Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-20T02:18:42.175Z Has data issue: false hasContentIssue false

6 - Structure and evolution of fern plastid genomes

Published online by Cambridge University Press:  11 August 2009

Paul G. Wolf
Affiliation:
Department of Biology, Utah State University, Logan, UT 84322, USA
Jessie M. Roper
Affiliation:
Department of Biology, Utah State University, Logan, UT 84322, USA
Tom A. Ranker
Affiliation:
University of Colorado, Boulder
Christopher H. Haufler
Affiliation:
University of Kansas
Get access

Summary

Introduction

The concept of the genome, as the haploid complement of genes of an organism, is far from recent. The term genome is usually attributed to Hans Winkler in 1920 (Ledergerg and McCray, 2001). However, fine scale maps and understanding of the function of genes in the context of the genome did not begin until the 1970s after DNA sequencing techniques were developed. The term genome (and its corresponding genomics) can mean different things to different people (Ledergerg and McCray, 2001) but here we will focus on structural and evolutionary aspects of genomes in ferns. Although genomics is generally reserved for the main (nuclear) component of an organism, that topic is covered in Chapter 7. Instead we narrow the focus here to the chloroplast (i.e., plastid) genome. This small, well-defined genome is found in all green plants. Among land plants the plastid genome is highly conserved in structure and gene content (Palmer, 1985b). Compared to most nuclear genomes studied, plastid genomes contain a high proportion of DNA that codes for proteins and for RNA (ribosomal and transfer). Much of the non-coding regions (between protein-encoding genes) is transcribed and may well have important regulatory functions.

Because the plastid genome contains a high density of genes of well-studied processes, the genome is an excellent model for investigations into the relationship between genome structure and function. This field represents an ideal starting point leading into the much more complex field of the study of nuclear genomes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bendich, A. J. (2004). Circular chloroplast chromosomes: the grand illusion. The Plant Cell, 16, 1661–1666.CrossRefGoogle ScholarPubMed
Conant, D. S., Stein, D. B., Valinski, A. E. C., Sudarsanam, P., and Ahearn, M. E. (1994). Phylogenetic implications of chloroplast DNA variation in the Cyatheaceae.1. Systematic Botany, 19, 60–72.CrossRefGoogle Scholar
Cosner, M. A., Raubeson, L. A., and Jansen, R. K. (2004). Chloroplast DNA rearrangements in Campanulaceae: phylogenetic utility of highly rearranged genomes. BMC Evolutionary Biology, 4, 1–17.CrossRefGoogle ScholarPubMed
Eberhard, S., Drapier, D., and Wollman, F. A. (2002). Searching limiting steps in the expression of chloroplast-encoded proteins: relations between gene copy number, transcription, transcript abundance and translation rate in the chloroplast of Chlamydomonas reinhardtii. Plant Journal, 31, 149–160.CrossRefGoogle ScholarPubMed
Goulding, S. E., Olmstead, R. G., Morden, C. W., and Wolfe, K. H. (1996). Ebb and flow of the chloroplast inverted repeat. Molecular and General Genetics, 252, 195–206.CrossRefGoogle ScholarPubMed
Hasebe, M. and Iwatsuki, K. (1990a). Adiantum capillus-veneris chloroplast DNA clone bank: as useful heterologous probes in the systematics of the leptosporangiate ferns. American Fern Journal, 80, 20–25.CrossRefGoogle Scholar
Hasebe, M. and Iwatsuki, K. (1990b). Chloroplast DNA from Adiantum capillus-veneris L., a fern species (Adiantaceae) – clone bank, physical map and unusual gene localization in comparison with angiosperm chloroplast DNA. Current Genetics, 17, 359–364.CrossRefGoogle Scholar
Hasebe, M. and Iwatsuki, K. (1992). Gene localization on the chloroplast DNA of the maiden hair fern: Adiantum capillus-veneris. Botanical Magazine (Tokyo), 105, 413–419.CrossRefGoogle Scholar
Helfenbein, K. G. and Boore, J. L. (2004). The mitochondrial genome of Phoronis architecta – comparisons demonstrate that phoronids are lophotrochozoan protostomes. Molecular Biology and Evolution, 21, 153–157.CrossRefGoogle ScholarPubMed
Jansen, R. K., Raubeson, L. A., Boore, J. L., Pamphilis, C. W., Chumley, T. W., Haberle, R. C., Wyman, S. K., Alverson, A. J., Peery, R., Herman, S. J., Fourcade, H. M., Kuehl, J. V., McNeal, J. R., Leebens-Mack, J., and Cui, L. (2005). Methods for obtaining and analyzing whole chloroplast genome sequences. Methods in Enzymology, 395, 348–384.CrossRefGoogle ScholarPubMed
Kim, K.-J., Choi, K.-S., and Jansen, R. K. (2005). Two chloroplast DNA inversions originated simultaneously during the early evolution of the sunflower family (Asteraceae). Molecular Biology and Evolution, 22, 1783–1792.CrossRefGoogle Scholar
Kolodner, R. and Tewari, K. K. (1979). Inverted repeats in chloroplast DNA from higher plants. Proceedings of the National Academy of Sciences of the United States of America, 76, 41–45.CrossRefGoogle ScholarPubMed
Kugita, M., Yamamoto, Y., Fujikawa, T., Matsumoto, T., and Yoshinaga, K. (2003). RNA editing in hornwort chloroplasts makes more than half the genes functional. Nucleic Acids Research, 31, 2417–2423.CrossRefGoogle ScholarPubMed
Ledergerg, J. and McCray, A. T. (2001). “Ome sweet ”omics – a genealogical treasury of words. The Scientist, 15, 8–9.Google Scholar
Leister, D. (2003). Chloroplast research in the genomic age. Trends in Genetics, 19, 47–56.CrossRefGoogle ScholarPubMed
Martin, W. and Herrmann, R. G. (1998). Gene transfer from organelles to the nucleus: how much, what happens, and why? Plant Physiology, 118, 9–17.CrossRefGoogle Scholar
Martin, W. and Miller, M. (1998). The hydrogen hypothesis for the first eukaryote. Nature, 392, 37–41.CrossRefGoogle ScholarPubMed
Martin, W., Somerville, C. C., and Goel, Loiseaux-de S. (1992). Molecular phylogenies of plastid origins and algal evolution. Journal of Molecular Evolution, 35, 385–404.CrossRefGoogle Scholar
Martin, W., Stoebe, B., Goremyken, V., Hansmann, S., Hasegawa, M., and Kowallik, K. V. (1998). Gene transfer to the nucleus and the evolution of chloroplasts. Nature, 393, 162–165.CrossRefGoogle ScholarPubMed
McNeal, J. R., Leebens-Mack, J. H., Arumuganathan, K., Kuehl, J. V., Boore, J. L., and Pamphilis, C. W. (2006). Using partial genomic fosmid libraries for sequencing complete organellar genomes. Biotechniques, 41, 69–72.CrossRefGoogle ScholarPubMed
Nishiyama, T., Kugita, M., Sinclair, R. B., Sugita, M., Sugiura, C., Wakasugi, T., Wolf, P. G., Yamada, K., Yoshinaga, K., and Hasebe, M. (2004). Bryophytes are monophyletic and land plants comprise two extant lineages. Molecular Biology and Evolution, 21, 1813–1819.CrossRefGoogle Scholar
Ohyama, K., Fukuzawa, H., Kohchi, T., Shirai, H., Sano, T., Sano, S., Umesono, K., Shiki, Y., Takeuchi, M., Chang, Z., Aota, S., Inokuchi, H., and Ozeki, H. (1986). Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature, 322, 572–574.CrossRefGoogle Scholar
Olmstead, R. G. and Palmer, J. D. (1994). Chloroplast DNA systematics: a review of methods and data analysis. American Journal of Botany, 81, 1205–1224.CrossRefGoogle Scholar
Palmer, J. D. (1983). Chloroplast DNA exists in two orientations. Nature, 301, 92–93.CrossRefGoogle Scholar
Palmer, J. D. (1985a). Comparative organization of chloroplast genomes. Annual Review of Genetics, 19, 325–354.CrossRefGoogle Scholar
Palmer, J. D. (1985b). Evolution of cpDNA and mtDNA in plants and algae. In Molecular and Evolutionary Genetics, ed. MacIntyre, R. J.. New York: Plenum Press, pp. 131–240.CrossRefGoogle Scholar
Palmer, J. D. (1986). Isolation and structural analysis of chloroplast DNA. Methods in Enzymology, 118, 167–186.CrossRefGoogle Scholar
Palmer, J. D. (1987). Chloroplast DNA evolution and biosystematic uses of chloroplast DNA variation. The American Naturalist, 130, 6–29.CrossRefGoogle Scholar
Palmer, J. D. (1991). Plastid chromosomes: structure and evolution. In Cell Culture and Somatic Genetics of Plant, Vol. 7A, Molecular Biology of Plastids, ed. Bogorad, L. and Vasil, I. K.. San Diego, CA: Academic Press, pp. 5–53.Google Scholar
Palmer, J. D. and Stein, D. B. (1986). Conservation of chloroplast genome structure among vascular plants. Current Genetics, 10, 823–833.CrossRefGoogle Scholar
Palmer, J. D. and Thompson, W. F. (1981). Rearrangements in the chloroplast genomes of mung bean and pea. Proceedings of the National Academy of Sciences of the United States of America, 78, 5533–5537.CrossRefGoogle ScholarPubMed
Peltier, J., Friso, G., Kalume, D., Roepstorff, P., Nilsson, F., Adamska, I., Wijk, K., and Wijk, K. (2000). Proteomics of the chloroplast: systematic identification and targeting analysis of lumenal and peripheral thylakoid proteins. Plant Cell, 12, 319–341.CrossRefGoogle ScholarPubMed
Pryer, K. M., Schuettpelz, E., Wolf, P. G., Schneider, H., Smith, A. R., and Cranfill, R. (2004). Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences. American Journal of Botany, 91, 1582–1598.CrossRefGoogle ScholarPubMed
Raubeson, L. A. and Jansen, R. K. (1992). Chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science, 255, 1697–2699.CrossRefGoogle ScholarPubMed
Raubeson, L. A. and Stein, D. B. (1995). Insights into fern evolution from mapping chloroplast genomes. American Fern Journal, 85, 193–204.CrossRefGoogle Scholar
Robbens, S., Khadaroo, B., Camasses, A., Derelle, E., Ferraz, C., Inze, D., Peer, Y., and Moreau, H. (2005). Genome-wide analysis of core cell cycle genes in the unicellular green alga Ostreococcus tauri. Molecular Biology and Evolution, 22, 589–597.CrossRefGoogle ScholarPubMed
Roper, J. M., Hansen, S. K., Wolf, P. G., Karol, K. G., Mandoli, D. F., Everett, K. D. E., Kuehl, J., and Boore, J. L. (2007). The complete plastid genome sequence of Angiopteris evecta (G. Forst.) Hoffm. American Fern Journal, 97, 95–106.CrossRefGoogle Scholar
Shinozaki, K., Ohme, M., Tanaka, M., Wakasugi, T., Hayashida, N., Matsubayashi, T., Zaita, N., Chunwongse, J., Obokata, J., Yamaguchi-Shinozaki, K., Ohto, C., Torazawa, K., Meng, B. Y., Sugita, M., Deno, H., Kamogashira, T., Yamada, K., Kusuda, J., Takaiwa, F., Kato, A., Tohdoh, N., Shimada, H., and Sugiura, M. (1986). The complete nucleotide sequence of tobacco chloroplast genome: its gene organization and expression. EMBO Journal, 5, 2043–2049.Google ScholarPubMed
Small, R. L., Lickey, E. B., Shaw, J., and Hauk, W. D. (2005). Amplification of noncoding chloroplast DNA for phylogenetic studies in lycophytes and monilophytes with a comparative example of relative phylogenetic utility from Ophioglossaceae. Molecular Phylogenetics and Evolution, 36, 509–522.CrossRefGoogle ScholarPubMed
Stein, D. B., Palmer, J. D., and Thompson, W. F. (1986). Structural evolution and flip-flop recombination of chloroplast DNA in the fern genus Osmunda. Current Genetics, 10, 835–841.CrossRefGoogle Scholar
Stein, D. B., Conant, D. S., Ahearn, M. E., Jordan, E. T., Kirch, S. A., Hasebe, M., Iwatsuki, K., Tan, M. K., and Thomson, J. A. (1992). Structural rearrangements of the chloroplast genome provide an important phylogenetic link in ferns. Proceedings of the National Academy of Sciences of the United States of America, 89, 1856–1860.CrossRefGoogle ScholarPubMed
Stoebe, B., Hansmann, S., Goremykin, V., Kowalik, K. V., and Martin, W. (1999). Proteins encoded in sequenced chloroplast genomes: an overview of gene content, phylogenetic information and endosymbiotic gene transfer to the nucleus. In Molecular Systematics and Plant Evolution, ed. Hollingsworth, P. M., Batesman, R. M., and Gornall, R. J.. London: Taylor and Francis, pp. 327–352.CrossRefGoogle Scholar
Sugiura, C., Kobayashi, Y., Aoki, S., Sugita, C., and Sugita, M. (2003). Complete chloroplast DNA sequence of the moss Physcomitrella patens: evidence for the loss and relocation of rpoA from the chloroplast to the nucleus. Nucleic Acids Research, 31, 5324–5331.CrossRefGoogle ScholarPubMed
Wijk, K. J. (2000). Proteomics of the chloroplast: experimentation and prediction. Trends in Plant Science, 5, 420–425.CrossRefGoogle Scholar
Wolf, P. G., Rowe, C. A., Sinclair, R. B., and Hasebe, M. (2003). Complete nucleotide sequence of the chloroplast genome from a leptosporangiate fern, Adiantum capillus-veneris L. DNA Research, 10, 59–65.CrossRefGoogle ScholarPubMed
Wolf, P. G., Rowe, C. A., and Hasebe, M. (2004). High levels of RNA editing in a vascular plant chloroplast genome: analysis of transcripts from the fern Adiantum capillus-veneris. Gene, 339, 89–97.CrossRefGoogle Scholar
Wolf, P. G., Karol, K. G., Mandoli, D. F., Kuehl, J., Arumuganathan, K., Ellis, M. W., Mishler, B. D., Kelch, D. G., Olmstead, R. G., and Boore, J. L. (2005). The first complete chloroplast genome sequence of a lycophyte, Huperzia lucidula (Lycopodiaceae). Gene, 350, 117–128.CrossRefGoogle Scholar
Wolfe, K. H., Morden, C. W., Ems, S. C., and Palmer, J. D. (1992). Rapid evolution of the plastid translational apparatus in a nonphotosynthetic plant: loss or accelerated sequence evolution of tRNA and ribosomal protein genes. Journal of Molecular Evolution, 35, 304–317.CrossRefGoogle ScholarPubMed
Wu, M., Chang, C. H., Yang, J. M., Zhang, Y. L., Nie, Z. Q., and Hsieh, C. H. (1993). Regulation of chloroplast DNA replication in Chlamydomonas reinhardtii. Botanical Bulletin of Academia Sinica, 34, 115–131.Google Scholar
Wyman, S. K., Boore, J. L., and Jansen, R. K. (2004). Automatic annotation of organellar genomes with DOGMA. Bioinformatics, 20, 3252–3255.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×