoires de la Société Neuchâteloise des Sciences Naturelles 5, 675–730.Google Scholar
Hervas, A., Camarero, L., Reche, I., Casamayor, E.O. (2009). Viability and potential for immigration of airborne bacteria from Africa that reach high mountain lakes in Europe. Environmental Microbiology 11, 1612–1623.CrossRefGoogle Scholar
Kellogg, C.A., Griffin, D.W. (2006). Aerobiology and the global transport of desert dust. Trends in Ecology and Evolution 21, 638–644.CrossRefGoogle ScholarPubMed
Kilroy, C., Sabbe, K., Bergey, E.A., Vyverman, W., Lowe, R. (2003). New species of Fragilariforma (Bacillariophyceae) from New Zealand and Australia. New Zealand Journal of Botany 41, 535–554.CrossRefGoogle Scholar
Klueken, A.M., Hau, B., Ulber, B., Poehling, H.M. (2009). Forecasting migration of cereal aphids (Hemiptera: Aphididae) in autumn and spring. Journal of Applied Entomology 133, 328–344.CrossRefGoogle Scholar
Kokfelt, U., Rosen, P., Schoning, K. et al. (2009). Ecosystem responses to increased precipitation and permafrost decay in subarctic Sweden inferred from peat and lake sediments. Global Change Biology 15, 1652–1663.CrossRefGoogle Scholar
Kufferath, H. (1929). Algues et protistes muscicoles, corticoles et terrestres récoltés sur la montagne de Barba (Costa Rica). Annales de Cryptogamie Exotique 2, 23–52.Google Scholar
Laggoun-Defarge, F., Mitchell, E., Gilbert, D. et al. (2008). Cut-over peatland regeneration assessment using organic matter and microbial indicators (bacteria and testate amoebae). Journal of Applied Ecology 45, 716–727.CrossRefGoogle Scholar
Lamentowicz, M., Obremska, M., Mitchell, E.A.D. (2008). Autogenic succession, land-use change, and climatic influences on the Holocene development of a kettle-hole mire in Northern Poland. Review of Palaeobotany and Palynology 151, 21–40.CrossRefGoogle Scholar
Laminger, H. (1973). Die Testaceen (Protozoa, Rhizopoda) einiger Hochgebirgsgewässer von Mexiko, Costa Rica und Guatemala. Internationale Revue der gesamten Hydrobiologie und Hydrographie 58, 273–305.CrossRefGoogle Scholar
Lara, E., Heger, T.J., Ekelund, F., Lamentowicz, M., Mitchell, E.A.D. (2008). Ribosomal RNA genes challenge the monophyly of the Hyalospheniidae (Amoebozoa: Arcellinida). Protist 159, 165–176.CrossRefGoogle Scholar
Madrazo-Garibay, M., López-Ochoterena, E. (1982). Segunda lista taxonómica comentada de protozoarios de vida libre de México. Revista latinoamericana de microbiología 24, 281–295.Google Scholar
Martinez, M., Fernandez, E., Valdes, J. et al. (2000). Chemical evolution and volcanic activity of the active crater lake of Poas volcano, Costa Rica, 1993–1997. Journal of Volcanology and Geothermal Research 97, 127–141.CrossRefGoogle Scholar
Meisterfeld, R. (2002). Order Arcellinida Kent, 1880. In Lee, JJ, Leedale, GF, Bradbury, P (eds.), The Illustrated Guide To The Protozoa, pp. 827–860. Lawrence, KS: Society of Protozoologists.Google Scholar
Mitchell, E.A.D., Meisterfeld, R. (2005). Taxonomic confusion blurs the debate on cosmopolitanism versus local endemism of free-living protists. Protist 156, 263–267.CrossRefGoogle ScholarPubMed
Mitchell, E.A.D., Charman, D.J., Warner, B.G. (2008). Testate amoebae analysis in ecological and paleoecological studies of wetlands: past, present and future. Biodiversity and Conservation 17, 2115–2137.CrossRefGoogle Scholar
Nguyen-Viet, H., Gilbert, D., Mitchell, E.A.D., Badot, P.M., Bernard, N. (2007). Effects of experimental lead pollution on the microbial communities associated with Sphagnum fallax (Bryophyta). Microbial Ecology 54, 232–241.CrossRefGoogle Scholar
Nguyen-Viet, H., Bernard, N., Mitchell, E.A.D., Badot, P.M., Gilbert, D. (2008). Effect of lead pollution on testate amoebae communities living in Sphagnum fallax: an experimental study. Ecotoxicology and Environmental Safety 69, 130–138.CrossRefGoogle Scholar
Nikolaev, S.I., Mitchell, E.A.D., Petrov, N.B. et al. (2005). The testate lobose amoebae (order Arcellinida Kent, 1880) finally find their home within Amoebozoa. Protist 156, 191–202.CrossRefGoogle ScholarPubMed
O'Malley, M.A. (2007). The nineteenth century roots of ‘everything is everywhere’. Nature Reviews Microbiology 5, 647–651.CrossRefGoogle ScholarPubMed
Pearce, D.A., Bridge, P.D., Hughes, K.A. et al. (2009). Microorganisms in the atmosphere over Antarctica. FEMS Microbiology Ecology 69, 143–157.CrossRefGoogle ScholarPubMed
Penard, E. (1902). Faune rhizopodique du bassin du Léman. Genève:Kündig.CrossRefGoogle Scholar
Penard, E. (1938). Les infiniment petits dans leurs manifestations vitales, pp 1–212. Genève: Georg & Cie.Google Scholar
Rowe, G.L., Brantley, S.L., Fernandez, M. et al. (1992). Fluid-volcano interaction in an active stratovolcano – the crater lake system of Poás volcano, Costa Rica. Journal of Volcanology and Geothermal Research 49, 23–51.CrossRefGoogle Scholar
Schröter, D., Wolters, V., Ruiter, P.C. (2003). C and N mineralisation in the decomposer food webs of a European forest transect. Oikos 102, 294–308.CrossRefGoogle Scholar
Slapeta, J., Moreira, D., López-García, P. (2005). The extent of protist diversity: insights from molecular ecology of freshwater eukaryotes. Proceedings of the Royal Society B – Biological Sciences 272, 2073–2081.CrossRefGoogle ScholarPubMed
Smith, H.G., Bobrov, A., Lara, E. (2008). Diversity and biogeography of testate amoebae. Biodiversity and Conservation 17, 329–343.CrossRefGoogle Scholar
Smith, H.G., Wilkinson, D.M. (2007). Not all free-living microorganisms have cosmopolitan distributions – the case of Nebela (Apodera) vas Certes (Protozoa: Amoebozoa: Arcellinida). Journal of Biogeography 34, 1822–1831.CrossRefGoogle Scholar
Todorov, M., Golemansky, V. (2007). Seasonal dynamics of the diversity and abundance of the marine interstitial testate amoebae (Rhizopoda: Testacealobosia and Testaceafilosia) in the Black Sea supralittoral. Acta Protozoologica 46, 169–181.Google Scholar
Vijver, B., Gremmen, N.J.M., Beyens, L. (2005). The genus Stauroneis (Bacillariophyceae) in the Antarctic region. Journal of Biogeography 32, 1791–1798.CrossRefGoogle Scholar
Vanormelingen, P., Verleyen, E., Vyverman, W. (2008). The diversity and distribution of diatoms: from cosmopolitanism to narrow endemism. Biodiversity and Conservation 17, 393–405.CrossRefGoogle Scholar
Wanner, M., Xylander, W.E.R. (2005). Biodiversity development of terrestrial testate amoebae: is there any succession at all?Biology and Fertility of Soils 41, 428–438.CrossRefGoogle Scholar
Webb, S.D. (1991) Ecogeography and the Great American Interchange. Paleobiology 17, 266–280.CrossRefGoogle Scholar
Wilkinson, D.M. (2010). Have we underestimated the importance of humans in the biogeography of free-living terrestrial microorganisms?Journal of Biogeography 37, 393–397.CrossRefGoogle Scholar
Wilkinson, D.M., Koumoutsaris, S., Mitchell, E.A.D., Bey, I. (In prep) Investigating the aerial distribution of microorganisms with a model of the global atmospheric circulation.
Wuthrich, M., Matthey, W. (1980). Les diatomées de la Tourbière du Cachot (Jura Neuchâtelois) III. Etude de l'apport éolien et du transport par les oiseaux et insectes aquatiques. Swiss Journal of Hydrology 42, 269–284.Google Scholar
Yeates, G.W., Foissner, W. (1995). Testate amebas as predators of nematodes. Biology and Fertility of Soils 20, 1–7.CrossRefGoogle Scholar
Zapata, J., Fernández, L. (2008). Morphology and morphometry of Apodera vas (Certes, 1889) (Protozoa: Testacea) from two peatlands in Southern Chile. Acta Protozoologica 47, 389–395.Google Scholar
Zapata, J., Yáñez, M., Rudolph, E. (2008). Thecamoebians (Protozoa: Rhizopoda) of the peatland from Puyehue National Park (40° 45'S; 72° 19'W), Chile. Gayana 72, 9–17.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×