Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-16T03:09:08.701Z Has data issue: false hasContentIssue false

Chapter 5 - Gibbs free energy – applications

Published online by Cambridge University Press:  05 June 2012

Donald T. Haynie
Affiliation:
Central Michigan University
Get access

Summary

Introduction

The Gibbs free energy is important in biology research because it enables one to predict the direction of spontaneous change for a system under the constraints of constant temperature and pressure. These constraints generally apply to all living organisms. In the previous chapter we discussed basic properties of the Gibbs free energy, showed how its changes underlie a number of aspects of physical biochemistry, and touched on what the biological scientist might do with such knowledge. Here, we build on the introductory material and explore how it can be applied to a wide variety of topics of interest to the biological scientist. A range of examples illustrate when, where, why, and how the Gibbs free energy is such a useful concept. We shall discuss the energetics of different types of biological structure, including small organic molecules, membranes, nucleic acids, and proteins. This will help to give a deeper sense of the relatedness of some seemingly very different topics one encounters in biological science.

Photosynthesis, glycolysis, and the citric acid cycle

This section presents a low-resolution view of the energetics of photosynthesis, glycolysis, and the citric acid cycle. There can be no doubt that the details we omit are important: entire books have been written on each subject! But our aim here is to consider biological energy in a global, qualitative way. We want to try to see “the big picture.”

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adair, G. (1925). The osmotic pressure of hæmoglobin in the absence of salts. Proceedings of the Royal Society of London A, 109, 292–300.CrossRefGoogle Scholar
Anfinsen, C. B. (1973). Principles that govern the folding of protein chains. Science, 181, 223–30.CrossRefGoogle ScholarPubMed
Arakawa, T. & Timasheff, S. N. (1985). Theory of protein solubility. Methods in Enzymology, 114, 49–77.CrossRefGoogle ScholarPubMed
Atkins, P. W. (1994). The Second Law: Energy, Chaos, and Form, ch. 8. New York: Scientific American.Google Scholar
Baker, T. A. (1999). Trapped in the act. Nature, 401, 29–30.CrossRefGoogle Scholar
Barth, R. H. (1992). Dialysis. In Encyclopedia of Applied Physics, ed. Trigg, G. L., vol. 4, pp. 533–5. New York: VCH.Google Scholar
Ben-Shem, A., Frolow, F. & Nelson, N. (2003). Crystal structure of plant photosystem I. Nature, 426, 630–5.CrossRefGoogle ScholarPubMed
Bergethon, P. R. (1998). The Physical Basis of Biochemistry: the Foundations of Molecular Biophysics, ch. 13.1. New York: Springer-Verlag.CrossRefGoogle Scholar
Brandts, J. F. (1964). The thermodynamics of protein denaturation. I. The denaturation of chymotrypsinogen. Journal of the American Chemical Society, 86, 4291–301.CrossRefGoogle Scholar
Brandts, J. F. (1964). The thermodynamics of protein denaturation. II. A model of reversible denaturation and interpretations regarding the stability of chymotrypsinogen. Journal of the American Chemical Society, 86, 4302–14.CrossRefGoogle Scholar
Bridger, W. A. & Henderson, J. F. (1983). Cell ATP. New York: John Wiley.Google Scholar
Brønsted, J. N. (1923). Recueil des Travaux Chimiques des Pays-Bas, 42, 718–28.CrossRef
Chothia, C. (1984). Principles that determine the structure of proteins, Annual Review of Biochemistry, 53, 537–72.CrossRefGoogle ScholarPubMed
Christensen, H. N. & Cellarius, R. A. (1972). Introduction to Bioenergetics: Thermodynamics for the Biologist: A Learning Program for Students of the Biological and Medical Sciences.Philadelphia: W. B. Saunders.Google Scholar
Conti, B., Sanchez-Alavez, M., Winsky-Sommerer, R., Morale, M. C., Lucero, J., Brownell, S., Fabre, V., Huitron-Resendiz, S., Henriksen, S., Zorrilla, E. P., Lecea, L. & Bartfai, T. (2006). Transgenic mice with a reduced core body temperature have an increased life span. Science, 314, 825–8.CrossRefGoogle ScholarPubMed
Cooper, A. (2001). Thermodynamics of protein-protein and peptide interactions. In Aggeli, A., Boden, N. & Zhang, S. (eds.) Self-assembling Peptide Systems in Biology, Medicine and Engineering, pp. 47–64. Dordrecht: Kluwer Academic.Google Scholar
Cramer, W. A. & Knaff, D. B. (1991). Energy Transduction in Biological Membranes. A Textbook of Bioenergetics. New York: Springer-Verlag.Google Scholar
Creighton, T. E. (1991). Stability of folded proteins. Current Opinion in Structural Biology, 1, 5–16.CrossRefGoogle Scholar
Dawes, E. A. (1962). Quantitative Problems in Biochemistry, 2nd edn, ch. 1. Edinburgh: E. & S. Livingstone.Google Scholar
Donnan, F. G. (1911). Title. Zeitschrift für Elektrochemie und Angewandte Physikalische Chemie, 17, 572.Google Scholar
Encyclopædia Britannica CD 98, “Colligative Property,” “Dialysis,” “Metabolism,” “Photosynthesis,” “Saturation,” and “Vapour Pressure.”
Epstein, I. R. (1989). The role of flow in systems far-from-equilibrium, Journal of Chemical Education, 66, 191–5.CrossRefGoogle Scholar
Fersht, A. R. (1999). Structure and Mechanism in Protein Science: a Guide to Enzyme Catalysis and Protein Folding. New York: W. H. Freeman.Google Scholar
Fox, S. & Foster, J. S. (1957). Introduction to Protein Chemistry, p. 242. New York: John Wiley.Google Scholar
Franks, F. (1995). Protein destabilization at low temperatures. Advances in Protein Chemistry, 46, 105–39.CrossRefGoogle ScholarPubMed
Frauenfelder, H., Parak, F. & Young, R. D. (1988). Conformational substates in proteins. Annual Review of Biophysics and Biophysical Chemistry, 17, 451–79.CrossRefGoogle ScholarPubMed
Freeman, B. (1995). Osmosis. In Encyclopedia of Applied Physics, ed. Trigg, G. L., vol. 13, pp. 59–71. New York: VCH.Google Scholar
Fröhlich, H. (1969). Quantum mechanical concepts in biology. In Theoretical Physics and Biology, ed. Marios, M.. Amsterdam: North-Holland.Google Scholar
Fruton, J. S. (1999). Proteins, Enzymes, Genes: the Interplay of Chemistry and Biology. New Haven: Yale University Press.Google Scholar
Garrett, J. (1990). Thermodynamics in sheep. Education in Chemistry, 27, 127.Google Scholar
George, P. & Rutman, R. J. (1960). The ‘high energy phosphate bond’ concept. Progress in Biophysics and Biophysical Chemistry, 10, 1–53.Google Scholar
Gillispie, Charles C. (ed.) (1970). Dictionary of Scientific Biography. New York: Charles Scribner.Google Scholar
Girandier, L. & Stock, M. J. (eds.) (1983). Mammalian Thermogenesis. London: Chapman & Hall.CrossRefGoogle Scholar
Gutfreund, H. (1949). In Hæmoglobin: a Symposium Based on a Conference Held at Cambridge in June 1948 in Memory of Sir John Barcroft, ed. Roughton, F. J. W. and Kendrew, J. C., p. 197. London: Butterworths.Google Scholar
Haase, R. (1969). Thermodynamics of Irreversible Processes. New York: Dover.Google Scholar
Harold, F. M. (1986). The Vital Force: a Study of Bioenergetics. New York: W. H. Freeman.Google Scholar
Harris, D. A. (1995). Bioenergetics at a Glance, ch. 1. Oxford: Blackwell Science.Google Scholar
Hatefi, Y. (1985). The mitochondrial electron transport and oxidative phosphorylation system. Annual Review of Biochemistry, 54, 1015–69.CrossRefGoogle ScholarPubMed
Haynie, D. T. (1993). The Structural Thermodynamics of Protein Folding, ch. 4. Ph.D. thesis, The Johns Hopkins University.Google Scholar
Hinckle, P. C. & McCarty, R. E. (1978). How cells make ATP. Scientific American, 238(3), 104–23.CrossRefGoogle Scholar
Karplus, M. & McCammon, J. A. (1986). Protein dynamics. Scientific American, 254(4), 30–9.CrossRefGoogle Scholar
Katchalsky, A. & Curran, P. F. (1967). Nonequilibrium Thermodynamics in Biophysics. Cambridge, Massachusetts: Harvard University Press.Google Scholar
Kauzmann, W. (1958). Some factors in the interpretation of protein denaturation. Advances in Protein Chemistry, 14, 1–63.Google Scholar
Klotz, I. M. (1986). Introduction to Biomolecular Energetics, cc. 3–7. Orlando: Academic Press.Google Scholar
Kondepudi, D. & Prigogine, I. (1998). Modern Thermodynamics: from Heat Engines to Dissipative Structures, ch. 8.2. Chichester: John Wiley.Google Scholar
Kyoguko, Y., Lord, R. C. & Rich, A. (1969). An infrared study of the hydrogen-bonding specificity of hypoxanthine and other nucleic acid derivatives. Biochimica et Biophysica Acta, 179, 10–17.CrossRefGoogle Scholar
Lamm, M. S., Rajagopal, K., Schneider, J. P. & Pochan, D. J. (2005). Laminated morphology of nontwisting b-sheet fibrils constructed via peptide self-assembly. Journal of the American Chemical Society, 127, 16692–700.CrossRefGoogle Scholar
Lodish, H., Baltimore, D., Berk, A., Zipursky, S. L., Matsudaira, P. & Darnell, J. (1995). Molecular Cell Biology, 3rd edn, cc. 2, 4 & 21. New York: W. H. Freeman.Google Scholar
Lowell, B. B. & Spiegelman, B. M. (2000). Towards a molecular understanding of adaptive thermogenesis. Nature, 404, 652–60.CrossRefGoogle ScholarPubMed
Makhatadze, G. I. & Privalov, P. L. (1995). Energetics of protein structure. Advances in Protein Chemistry, 47, 307–425.CrossRefGoogle ScholarPubMed
Matthews, B. W. (1995). Studies on protein stability with T4 lysozyme. Advances in Protein Chemistry, 46, 249–78.CrossRefGoogle ScholarPubMed
McCammon, J. A. & Harvey, S. C. (1987). Dynamics of Proteins and Nucleic Acids. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Millar, D., Millar, I., Millar, J. & Millar, M. (1989). Chambers Concise Dictionary of Scientists. Cambridge: Chambers.Google Scholar
Mitchell, P. (1976). Vectorial chemistry and the molecular mechanisms of chemiosmotic coupling: power transmission by proticityBiochemical Society Transactions, 4, 398–430.CrossRefGoogle Scholar
Morowitz, H. J. (1978). Foundations of Bioenergetics, ch. 3E. New York: Academic Press.Google Scholar
Nicholls, D. G. & Ferguson, S. J. (1992). Bioenergetics 2, ch 3. London: Academic Press.Google Scholar
Noyes, R. M. (1996). Application of the Gibbs function to chemical systems and subsystems. Journal of Chemical Education, 73, 404–8.CrossRefGoogle Scholar
O'Brien, C. (1994). New enzyme structure reveals cell's rotary engine. Science, 265, 1176–7.CrossRefGoogle ScholarPubMed
Osyczka, A., Moser, C. C., Daldal, F. & Dutton, P. L. (2004). Reversible redox energy coupling in electron transfer chains. Nature, 427, 607–12.CrossRefGoogle ScholarPubMed
Pardee, G. S. & Ingraham, L. L. (1960). Free energy and entropy in metabolism. In Metabolic Pathways, ed. Greenberg, D. M., vol. I. New York: Academic Press.Google Scholar
Pauling, L. C. (1970). Structure of high energy molecules. Chemistry in Britain, 6, 468–72.Google ScholarPubMed
Pepys, M. B., Hawkins, P. N., Booth, D. R., Vigushin, D. M., Tennent, G. A., Soutar, A. K., Totty, N., Nguyent, O., Blake, C. C. F., Terry, C. J., Feest, T. G., Zalin, A. M. & Hsuan, J. J. (1993). Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature, 362, 553–7.CrossRefGoogle ScholarPubMed
Peusner, L. (1974). Concepts in Bioenergetics, cc. 3, 5, 6, 7 & 10–8. Englewood Cliffs: Prentice-Hall.Google Scholar
Plum, G. E. & Breslauer, K. J. (1995). Calorimetry of proteins and nucleic acids. Current Opinion Structural Biology, 5, 682–90.CrossRefGoogle ScholarPubMed
Prigogine, I. (1967). Introduction to Thermodynamics of Irreversible Processes. New York: John Wiley.Google Scholar
Prigogine, I. (1969). Structure, dissipation and life. In Theoretical Physics and Biology, ed. M. Marios. Amsterdam: North-Holland.Google Scholar
Prigogine, I., Nicolis, G. & Babloyants, A. (1972). Thermodynamics of evolution. Physics Today, 25 (11), 23–8.CrossRefGoogle Scholar
Prigogine, I., Nicolis, G. & Babloyants, A. (1972). Thermodynamics of evolution. Physics Today, 25 (12), 38–44.CrossRefGoogle Scholar
Record, M. T., Jr, Zhang, W. & Anderson, C. F. (1998). Analysis of effects of salts and uncharged solutes on protein and nucleic acid equilibria and processes: a practical guide to recognizing and interpreting polyelectrolyte effects, Hofmeister effects, and osmotic effects. Advances in Protein Chemistry, 51, 281–353.CrossRefGoogle ScholarPubMed
Rich, P. (2003). Chemiosmotic coupling: The cost of living. Nature, 421, 583.CrossRefGoogle ScholarPubMed
Roberts, T. J., Marsh, R. L., Weyland, P. G., & Taylor, C. R. (1997). Muscular force in running turkeys: the economy of minimizing work. Science, 275, 1113–15.CrossRefGoogle ScholarPubMed
Rondelez, Y., Tresset, G., Nakashima, T., Kato-Yamada, Y., Fujita, H., Takeuchi, S. & Noji, H. (2005). Highly conserved ATP synthesis by F1-ATPase single molecules. Nature, 433, 773–7.CrossRefGoogle Scholar
Rovner, S. L. (2004). The secrets of aging. Chemical & Engineering News, 82(34), 30–5.CrossRefGoogle Scholar
Ruelle, D. (2001). A departure from equilibrium. Nature, 414, 263–5.CrossRefGoogle Scholar
Schellman, J. A. (1987). The thermodynamic stability of proteins. Annual Review of Biophysics and Biophysical Chemistry, 16, 115–37.CrossRefGoogle ScholarPubMed
Schnitzer, M. J. (2001). Doing a rotary two-step. Nature, 410, 878–81.CrossRefGoogle Scholar
Secrest, D. (1996). Osmotic pressure and the effects of gravity on solutions. Journal of Chemical Education, 73, 998–1000.CrossRefGoogle Scholar
Segal, I. H. (1976). Biochemical Calculations: How to Solve Mathematical Problems in General Biochemistry, 2nd edn, ch. 3. New York: John Wiley.Google Scholar
Shavit, N. (1980). Energy transduction in chloroplasts. Annual Review of Biochemistry, 49, 111–39.CrossRefGoogle ScholarPubMed
Shaw, A. & Bott, R. (1996). Engineering enzymes for stability. Current Opinion in Structural Biology, 6, 546–50.CrossRefGoogle ScholarPubMed
Shortle, D. (1996). The denatured state (the other half of the folding equation) and its role in protein stability. Federation of the American Societies for Experimental Biology Journal, 10, 27–34.CrossRefGoogle ScholarPubMed
Smith, C. A. & Wood, E. J. (1991). Energy in Biological Systems, cc. 1.3 & 1.4. London: Chapman & Hall.CrossRefGoogle Scholar
Snell, F. M., Shulman, S., Spencer, R. P. & Moos, C. (1965). Biophysical Principles of Structure and Function, ch. 8. Reading, Massachusetts: Addison-Wesley.Google Scholar
Spolar, R., Livingstone, J. & Record, M. T., Jr. (1992). Use of liquid hydrocarbon and amide transfer data to estimate contributions to thermodynamic functions of protein folding from the removal of nonpolar and polar surface from water. Biochemistry, 31, 3947–55.CrossRefGoogle ScholarPubMed
Tanford, C. (1968). Protein denaturation (parts A and B). Advances in Protein Chemistry, 23, 121–282.CrossRefGoogle Scholar
Timasheff, S. N. (1993). The control of protein stability and association by weak interactions with water: how do solvents affect these processes?Annual Review of Biophysics and Biomolecular Structure, 22, 67–97.CrossRefGoogle ScholarPubMed
Timasheff, S. N. (1998). Control of protein stability and reactions by weakly interacting cosolvents: the simplicity and the complicated. Advances in Protein Chemistry, 51, 355–432.CrossRefGoogle ScholarPubMed
Timbrell, J. A. (1991). Principles of Biochemical Toxicology, 2nd edn, ch. 7. London: Taylor & Francis.Google Scholar
Holde, K. E. (1985). Physical Biochemistry, 2nd edn, cc. 2.1, 2.3, 2.4, 3.4 & 3.5. Englewood Cliffs: Prentice-Hall.Google Scholar
Voet, D. & Voet, J. G. (1995). Biochemistry, 2nd edn, cc. 3, 4, 15–4–15–6, 16, 18–1, 19–1, 20, 22, 28–3, 28–5A & 34–4B. New York: John Wiley.Google Scholar
Weber-Ban, E. U., Reid, B. G., Miranker, A. D. & Horwich, A. L. (1999). Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature, 401, 90–3.CrossRefGoogle ScholarPubMed
Williams, S. (1999). Life as a part-time plant. Wellcome News, 20, 38.Google Scholar
Williams, T. I. (ed.) (1969). A Biographical Dictionary of Scientists. London: Adam & Charles Black.Google Scholar
Woodcock, A. & Davis, M. (1978). Catastrophe Theory. Harmondsworth: Penguin.Google Scholar
Wrigglesworth, J. (1997). Energy and Life, cc. 3, 5.7.2, 7.1, 7.3 & 7.5.1. London: Taylor & Francis.CrossRefGoogle Scholar
Yasuda, R., Noji, H., Yoshida, M., Kinosita, K. Jr & Itoh, H. (2001). Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature, 410, 898–904.CrossRefGoogle ScholarPubMed
Youvan, D. C. & Marrs, B. L. (1987). Molecular mechanisms of photosynthesis. Scientific American, 256 (6), 42–8.CrossRefGoogle Scholar
Zouni, A., Witt, H.-T., Kern, J., Fromme, P., Krauß, N., Saenger, W. & Orth, P.Crystal structure of photosystem II from Synechococcus elongates at 3.8 Å resolution. Nature, 409, 739–43.CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×