Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T01:52:07.376Z Has data issue: false hasContentIssue false

16 - Measurement and Analysis of Exposure to Light at Night in Epidemiology

Published online by Cambridge University Press:  07 October 2023

Laura K. Fonken
Affiliation:
University of Texas, Austin
Randy J. Nelson
Affiliation:
West Virginia University
Get access

Summary

Artificial light at night (ALAN) has become an increasingly important topic in epidemiology, as numerous studies have established a relationship between ALAN and adverse health effects, including cancer, obesity, depression, and sleep disruption. ALAN exposure measurements, however, vary from study to study and each measurement method has strengths and weaknesses. We review and summarize the pros and cons of different methods that have been used to quantify the light exposure in epidemiological settings, which include widely used remote sensing data, interview data, and individual-level wearable and handheld equipment. We also summarize the methodological approaches that have been used to analyze the spatial distribution of ALAN, as well as the relationships between ALAN and various adverse health outcomes. Finally, we highlight emerging technologies that could be used to measure the ALAN exposure for epidemiological studies, and how spatial analytical methods, such as geographically weighted regression and spatial autoregressive models can be leveraged to understand the spatial and temporal characteristics of ALAN and its mechanisms in regulating human physiology and behavior.

Type
Chapter
Information
Biological Implications of Circadian Disruption
A Modern Health Challenge
, pp. 356 - 380
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amaral, S., Monteiro, A. M. V., Câmara, G., & Quintanilha, J. A. (2006). DMSP/OLS night-time light imagery for urban population estimates in the Brazilian Amazon. Int J Remote Sens, 27(5), 855870.Google Scholar
Amirazar, A., Azarbayjani, M., Molavi, M., & Karami, M. (2021). A low-cost and portable device for measuring spectrum of light source as a stimulus for the human’s circadian system. Energy Buildings, 252, 111386.Google Scholar
Arguelles-Prieto, R., Bonmati-Carrion, M.-A., Rol, M. A., & Madrid, J. A. (2019). Determining light intensity, timing and type of visible and circadian light from an ambulatory circadian monitoring device. Front Physiol, 10, 822.Google Scholar
Bajaj, A., Rosner, B., Lockley, S. W., & Schernhammer, E. S. (2011). Validation of a light questionnaire with real-life photopic illuminance measurements: The Harvard Light Exposure Assessment questionnaire. Cancer Epidemiol Prev Biomark, 20(7), 13411349.Google Scholar
Bauer, S. E., Wagner, S. E., Burch, J., Bayakly, R., & Vena, J. E. (2013). A case-referent study: Light at night and breast cancer risk in Georgia. Int J Health Geog, 12, 23.Google Scholar
Bennett, M. M., & Smith, L. C. (2017). Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics. Remote Sens Environ, 192, 176197.Google Scholar
Bennie, J., Davies, T. W., Duffy, J. P., Inger, R., & Gaston, K. J. (2014). Contrasting trends in light pollution across Europe based on satellite observed night time lights. Sci Rep, 4, 3789.Google Scholar
Bierman, A., Klein, T. R., & Rea, M. S. (2005). The Daysimeter: A device for measuring optical radiation as a stimulus for the human circadian system. Meas Sci Technol, 16, 22922299.Google Scholar
Boulos, M. N. K., Wheeler, S., Tavares, C., & Jones, R. (2011). How smartphones are changing the face of mobile and participatory healthcare: An overview, with example from eCAALYX. Biomed Eng Online, 10(1), 24.Google Scholar
Brainard, G. C., Hanifin, J. P., Greeson, J. M., Byrne, B., Glickman, G., Gerner, E., & Rollag, M. D. (2001). Action spectrum for melatonin regulation in humans: Evidence for a novel circadian photoreceptor. J Neurosci, 21(16), 64056412.Google Scholar
Bullough, J. D., Rea, M. S., & Figueiro, M. G. (2006). Of mice and women: Light as a circadian stimulus in breast cancer research. Cancer Causes Control, 17(4), 375383.Google Scholar
Butt, M. J. (2012). Estimation of light pollution using satellite remote sensing and geographic information system techniques. GISci Remote Sens, 49(4), 609621.Google Scholar
Cain, S. W., McGlashan, E. M., Vidafar, P., Mustafovska, J., Curran, S. P. N., Wang, X., Mohamed, A., Kalavally, V., & Phillips, A. J. K. (2020). Evening home lighting adversely impacts the circadian system and sleep. Sci Rep, 10(1), 19110.Google Scholar
Case, M. A., Burwick, H. A., Volpp, K. G., & Patel, M. S. (2015). Accuracy of smartphone applications and wearable devices for tracking physical activity data. JAMA, 313(6), 625626.Google Scholar
Casiraghi, L., Spiousas, I., Dunster, G. P., McGlothlen, K., Fernández-Duque, E., Valeggia, C., & de la Iglesia, H. O. (2021). Moonstruck sleep: Synchronization of human sleep with the moon cycle under field conditions. Sci Adv, 7(5), eabe0465.Google Scholar
CG Satellite. (2017). JL1–3B. Available at: www.cgsatellite.com (last accessed June 2022).Google Scholar
Chen, X., & Nordhaus, W. D. (2011). Using luminosity data as a proxy for economic statistics. Proc Natl Acad Sci USA, 108(21), 85898594.Google Scholar
Chepesiuk, R. (2009). Missing the dark: The health effects of light pollution. Environ Health Perspect, 117(1), A20A27.Google Scholar
Creveld, K. V. (2020). Measuring real daylight exposure afforded by various architectural environments and the implications for our health and wellbeing. Final report for Jean Heap Research Bursary, Society of Light and Lighting. Available at: www.cibse.org/getmedia/6387e475-9165-4673-9552-9e9abf30c07a/Final-Report-for-Jean-Heap-Bursary_Karen-van-Creveld.pdf.aspx (last accessed June 2022).Google Scholar
Davis, S., Mirick, D. K., & Stevens, R. G. (2001). Night shift work, light at night, and risk of breast cancer. J Natl Cancer Inst, 93, 15571562.Google Scholar
Duriscoe, D. (2016). Photometric indicators of visual night sky quality derived from all-sky brightness maps. J Quant Spectrosc Radiat Transf, 181, 3345.Google Scholar
Elgert, C., Hopkins, J., Kaitala, A., & Candolin, U. (2020). Reproduction under light pollution: Maladaptive response to spatial variation in artificial light in a glow-worm. Proc R Soc B, 287(1931), 20200806.Google Scholar
Elvidge, C. D., Baugh, K. E., Kihn, E. A., Kroehl, H. W., & Davis, E. R. (1997). Mapping city lights with nighttime data from the DMSP Operational Linescan System. Photogramm Eng Remote Sensing, 63(6), 727734.Google Scholar
Elvidge, C. D., Baugh, K. E., Zhizhin, M., & Hsu, F.-C. (2013). Why VIIRS data are superior to DMSP for mapping nighttime lights. Proc Asia-Pacific Adv Netw, 35, 6269.Google Scholar
Elvidge, C. D., Hsu, F.-C., Baugh, K. E., & Ghosh, T. (2014). National trends in satellite-observed lighting 1992–2012. In Weng, Q. (ed.), Global urban monitoring and assessment through earth observation (Vol. 23, pp. 97118). Boca Raton: CRC Press.Google Scholar
Elvidge, C. D., Ziskin, D., Baugh, K. E., Tuttle, B. T., Ghosh, T., Pack, D. W., Erwin, E. H., & Zhizhin, M. (2009). A fifteen year record of global natural gas flaring derived from satellite data. Energies, 2, 595622.Google Scholar
Falchi, F., Cinzano, P., Duriscoe, D., Kyba, C. C. M., Elvidge, C. D., Baugh, K., Portnov, B. A., Rybnikova, N. A., & Furgoni, R. (2016). The new world atlas of artificial night sky brightness. Sci Adv, 2(6), e1600377.Google Scholar
Figueiro, M., & Overington, D. (2016). Self-luminous devices and melatonin suppression in adolescents. Light Res Technol, 48(8), 966975.Google Scholar
Figueiro, M. G., Hamner, R., Bierman, A., & Rea, M. S. (2013). Comparisons of three practical field devices used to measure personal light exposures and activity levels. Light Res Technol, 45(4), 421434.Google Scholar
Figueiro, M. G., & Rea, M. S. (2010). Evening daylight may cause adolescents to sleep less in spring than in winter. Chronobiol Int, 27(6), 12421258.Google Scholar
Figueiro, M. G., & Rea, M. S. (2011). New tools to measure light exposure, activity, and circadian disruption in older adults. Meas Sci Technol, 16, 22922299.Google Scholar
Figueiro, M. G., Rea, M. S., & Bullough, J. D. (2006). Does architectural lighting contribute to breast cancer? J Carcinogen, 5, 20.Google Scholar
Franklin, M., Yin, X., McConnell, R., & Fruin, S. (2020). Association of the built environment with childhood psychosocial stress. JAMA Netw Open, 3(10), e2017634.Google Scholar
Fritschi, L., Erren, T. C., Glass, D. C., Girschik, J., Thomson, A. K., Saunders, C., Boyle, T., El-Zaemey, S., Rogers, P., Peters, S., Slevin, T., D’Orsogna, A., de Vocht, F., Vermeulen, R., & Heyworth, J. S. (2013). The association between different night shiftwork factors and breast cancer: A case–control study. Br J Cancer, 109(9), 24722480.Google Scholar
Gabinet, N. M., Shama, H., & Portnov, B. A. (2022). Using mobile phones as light at night and noise measurement instruments: A validation test in real world conditions. Chronobiol Int, 39(1), 2644.Google Scholar
Gabriel, K. M. A., Kuechly, H. U., Falchi, F., Wosniok, W., & Hölker, F. (2017). Resources of dark skies in German climatic health resorts. Int J Biometeorol, 61(1), 1122.Google Scholar
Gaofen-2. (2020). GF-2 (Gaofen-2) high-resolution imaging satellite / CHEOS series of China. Available at: https://directory.eoportal.org/web/eoportal/satellite-missions/g/gaofen-2 (last accessed June 2022).Google Scholar
Garcia-Saenz, A., de Miguel, A. S., Espinosa, A., Costas, L., Aragonés, N., Tonne, C., Moreno, V., Pérez-Gómez, B., Valentin, A., & Pollán, M. (2020). Association between outdoor light-at-night exposure and colorectal cancer in Spain. Epidemiology, 31(5), 718727.Google Scholar
Garcia-Saenz, A., de Miguel, A. S., Espinosa, A., Valentin, A., Aragonés, N., Llorca, J., Amiano, P., Martín Sánchez, V., Guevara, M., Capelo, R., Tardón, A., Peiró-Perez, R., Jiménez-Moleón, J. J., Roca-Barceló, A., Pérez-Gómez, B., Dierssen-Sotos, T., Ferández-Villa, T., Moreno-Iribas, C., Moreno, V., … Kogevinas, M. (2018). Evaluating the association between artificial light-at-night exposure and breast and prostate cancer risk in Spain (MCC-Spain study). Environ Health Perspect, 126(4), 047011.Google Scholar
Gilbert, A., & Chakraborty, J. (2011). Using geographically weighted regression for environmental justice analysis: Cumulative cancer risks from air toxics in Florida. Soc Sci Res, 40(1), 273286.Google Scholar
Hale, J. D., Davies, G., Fairbrass, A. J., Matthews, T. J., Rogers, C. D. F., & Sadler, J. P. (2013). Mapping lightscapes: Spatial patterning of artificial lighting in an urban landscape. PLoS One, 8(5), e61460.Google Scholar
Han, P., Huang, J., Li, R., Wang, L., Hu, Y., Wang, J., & Huang, W. (2014). Monitoring trends in light pollution in China based on nighttime satellite imagery. Remote Sens, 6(6), 55415558.Google Scholar
Hansen, J., & Stevens, R. G. (2012). Case–control study of shift-work and breast cancer risk in Danish nurses: Impact of shift systems. Eur J Cancer, 48(11), 17221729.Google Scholar
Hassan, E. (2006). Recall bias can be a threat to retrospective and prospective research designs. Internet J Epidemiol, 3(2), 339412.Google Scholar
Horwitz, R. I., & Yu, E. C. (1985). Problems and proposals for interview data in epidemiological research. Int J Epidemiol, 14(3), 463467.Google Scholar
Hunt, L. C., Fritz, J., Herf, M., Herf, L., & Vetter, C. (2021). Invalidity of light sensor data in field studies and a proposal of an algorithmic approach for detection and filtering of non-wear time. BioRxiv, 2021.2008.2011.455859. Available at: https://doi.org/https://doi.org/10.1101/2021.08.11.455859 (last accessed June 2022).Google Scholar
Hurley, S., Goldberg, D., Nelson, D., Hertz, A., Horn-Ross, P. L., Bernstein, L., & Reynolds, P. (2014). Light at night and breast cancer risk among California teachers. Epidemiology, 25(5), 697706.Google Scholar
Huss, A., van Wel, L., Bogaards, L., Vrijkotte, T., Wolf, L., Hoek, G., & Vermeulen, R. (2019). Shedding some light in the dark: A comparison of personal measurements with satellite-based estimates of exposure to light at night among children in the Netherlands. Environ Health Perspect, 127(6), 67001.Google Scholar
James, P., Bertrand, K. A., Hart, J. E., Schernhammer, E. S., Tamimi, R. M., & Laden, F. (2017). Outdoor light at night and breast cancer incidence in the Nurses’ Health Study II. Environ Health Perspect, 125(8), 087010.Google Scholar
Jardim, A. C. N., Pawley, M. D. M., Cheeseman, J. F., Guesgen, M. J., Steele, C. T., & Warman, G. R. (2011). Validating the use of wrist-level light monitoring for in-hospital circadian studies. Chronobiol Int, 28(9), 834840.Google Scholar
Jechow, A., Kolláth, Z., Ribas, S. J., Spoelstra, H., Hölker, F., & Kyba, C. C. M. (2017). Imaging and mapping the impact of clouds on skyglow with all-sky photometry. Sci Rep, 7, 6841.Google Scholar
Jechow, A., Ribas, S. J., Domingo, R. C., Hölker, F., Kolláth, Z., & Kyba, C. C. M. (2018). Tracking the dynamics of skyglow with differential photometry using a digital camera with fisheye lens. J Quant Spectrosc Radiat Transf, 209, 212223.Google Scholar
Kloog, I., Haim, A., Stevens, R. G., Barchana, M., & Portnov, B. A. (2008). Light at night co-distributes with incident breast but not lung cancer in the female population of Israel. Chronobiol Int, 25(1), 6581.Google Scholar
Kloog, I., Haim, A., Stevens, R. G., & Portnov, B. A. (2009). Global co-distribution of light at night (LAN) and cancers of prostate, colon, and lung in men. Chronobiol Int, 26(1), 108125.Google Scholar
Kloog, I., Portnov, B. A., Rennert, H. S., & Haim, A. (2011). Does the modern urbanized sleeping habitat pose a breast cancer risk? Chronobiol Int, 28(1), 7680.Google Scholar
Kloog, I., Stevens, R. G., Haim, A., & Portnov, B. A. (2010). Nighttime light level co-distributes with breast cancer incidence worldwide. Cancer Causes Control, 21(12), 20592068.Google Scholar
Kolláth, Z. (2010). Measuring and modelling light pollution at the Zselic Starry Sky Park. J Phys Conf Series, 218, 012001.Google Scholar
Kuechly, H. U., Kyba, C. C. M., Ruhtz, T., Lindemann, C., Wolter, C., Fischer, J., & Hölker, F. (2012). Aerial survey and spatial analysis of sources of light pollution in Berlin, Germany. Remote Sens Environ, 126, 3950.Google Scholar
Kung, H.-Y., Hsu, C.-Y., Lin, M.-H., & Liu, C.-N. (2006). Mobile multimedia medical system: Design and implementation. Int J Mobile Commun, 4(5), 595620.Google Scholar
Kyba, C. C. M., & Aronson, K. J. (2015). Assessing exposure to outdoor lighting and health risks. Epidemiology, 26(4), e50.Google Scholar
Kyba, C. C. M., Garz, S., Kuechly, H., Sánchez de Miguel, A., Zamorano, J., Fischer, J., & Hölker, F. (2014). High-resolution imagery of Earth at night: New sources, opportunities and challenges. Remote Sens, 7(1), 123.Google Scholar
Kyba, C. C. M., & Spitschan, M. (2019). Comment on “Domestic light at night and breast cancer risk: A prospective analysis of 105000 UK women in the Generations Study”. Br J Cancer, 120(2), 276277.Google Scholar
Levin, N., & Zhang, Q. (2017). A global analysis of factors controlling VIIRS nighttime light levels from densely populated areas. Remote Sens Environ, 190, 366382.Google Scholar
Ley, P. (1972). Primacy, rated importance, and the recall of medical statements. J Health Social Behav, 13(3), 311317.Google Scholar
Li, Q., Zheng, T., Holford, T. R., Boyle, P., Zhang, Y., & Dai, M. (2010). Light at night and breast cancer risk: Results from a population-based case–control study in Connecticut, USA. Cancer Causes Control, 21(12), 22812285.Google Scholar
Li, X., Chen, X., Zhao, Y., Xu, J., Chen, F., & Li, H. (2013). Automatic intercalibration of night-time light imagery using robust regression. Remote Sens Lett, 4(1), 4554.Google Scholar
Longcore, T., Duriscoe, D., Aubé, M., Jechow, A., Kyba, C. C. M., & Pendoley, K. L. (2020). Commentary: Brightness of the night sky affects loggerhead (Caretta caretta) sea turtle hatchling misorientation but not nest site selection. Front Marine Sci, 7, 221.Google Scholar
Luginbuhl, C. B., Durisco, D. M., Moore, C. W., Richman, A., Lockwood, G. W., & Davis, D. R. (2009). From the ground up II: Sky glow and near-ground artificial light propagation in Flagstaff, Arizona. Publ Astro Soc Pacific, 121, 204212.Google Scholar
Lunn, R. M., Blask, D. E., Coogan, A. N., Figueiro, M. G., Gorman, M. R., Hall, J. E., Hansen, J., Nelson, R. J., Panda, S., & Smolensky, M. H. (2017). Health consequences of electric lighting practices in the modern world: A report on the National Toxicology Program’s workshop on shift work at night, artificial light at night, and circadian disruption. Sci Total Environ, 607, 10731084.Google Scholar
LYS. (2021). Our mission is to enable healthier living with light and to make it available for everyone. Available at: https://lystechnologies.io/about/ (last accessed June 2022).Google Scholar
Martin, J. S., Hébert, M., Ledoux, É., Gaudreault, M., & Laberge, L. (2012). Relationship of chronotype to sleep, light exposure, and work-related fatigue in student workers. Chronobiol Int, 29(3), 295304.Google Scholar
Mazor, T., Levin, N., Possingham, H. P., Levy, Y., Rocchini, D., Richardson, A. J., & Kark, S. (2013). Can satellite-based night lights be used for conservation? The case of nesting sea turtles in the Mediterranean. Biol Conserv, 159, 6372.Google Scholar
McFadden, E., Jones, M. E., Schoemaker, M. J., Ashworth, A., & Swerdlow, A. J. (2014). The relationship between obesity and exposure to light at night: Cross-sectional analyses of over 100,000 women in the Breakthrough Generations Study. Am J Epidemiol, 180(3), 245250.Google Scholar
McIsaac, M. A., Sanders, E., Kuester, T., Aronson, K. J., & Kyba, C. C. M. (2021). The impact of image resolution on power, bias, and confounding: A simulation study of ambient light at night exposure. Environ Epidemiol, 5(2), e145.Google Scholar
Metro21: Smart Cities Institute. (2019). Artificial light survey of nighttime Pittsburgh. Available at: www.cmu.edu/metro21/projects/artificial-light-survey-of-nighttime-pittsburgh.html (last accessed June 2022).Google Scholar
Miller, N. J., & Kinzey, B. R. (2018). Home nighttime light exposures: How much are we really getting. IALD News. Available at: www.iald.org/News/In-the-News/Home-Nighttime-Light-Exposures-How-Much-Are-We-Re (last accessed June 2022).Google Scholar
Navara, K. J., & Nelson, R. J. (2007). The dark side of light at night: Physiological, epidemiological, and ecological consequences. J Pineal Res, 43, 215224.Google Scholar
Nilsson, D.-E., & Smolka, J. (2021). Quantifying biologically essential aspects of environmental light. J R Soc Interface, 18(177), 20210184.Google Scholar
O’Leary, E. S., Schoenfeld, E. R., Stevens, R. G., Kabat, G. C., Henderson, K., Grimson, R., Gammon, M. D., & Leske, M. C. (2006). Shift work, light at night, and breast cancer on Long Island, New York. Am J Epidemiol, 164(4), 358366.Google Scholar
Obayashi, K., Saeki, K., Iwamoto, J., Ikada, Y., & Kurumatani, N. (2013). Exposure to light at night and risk of depression in the elderly. J Affect Disord, 151(1), 331336.Google Scholar
Obayashi, K., Saeki, K., Iwamoto, J., Ikada, Y., & Kurumatani, N. (2014). Association between light exposure at night and nighttime blood pressure in the elderly independent of nocturnal urinary melatonin excretion. Chronobiol Int, 31(6), 779786.Google Scholar
Obayashi, K., Saeki, K., Iwamoto, J., Okamoto, N., Tomioka, K., Nezu, S., Ikada, Y., & Kurumatani, N. (2014). Effect of exposure to evening light on sleep initiation in the elderly: A longitudinal analysis for repeated measurements in home settings. Chronobiol Int, 31(4), 461467.Google Scholar
Obayashi, K., Saeki, K., & Kurumatani, N. (2014). Association between light exposure at night and insomnia in the general elderly population: The HEIJO-KYO cohort. Chronobiol Int, 31(9), 976982.Google Scholar
Oh, J. H., Yoo, H., Park, H. K., & Do, Y. R. (2015). Analysis of circadian properties and healthy levels of blue light from smartphones at night. Sci Rep, 5, 11325.Google Scholar
Pack, D. W., Hardy, B. S., & Longcore, T. (2017). Studying Earth at night from CubeSats. Proceedings of the 31st Annual AIAA/USU Conference on Small Satellites, Utah State University, May 8, 2017.Google Scholar
Paksarian, D., Rudolph, K. E., Stapp, E. K., Dunster, G. P., He, J., Mennitt, D., Hattar, S., Casey, J. A., James, P., & Merikangas, K. R. (2020). Association of outdoor artificial light at night with mental disorders and sleep patterns among US adolescents. JAMA Psychiatry, 77(12), 12661275.Google Scholar
Pandey, B., Zhang, Q., & Seto, K. C. (2017). Comparative evaluation of relative calibration methods for DMSP/OLS nighttime lights. Remote Sens Environ, 195, 6778.Google Scholar
Park, Y., & Chen, J. V. (2007). Acceptance and adoption of the innovative use of smartphone. Ind Manag Data Syst, 107(9), 13491365.Google Scholar
Pauley, S. M. (2004). Lighting for the human circadian clock: Recent research indicates that lighting has become a public health issue. Med Hypotheses, 63, 588596.Google Scholar
Pendoley, K. L., Kahlon, A., Ryan, R. T., & Savage, J. (2012). A novel technique for monitoring light pollution. International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production, Perth, Australia.Google Scholar
Portnov, B. A., Stevens, R. G., Samociuk, H., Wakefield, D., & Gregorio, D. I. (2016). Light at night and breast cancer incidence in Connecticut: An ecological study of age group effects. Sci Total Environ, 572, 10201024.Google Scholar
Price, L. L. A., Khazova, M., & O’Hagan, J. B. (2012). Performance assessment of commercial circadian personal exposure devices. Light Res Technol, 44(1), 1726.Google Scholar
Provencio, I., Rodriguez, I. R., Jiang, G., Hayes, W. P., Moreira, E. F., & Rollag, M. D. (2000). A novel human opsin in the inner retina. J Neurosci, 20(2), 600605.Google Scholar
Rea, M. S., Brons, J. A., & Figueiro, M. G. (2011). Measurements of light at night (LAN) for a sample of female school teachers. Chronobiol Int, 28(8), 673680.Google Scholar
Reid, K. J., Santostasi, G., Baron, K. G., Wilson, J., Kang, J., & Zee, P. C. (2014). Timing and intensity of light correlate with body weight in adults. PLoS One, 9(4), e92251.Google Scholar
Ritonja, J., McIsaac, M. A., Sanders, E., Kyba, C. C., Grundy, A., Cordina-Duverger, E., Spinelli, J. J., & Aronson, K. J. (2020). Outdoor light at night at residences and breast cancer risk in Canada. Eur J Epidemiol, 35(6), 579589.Google Scholar
Rodrigues, P., Aubrecht, C., Gil, A., Longcore, T., & Elvidge, C. (2012). Remote sensing to map influence of light pollution on Cory’s shearwater in Sao Miguel Island, Azores Archipelago. Eur J Wildlife Res, 58(1), 147155.Google Scholar
Rybnikova, N., Haim, A., & Portnov, B. A. (2015). Artificial light at night (ALAN) and breast cancer incidence worldwide: A revisit of earlier findings with analysis of current trends. Chronobiol Int, 32(6), 757773.Google Scholar
Rybnikova, N., & Portnov, B. A. (2018). Population-level study links short-wavelength nighttime illumination with breast cancer incidence in a major metropolitan area. Chronobiol Int, 35(9), 11981208.Google Scholar
Rybnikova, N., Stevens, R. G., Gregorio, D. I., Samociuk, H., & Portnov, B. A. (2018). Kernel density analysis reveals a halo pattern of breast cancer incidence in Connecticut. Spatial Spatio-temporal Epidemiol, 26, 143151.Google Scholar
Rybnikova, N. A., Haim, A., & Portnov, B. A. (2016). Does artificial light-at-night exposure contribute to the worldwide obesity pandemic? Int J Obesity, 40(5), 815823.Google Scholar
Sato Shouji Inc. (2010). LX-28SD. Available at: www.satoshoji.co.jp/english/ (last accessed June 2022).Google Scholar
Schernhammer, E. S., Kroenke, C. H., Laden, F., & Hankinson, S. E. (2006). Night work and risk of breast cancer. Epidemiology, 17(1), 108111.Google Scholar
Scheuermaier, K., Laffan, A. M., & Duffy, J. F. (2010). Light exposure patterns in healthy older and young adults. J Biol Rhythms, 25(2), 113122.Google Scholar
Schueler, C. F., Lee, T. F., & Miller, S. D. (2013). VIIRS constant spatial-resolution advantages. Int J Remote Sens, 34(16), 57615777.Google Scholar
Sharkey, K. M., Carskadon, M. A., Figueiro, M. G., Zhu, Y., & Rea, M. S. (2011). Effects of an advanced sleep schedule and morning short wavelength light exposure on circadian phase in young adults with late sleep schedules. Sleep Med, 12(7), 685692.Google Scholar
Simons, A. L., Yin, X., & Longcore, T. (2020). High correlation but high scale-dependent variance between satellite measured night lights and terrestrial exposure. Environ Res Comm, 2(2), 021006.Google Scholar
Spitschan, M., Aguirre, G. K., Brainard, D. H., & Sweeney, A. M. (2016). Variation of outdoor illumination as a function of solar elevation and light pollution. Sci Rep, 6, 26756.Google Scholar
Stevens, R. G. (2009). Light-at-night, circadian disruption and breast cancer: Assessment of existing evidence. Int J Epidemiol, 38(4), 963970.Google Scholar
Stevens, R. G. (2011). Testing the light-at-night (LAN) theory for breast cancer causation. Chronobiol Int, 28(8), 653656.Google Scholar
Stevens, R. G. (2016). Circadian disruption and health: Shift work as a harbinger of the toll taken by electric lighting. Chronobiol Int, 33(6), 589594.Google Scholar
Stevens, R. G., Blask, D. E., Brainard, G. C., Hansen, J., Lockley, S. W., Provencio, I., Rea, M. S., & Reinlib, L. (2007). Meeting report: The role of environmental lighting and circadian disruption in cancer and other diseases. Environ Health Perspect, 115(9), 12571362.Google Scholar
Stevens, R. G., Brainard, G. C., Blask, D. E., Lockley, S. W., & Motta, M. E. (2013). Adverse health effects of nighttime lighting: Comments on American Medical Association policy statement. Am J Prevent Med, 45(3), 343346.Google Scholar
Sutton, P. C. (2003). A scale-adjusted measure of “urban sprawl” using nighttime satellite imagery. Remote Sens Environ, 86(3), 353369.Google Scholar
Thums, M., Whiting, S. D., Reisser, J., Pendoley, K. L., Pattiaratchi, C. B., Proietti, M., Hetzel, Y., Fisher, R., & Meekan, M. G. (2016). Artificial light on water attracts turtle hatchlings during their near shore transit. R Soc Open Sci, 3(5), 160142.Google Scholar
Walbeek, T. J., Harrison, E. M., Gorman, M. R., & Glickman, G. L. (2021). Naturalistic intensities of light at night: A review of the potent effects of very dim light on circadian responses and considerations for translational research. Front Neurol, 12, 625334.Google Scholar
Wegrzyn, L. R., Tamimi, R. M., Rosner, B. A., Brown, S. B., Stevens, R. G., Eliassen, A. H., Laden, F., Willett, W. C., Hankinson, S. E., & Schernhammer, E. S. (2017). Rotating night-shift work and the risk of breast cancer in the Nurses’ Health Studies. Am J Epidemiol, 186(5), 532540.Google Scholar
West, K. E., Jablonski, M. R., Warfield, B., Cecil, K. S., James, M., Ayers, M. A., Maida, J., Bowen, C., Sliney, D. H., & Rollag, M. D. (2010). Blue light from light-emitting diodes elicits a dose-dependent suppression of melatonin in humans. J Appl Physiol, 110(3), 619626.Google Scholar
Xiao, Q., Gee, G., Jones, R. R., Jia, P., James, P., & Hale, L. (2020). Cross-sectional association between outdoor artificial light at night and sleep duration in middle-to-older aged adults: The NIH-AARP Diet and Health Study. Environ Res, 180, 108823.Google Scholar
Xie, Y., & Weng, Q. (2016). Updating urban extents with nighttime light imagery by using an object-based thresholding method. Remote Sens Environ, 187, 113.Google Scholar
Xue, X., Lin, Y., Zheng, Q., Wang, K., Zhang, J., Deng, J., Abubakar, G. A., & Gan, M. (2020). Mapping the fine-scale spatial pattern of artificial light pollution at night in urban environments from the perspective of bird habitats. Sci Total Environ, 702, 134725.Google Scholar
Zhang, Q., & Seto, K. C. (2011). Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens Environ, 115(9), 23202329.Google Scholar
Zheng, Q., Weng, Q., Huang, L., Wang, K., Deng, J., Jiang, R., Ye, Z., & Gan, M. (2018). A new source of multi-spectral high spatial resolution night-time light imagery: JL1–3B. Remote Sens Environ, 215, 300312.Google Scholar
Zheng, X., Wu, B., Weston, M. V., Zhang, J., Gan, M., Zhu, J., Deng, J., Wang, K., & Teng, L. (2017). Rural settlement subdivision by using landscape metrics as spatial contextual information. Remote Sens, 9(5), 486.Google Scholar
Zhong, C., Franklin, M., Wiemels, J., McKean-Cowdin, R., Chung, N. T., Benbow, J., Wang, S. S., Lacey, J. V. Jr, & Longcore, T. (2020). Outdoor artificial light at night and risk of non-Hodgkin lymphoma among women in the California Teachers Study cohort. Cancer Epidemiol, 69, 101811.Google Scholar
Zhong, C., Longcore, T., Benbow, J., Chung, N. T., Chau, K., Wang, S. S., Lacey, J. V. Jr, & Franklin, M. (2021). Environmental influences on sleep in the California Teachers Study Cohort. Am J Epidemiology, 191(9), 15321539.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×