Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-15T11:00:12.410Z Has data issue: false hasContentIssue false

6 - Everything is everywhere: a twenty-first century de-/reconstruction with respect to protists

from Part III - Unicellular eukaryotes

Published online by Cambridge University Press:  05 August 2012

David Bass
Affiliation:
Natural History Museum
Jens Boenigk
Affiliation:
University Duisburg-Essen
Diego Fontaneto
Affiliation:
Imperial College London
Get access

Summary

Introduction

The aphorism ‘Everything is everywhere, but the environment selects’ asserts that microbial taxa are found anywhere on earth that there is suitable habitat for them. It was crystallised in this form by Baas Becking (1934), who was in turn inspired by the ideas of Beijerinck (1913). The history of its establishment has been nicely summarised by O'Malley (2007) and its incorporation into contemporary thought described by de Wit and Bouvier (2006). It was further contextualised in terms of free-living protists by Fenchel and Finlay (2004). This concept (which we refer to hereafter as EiE) has recently been the focus of much heated debate in microbiology and protistology. This chapter will reassess the fundamental principles behind the EiE concept with respect to free-living protists in the light of recent findings and insights from twenty-first century molecular biology and microbial ecology. We do not intend to provide a survey of studies/taxa that apparently do or do not meet its predictions; work in this field is proceeding rapidly and such a survey would soon become obsolete. The studies cited here were not selected because we agree or disagree particularly strongly with them, but because they illustrate points of our discussion.

Type
Chapter
Information
Biogeography of Microscopic Organisms
Is Everything Small Everywhere?
, pp. 88 - 110
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amato, A., Kooistra, W.H., Ghiron, J.H. et al. (2007). Reproductive isolation among sympatric cryptic species in marine diatoms. Protist 158, 193–207.CrossRefGoogle ScholarPubMed
Baas Becking, L.G.M. (1934). Geobiologie of inleiding tot de milieukunde. The Hague: Van Stockum and Zoon.Google Scholar
Barth, D., Krenek, S., Fokin, S.I., Berendonk, T.U. (2006). Intraspecific genetic variation in Paramecium revealed by mitochondrial cytochrome c oxidase I sequences. Journal of Eukaryotic Microbiology 53, 20–25.CrossRefGoogle ScholarPubMed
Bass, D., Cavalier-Smith, T. (2004). Phylum-specific environmental DNA analysis reveals remarkably high global biodiversity of Cercozoa (Protozoa). International Journal of Systematic and Evolutionary Microbiology 54, 2393–2404.CrossRefGoogle Scholar
Bass, D., Richards, T.A., Matthai, L., Marsh, V., Cavalier-Smith, T. (2007). DNA evidence for global dispersal and probable endemicity of protozoa. BMC Evolutionary Biology 7, 162.CrossRefGoogle ScholarPubMed
Bass, D., Howe, A.T., Mylnikov, A.P. et al. (2009a). Phylogeny and classification of Cercomonadida: Cercomonas, Eocercomonas, Paracercomonas, and Cavernomonas gen. n. Protist 160, 483–521.CrossRefGoogle Scholar
Bass, D., Chao, E.E., Nikolaev, S. et al. (2009b). Phylogeny of novel naked filose and reticulose Cercozoa: Granofilosea cl. n. and Proteomyxidea revised. Protist 160, 75–109.CrossRefGoogle Scholar
Bass, D., Brown, N., Mackenzie-Dodds, J. et al. (2009c). A molecular perspective on ecological differentiation and biogeography of cyclotrichiid ciliates. Journal of Eukaryotic Microbiology 56, 559–567.CrossRefGoogle ScholarPubMed
Beijerinck, M.W. (1913). De infusies en de ontdekking der backteriën. Jaarboek van de Koninklijke Akademie voor Wetenschappen. Amsterdam: Müller. (Preprinted in Verzamelde geschriften van M.W. Beijerinck, vijfde deel, pp. 119–140. Delft, 2921).Google Scholar
Berney, C., Fahrni, J., Pawlowski, J. (2004). How many novel eukaryotic ‘kingdoms’? Pitfalls and limitations of environmental DNA surveys. BMC Biology 2, 13.CrossRefGoogle ScholarPubMed
Boenigk, J. (2008a). Nanoflagellates: functional groups and intraspecific variation. Denisia 23, 331–335.Google Scholar
Boenigk, J. (2008b). The past and present classification problem with nanoflagellates exemplified by the genus Monas. Protist 159, 319–337.CrossRefGoogle ScholarPubMed
Boenigk, J., Pfandl, K., Stadler, P., Chatzinotas, A. (2005). High diversity of the ‘Spumella-like’ flagellates: an investigation based on the SSU rRNA gene sequences of isolates from habitats located in six different geographic regions. Environmental Microbiology 7, 685–697.CrossRefGoogle ScholarPubMed
Boenigk, J., Pfandl, K., Garstecki, T. et al. (2006). Evidence for geographic isolation and signs of endemism within a protistan morphospecies. Applied and Environmental Microbiology 72, 5159–5164.CrossRefGoogle ScholarPubMed
Boenigk, J., Jost, S., Stoeck, T., Garstecki, T. (2007). Differential thermal adaptation of clonal strains of a protist morphospecies originating from different climatic zones. Environmental Microbiology 9, 593–602.CrossRefGoogle ScholarPubMed
Buée, M., Reich, M., Murat, C. et al. (2009). 454 pyrosequencing analyses of forest soils reveals an unexpectedly high fungal diversity. New Phytologist 184, 449–456.CrossRefGoogle Scholar
Caron, D.A. (2009). Past President's address: protistan biogeography: why all the fuss?Journal of Eukaryotic Microbiology 56, 105–112.CrossRefGoogle ScholarPubMed
Cavalier-Smith, T. (2004). Only six kingdoms of life. Proceedings of the Royal Society of London B Biological Sciences 271, 1251–1262.CrossRefGoogle ScholarPubMed
Chao, A., Li, P.C., Agatha, S. et al. (2006). A statistical approach to estimate soil ciliate diversity and distribution based on data from five continents. Oikos 114, 479–493.CrossRefGoogle Scholar
Coesel, P.F.M., Krienitz, L. (2008). Diversity and geographic distribution of desmids and other coccooid green algae. Biodiversity and Conservation 17, 381–392.CrossRefGoogle Scholar
Coleman, A.W. (2007). Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. Nucleic Acids Research 35, 3322–3329.CrossRefGoogle ScholarPubMed
Corliss, J.O. (2000). Biodiversity, classification, and numbers of species of protists. In Raven, P.H., Williams, T. (eds.), Nature and Human Society. The Quest for a Sustainable World, pp. 130–155. Washington, DC: National Academy Press.Google Scholar
Countway, P.D., Gast, R.J., Savai, P., Caron, D.A. (2005). Protistan diversity estimates based on 18S rDNA from seawater incubations in the western North Atlantic. Journal of Eukaryotic Microbiology 52, 95.CrossRefGoogle ScholarPubMed
Creer, S., Fonseca, V.G., Porazinska, D.L. et al. (2010). Ultrasequencing of the meiofaunal biosphere: practice, pitfalls and promises. Molecular Ecology 19, 4–20.CrossRefGoogle ScholarPubMed
Darling, K.F., Wade, C.M., Stewart, I.A. et al. (2004). Molecular evidence for genetic mixing of Arctic and Antarctic subpolar populations of planktonic foraminifers. Nature 405, 43–47.CrossRefGoogle Scholar
Darling, K.F., Kucera, M., Wade, C.M. (2007). Global molecular phylogeography reveals persistent Arctic circumpolar isolation in marine planktonic protist. Proceedings of the National Academy of Sciences USA 104, 5002–5007.CrossRefGoogle ScholarPubMed
Darling, K.F., Wade, C.M. (2008). The genetic diversity of planktic foraminifera and the global distribution of ribosomal RNA genotypes. Marine Micropaleontology 67, 216–238.CrossRefGoogle Scholar
Jonckheere, J.F. (1998). Sequence variation in the ribosomal internal transcribed spacers, including the 5.8S rDNA, of Naegleria spp. Protist 149, 221–228.CrossRefGoogle ScholarPubMed
Wit, R., Bouvier, T. (2006). ‘Everything is everywhere, but the environment selects’; what did Baas Becking and Beijerinck really say?Environmental Microbiology 8, 755–758.CrossRefGoogle Scholar
Fenchel, T., Finlay, B.J. (2004). The ubiquity of small species: patterns of local and global diversity. BioScience 54, 777–784.CrossRefGoogle Scholar
Fierer, N. (2008). Microbial biogeography: patterns in microbial diversity across space and time. In Zengler, K. (ed.), Accessing Uncultivated Microorganisms: from the Environment to Organisms and Genomes and Back, pp. 95–115. Washington, DC: ASM Press.Google Scholar
Finlay, B.J. (2002). Global dispersal of free-living microbial eukaryote species. Science 296, 1061–1063.CrossRefGoogle ScholarPubMed
Finlay, B.J. (2004). Protist taxonomy: an ecological perspective. Philosophical Transactions of the Royal Society of London B 359, 599–610.CrossRefGoogle Scholar
Finlay, B.J., Clarke, K.J. (1999). Apparent global ubiquity of species in the protist genus Paraphysomonas. Protist 150, 419–430.CrossRefGoogle ScholarPubMed
Finlay, B.J., Fenchel, T. (1999). Divergent perspectives on protist species richness. Protist 150, 229–233.CrossRefGoogle ScholarPubMed
Finlay, B.J., Fenchel, T. (2004). Cosmopolitan metapopulations of free-living microbial eukayotes. Protist 155, 237–244.CrossRefGoogle Scholar
Finlay, B.J., Corliss, J.O., Esteban, G., Fenchel, T. (1996). Biodiversity at the microbial level: the number of free-living ciliates in the biosphere. Quaternary Review of Biology 71, 221–237.CrossRefGoogle Scholar
Finlay, B.J., Esteban, G.F., Brown, S., Fenchel, T., Hoef-Emden, K. (2006). Multiple cosmopolitan ecotypes within a microbial eukaryote morphospecies. Protist 157, 377–390.CrossRefGoogle ScholarPubMed
Foissner, W. (1999). Protist diversity: estimates of the near-imponderable. Protist 150, 363–368.CrossRefGoogle ScholarPubMed
Foissner, W. (2004a). Ubiquity and cosmopolitanism of protists questioned. SIL News 43, 6–7.Google Scholar
Foissner, W. (2004b). Two new “flagship” ciliates (Protozoa. Ciliophora) from Venezuela: Sleighophrys pustulata and Luporinophrys micelae. European Journal of Protistology 41, 99–117.CrossRefGoogle Scholar
Foissner, W. (2006). Biogeography and dispersal of micro-organisms: a review emphasizing protists. Acta Protozoologica 45, 111–136.Google Scholar
Foissner, W. (2008). Protist diversity and distribution: some basic considerations. Biodiversity and Conservation 17, 235–242.CrossRefGoogle Scholar
Foissner, W., Strüde-Kypke, M., Staay, G.W.M., Moon-van der Staay, S.-Y., Hackstein, J.H.P. (2003). Endemic ciliates (Protozoa, Ciliophora) from tank bromeliads (Bromeliaceae): a combined morphological, molecular, and ecological study. European Journal of Protistology 39, 365–372.CrossRefGoogle Scholar
Fontaneto, D., Barraclough, T.G., Chen, K., Ricci, C., Herniou, E.A. (2008). Molecular evidence for broad-scale distributions in bdelloid rotifers: everything is not everywhere but most things are very widespread. Molecular Ecology 17, 3136–3146.CrossRefGoogle Scholar
Foulon, E., Not, F., Jalabert, F. et al. (2008). Ecological niche partitioning in the picoplanktonic green alga Micromonas pusilla: evidence from environmental surveys using phylogenetic probes. Environmental Microbiology 10, 2433–2443.CrossRefGoogle ScholarPubMed
Frezal, L., Leblois, R. (2008). Four years of DNA barcoding: current advances and prospects. Infection Genetics and Evolution 8, 727–736.CrossRefGoogle ScholarPubMed
Gilbert, J.A., Field, D., Swift, P. et al. (2009). The seasonal structure of microbial communities in the Western English Channel. Environmental Microbiology 11, 3132–3139.CrossRefGoogle ScholarPubMed
Guillou, L., Eikrem, W., Chrétiennot-Dinet, M.J. et al. (2004) Diversity of picoplanktonic prasinophytes assessed by direct nuclear SSU rDNA sequencing of environmental samples and novel isolates retrieved from oceanic and coastal marine ecosystems. Protist 155, 193–214.CrossRefGoogle ScholarPubMed
Habura, A., Pawlowski, J., Hanes, S.D., Bowser, S.S. (2004). Unexpected foraminiferal diversity revealed by small-subunit rDNA analysis of Antarctic sediment. Journal of Eukaryotic Microbiology 51, 173–179.CrossRefGoogle ScholarPubMed
Hoef-Emden, K. (2007). Revision of the genus Cryptomonas (Cryptophyceae) II: incongruences between the classical morphospecies concept and molecular phylogeny in smaller pyrenoid-less cells. Phycologia 46, 402–428.CrossRefGoogle Scholar
Hoef-Emden, K. (2008). Molecular phylogeny of phycocyanin-containing cryptophytes: evolution of biliproteins and geographical distribution. Journal of Phycology 44, 985–993.CrossRefGoogle ScholarPubMed
Howe, A.T., Bass, D., Vickerman, K., Chao, E.E., Cavalier-Smith, T. (2009). Phylogeny, taxonomy, and astounding genetic diversity of Glissomonadida ord. nov., the dominant gliding zooflagellates in soil (Protozoa: Cercozoa). Protist 160, 159–189.CrossRefGoogle Scholar
Hughes Martiny, J.B., Bohannan, B.J.M., Brown, J.H. et al. (2006). Microbial biogeography: putting microorganisms on the map. Nature Reviews Microbiology 4, 102–112.CrossRefGoogle Scholar
Johnson, M.D., Tengs, T., Oldach, D.W., Delwiche, C.F., Stoecker, D.K. (2004). Highly divergent SSU rRNA genes found in the marine ciliates Myrionecta rubra and Mesodinium pulex. Protist 155, 347–359.CrossRefGoogle ScholarPubMed
Kemp, P.F., Aller, J.Y. (2004). Estimating prokaryotic diversity: when are 16S rDNA libraries large enough?Limnology and Oceanography: Methods 2, 114–125.Google Scholar
Koch, T.A., Ekelund, F. (2005). Strains of the heterotrophic flagellate Bodo designis from different environments vary considerably with respect to salinity preference and SSU rRNA gene composition. Protist 156, 97–112.CrossRefGoogle ScholarPubMed
Kristiansen, J. (2008). Dispersal and biogeography of silica-scaled chrysophytes. Biological Conservation 17, 419–426.Google Scholar
Lawton, J.H. (2004). Japan Prize commemorative lecture: biodiversity, conservation and sustainability. Notes and Records of the Royal Society of London 58, 321–333.CrossRefGoogle Scholar
Leclerc, M.C., Barriel, V., Lecointre, G., Reviers, B. (1998). Low divergence in rDNA ITS sequences among five species of Fucus (Phaeophyceae) suggests a very recent radiation. Journal of Molecular Evolution 46, 115–120.CrossRefGoogle ScholarPubMed
Lilly, E.L., Halanych, K.M., Anderson, D.M. (2007). Species boundaries and global biogeography of the Alexandrium tamarense complex (Dinophyceae). Journal of Phycology 43, 1329–1338.CrossRefGoogle Scholar
Logares, R., Rengefors, K., Kremp, A. et al. (2007). Phenotypically different microalgal morphospecies with identical ribosomal DNA: a case of rapid adaptive evolution?Microbial Ecology 53, 549–561.CrossRefGoogle ScholarPubMed
Logares, R., Boltovskoy, A., Bensch, S., Laybourn-Parry, J., Rengefors, K. (2009). Genetic diversity patterns in five protist species occurring in lakes. Protist 160, 301–317.CrossRefGoogle ScholarPubMed
Lowe, C.D., Day, A., Kemp, S.J., Montagnes, D.J.S. (2005). There are high levels of functional and genetic diversity in Oxyrrhis marina. Journal of Eukaryotic Microbiology 52, 250–257.CrossRefGoogle ScholarPubMed
Medinger, R., Nolte, V., Vinay Pandey, R. et al. (2010). Diversity in a hidden world: potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Molecular Ecology 19, 32–40.CrossRefGoogle Scholar
Mindell, D.P., Honeycutt, R.L. (1990). Ribosomal RNA in vertebrates: evolution and phylogenetic applications. Annual Review of Ecology and Systematics 21, 541–566.CrossRefGoogle Scholar
Mitchell, E.A.D., Meisterfeld, C. (2005). Taxonomic confusion blurs the debate on cosmopolitanism versus local endemism of free-living protists. Protist 156, 263–267.CrossRefGoogle ScholarPubMed
Moreira, D., López-García, P. (2002). The molecular ecology of microbial eukaryotes unveils a hidden world. Trends in Microbiology 10, 31–38.CrossRefGoogle ScholarPubMed
Müller, T., Philippi, N., Dandekar, T., Schultz, J., Wolf, M. (2007). Distinguishing species. RNA 13, 1469–1472.CrossRefGoogle ScholarPubMed
Nanney, D.L., Park, C., Preparata, R., Simon, E.M. (1998). Comparison of sequence differences in a variable 23S rRNA domain among sets of cryptic species of ciliated protozoa. Journal of Eukaryotic Microbiology 45, 91–100.CrossRefGoogle Scholar
Nikolaev, S.I., Berney, C., Fahrni, J.F. et al. (2004). The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes. Proceedings of the National Academy of Sciences USA 101, 8066–8071.CrossRefGoogle ScholarPubMed
Nolte, V., Pandey, R.V., Jost, S. et al. (2010). Contrasting seasonal niche separation between rare and abundant taxa conceals the extent of protist diversity. Molecular Ecology 79, 2908–2915.CrossRef
O'Malley, M.A. (2007). The nineteenth-century roots of ‘everything is everywhere’. Nature Reviews Microbiology 5, 647–651.CrossRefGoogle ScholarPubMed
Pawlowski, J., Berney, C. (2003). Episodic evolution of nuclear small subunit ribosomal RNA gene in the stem-lineage of Foraminifera. In Donoghue, P.C.J., Smith, M.P. (eds.), Telling the Evolutionary Time: Molecular Clocks and The Fossil Record, pp. 107–118. Systematics Association special volume 66. London: Taylor and Francis.Google Scholar
Pedrós-Alió, C. (2006). Marine microbial diversity: can it be determined?Trends in Microbiology 14, 257–263.CrossRefGoogle ScholarPubMed
Pfandl, K., Chatzinotas, A., Dyal, P., Beonigk, J. (2009). SSU rRNA gene variation resolves population heterogeneity and ecophysiological differentiation within a morphospecies (Stramenopiles, Chrysophyceae). Limnology and Oceanography 54, 171–181.CrossRefGoogle Scholar
Pither, J. (2007). Comment on “Dispersal limitations matter for microbial morphospecies”. Science 316, 1124. Author reply 1124.CrossRefGoogle Scholar
Przybos, E., Tarcz, S., Fokin, S. (2009). Molecular polymorphism of Paramecium tetraurelia (Ciliophora, Protozoa) in strains originating from difference continents. Folia Biologica 57, 57–63.CrossRefGoogle Scholar
Richards, T.A., Bass, D. (2005). Molecular screening of free-living microbial eukaryotes: diversity and distribution using a meta-analysis. Current Opinion in Microbiology 8, 240–253.CrossRefGoogle ScholarPubMed
Richards, T.A., Dacks, J.B., Jenkinson, J.M., Thornton, C.R., Talbot, N.J. (2006). Evolution of filamentous plant pathogens: Gene exchange across eukaryotic kingdoms. Current Biology 16, 1857–1864.CrossRefGoogle ScholarPubMed
Rodriguez Zaragoza, S., Mayzlish, E., Steinberger, Y. (2005). Seasonal changes in free-living amoeba species in the root canopy of Zygophyllum dumosum in the Negev Desert, Israel. Microbial Ecology 49, 134–141.CrossRefGoogle ScholarPubMed
Scheckenbach, F., Wylezich, C., Mylnikov, A.P., Weitere, M., Arndt, H. (2006). Molecular comparisons of freshwater and marine isolates of the same morphospecies of heterotrophic flagellates. Applied and Environmental Microbiology 72, 6638–6643.CrossRefGoogle ScholarPubMed
Simon, E.M., Nanney, D.L., Doerder, F.P. (2008). The “Tetrahymena pyriformis” complex of cryptic species. Biodiversity and Conservation 17, 365–380.CrossRefGoogle Scholar
Slapeta, J., Moreira, D., López-García, P. (2005). The extent of protist diversity: insights from molecular ecology of freshwater eukaryotes. Proceedings of the Royal Society of London B 272, 2073–2081.CrossRefGoogle ScholarPubMed
Slapeta, J., López-García, P., Moreira, D. (2006). Global dispersal and ancient cryptic species in the smallest marine eukaryotes. Molecular Biology and Evolution 23, 23–29.CrossRefGoogle ScholarPubMed
Smirnov, A.V. (2003). Optimizing methods of the recovery of gymnamoebae from environmental samples: a test of ten popular enrichment media, with some observations on the development of cultures. Protistology 3, 47–57.Google Scholar
Smith, H.G., Wilkinson, D.M. (2007). Not all free-living microorganisms have cosmopolitan distributions – the case of Nebela (Apodera) vas Certes (Protozoa: Amoebozoa: Arcellinida). Journal of Biogeography 34, 1822–1831.CrossRefGoogle Scholar
Smith, H.G., Bobrov, A., Lara, E., (2008). Diversity and biogeography of testate amoebae. Biodiversity and Conservation 17, 329–343.CrossRefGoogle Scholar
Sogin, M., Morrison, H.G., Huber, J.A. et al. (2006). Microbial diversity in the deep sea and underexplored “rare biosphere”. Proceedings of the National Academy of Sciences USA 103, 12115–12120.CrossRefGoogle ScholarPubMed
Stoeck, T., Hayward, B., Taylor, G.T., Varela, R., Epstein, S.S. (2006). A multiple PCR primer approach to access the microeukaryotic diversity in environmental samples. Protist 157, 31–43.CrossRefGoogle ScholarPubMed
Stoeck, T., Bruemmer, F., Foissner, W. (2007a). Evidence for local ciliate endemism in an Alpine anoxic lake. Microbial Ecology 54, 478–486.CrossRefGoogle Scholar
Stoeck, T., Zuendorf, A., Breiner, H.-W., Behnke, A. (2007b). A molecular approach to identify active microbes in environmental eukaryote clone libraries. Microbial Ecology 53, 328–339.CrossRefGoogle ScholarPubMed
Stoeck, T., Bass, D., Nebel, M. et al. (2010). Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Molecular Ecology 19 (s1), 21–31.CrossRefGoogle Scholar
Telford, R.J., Vandvik, V., Birks, H.J. (2006). Dispersal limitations matter for microbial morphospecies. Science 312, 1015.CrossRefGoogle ScholarPubMed
Thackeray, S.J., Jones, I.D., Maberly, S.C. (2008). Long-term change in the phenology of spring phytoplankton: species-specific responses to nutrient enrichment and climate change. Journal of Ecology 96, 523–535.CrossRefGoogle Scholar
Vanormelingen, P., Verleyen, E., Vyverman, W. (2008). The diversity and distribution of diatoms: from cosmopolitanism to narrow endemism. Biodiversity and Conservation 17, 393–405.CrossRefGoogle Scholar
der Heyden, S., Chao, E.E., Cavalier-Smith, T. (2004). Genetic diversity of goniomonads: an ancient divergence between marine and freshwater species. European Journal of Phycology 39, 343–350.CrossRefGoogle Scholar
der Heyden, S., Cavalier-Smith, T. (2005). Culturing and environmental DNA sequencing uncover hidden kinetoplastid biodiversity and a major marine clade within ancestrally freshwater Neobodo designis. International Journal of Systematics and Evolutionary Microbiology 55, 2605–2621.CrossRefGoogle Scholar
Vyverman, W., Verleyen, E., Sabbe, K. et al. (2007). Historical processes constrain patterns in global diatom diversity. Ecology 88, 1924–1931.CrossRefGoogle ScholarPubMed
Ward, R.D., Hanner, R., Hebert, P.D.N. (2009). The campaign to DNA barcode all fishes. Journal of Fish Biology 74, 329–356.CrossRefGoogle ScholarPubMed
Wilkinson, D.M. (2010). Have we underestimated the importance of humans in the biogeography of free-living terrestrial microorganisms?Journal of Biogeography 37, 393–397.CrossRefGoogle Scholar
Worden, A.Z. (2006). Picoeukaryote diversity in coastal waters of the Pacific Ocean. Aquatic Microbial Ecology 43, 165–175.CrossRefGoogle Scholar
Wuyts, J., Rijk, P., Peer, Y. et al. (2000). Comparative analysis of more than 3000 sequences reveals the existence of two pseudoknots in area V4 of eukaryotic small subunit ribosomal RNA. Nucleic Acids Research 28, 4698–4708.CrossRefGoogle ScholarPubMed
Wylezich, C., Mylnikov, A.P., Weitere, M., Arndt, H. (2007). Distribution and phylogenetic relationships of freshwater thaumatomonads with a description of the new species Thaumatomonas coloniensis n. sp. Journal of Eukaryotic Microbiology 54, 347–357.CrossRefGoogle ScholarPubMed
Yang, J., Smith, H.G., Sherratt, T.N., Wilkinson, D.M. (2010). Is there a size limit for cosmopolitan distribution in free-living microorganisms? A biogeographical analysis of testate amoebae from polar areas. Microbial Ecology 59, 635–645.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×